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Abstract

Let M be a random nα × n matrix of rank r ≪ n, and assume that a uniformly random
subset E of its entries is observed. We describe an efficient algorithm that reconstructs M from
|E| = O(r n) observed entries with relative root mean square error

RMSE ≤ C(α)

(
nr

|E|

)1/2

.

Further, if r = O(1), M can be reconstructed exactly from |E| = O(n log n) entries. These results
apply beyond random matrices to general low-rank incoherent matrices.

This settles (in the case of bounded rank) a question left open by Candès and Recht and
improves over the guarantees for their reconstruction algorithm. The complexity of our algorithm
is O(|E|r log n), which opens the way to its use for massive data sets. In the process of proving
these statements, we obtain a generalization of a celebrated result by Friedman-Kahn-Szemerédi
and Feige-Ofek on the spectrum of sparse random matrices.

1 Introduction

Imagine that each of m customers watches and rates a subset of the n movies available through a
movie rental service. This yields a dataset of customer-movie pairs (i, j) ∈ E ⊆ [m] × [n] and, for
each such pair, a rating Mij ∈ R. The objective of collaborative filtering is to predict the rating for
the missing pairs in such a way as to provide targeted suggestions.1 The general question we address
here is: Under which conditions do the known ratings provide sufficient information to infer the
unknown ones? Can this inference problem be solved efficiently? The second question is particularly
important in view of the massive size of actual data sets.

1.1 Model definition

A simple mathematical model for such data assumes that the (unknown) matrix of ratings has rank
r ≪ m,n. More precisely, we denote by M the matrix whose entry (i, j) ∈ [m] × [n] corresponds
to the rating user i would assign to movie j. We assume that there exist matrices U , of dimensions
m × r, and V , of dimensions n × r, and a diagonal matrix Σ, of dimensions r × r such that

M = UΣV T . (1)

∗Department of Electrical Engineering, Stanford University

†Departments of Statistics, Stanford University

1Indeed, in 2006, Netflix made public such a dataset with m ≈ 5 · 105, n ≈ 2 · 104 and |E| ≈ 108 and challenged
the research community to predict the missing ratings with root mean square error below 0.8563 [Net].
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For justification of these assumptions and background on the use of low rank matrices in information
retrieval, we refer to [BDJ99]. Since we are interested in very large data sets, we shall focus on the
limit m,n → ∞ with m/n = α bounded away from 0 and ∞.

We further assume that the factors U , V are unstructured. This notion is formalized by the
incoherence condition introduced by Candés and Recht [CR08], and defined in Section 2. In particular
the incoherence condition is satisfied with high probability if M = UΣV T with U and V uniformly
random matrices with UT U = m1 and V T V = n1. Alternatively, incoherence holds if the entries of
U and V are i.i.d. bounded random variables.

Out of the m × n entries of M , a subset E ⊆ [m] × [n] (the user/movie pairs for which a rating
is available) is revealed. We let ME be the m × n matrix that contains the revealed entries of M ,
and is filled with 0’s in the other positions

ME
i,j =

{
Mi,j if (i, j) ∈ E ,

0 otherwise.
(2)

The set E will be uniformly random given its size |E|.

1.2 Algorithm

A naive algorithm consists of the following projection operation.

Projection. Compute the singular value decomposition (SVD) of ME (with σ1 ≥ σ2 ≥ · · · ≥ 0)

ME =

min(m,n)∑

i=1

σixiy
T
i , (3)

and return the matrix Tr(M
E) = (mn/|E|)∑r

i=1 σixiy
T
i obtained by setting to 0 all but the r largest

singular values. Notice that, apart from the rescaling factor (mn/|E|), Tr(M
E) is the orthogonal

projection of ME onto the set of rank-r matrices. The rescaling factor compensates the smaller
average size of the entries of ME with respect to M .

It turns out that, if |E| = Θ(n), this algorithm performs very poorly. The reason is that the
matrix ME contains columns and rows with Θ(log n/ log log n) non-zero (revealed) entries. The
largest singular values of ME are of order Θ(

√
log n/ log log n). The corresponding singular vectors

are highly concentrated on high-weight column or row indices (respectively, for left and right singular
vectors). Such singular vectors are an artifact of the high-weight columns/rows and do not provide
useful information about the hidden entries of M . This motivates the definition of the following
operation (hereafter the degree of a column or of a row is the number of its revealed entries).

Trimming. Set to zero all columns in ME with degree larger that 2|E|/n. Set to 0 all rows with
degree larger than 2|E|/m.

Figure 1 shows the singular value distributions of ME and M̃E for a random rank-3 matrix M .
The surprise is that trimming (which amounts to ‘throwing out information’) makes the underlying
rank-3 structure much more apparent. This effect becomes even more important when the number
of revealed entries per row/column follows a heavy tail distribution, as for real data.

In terms of the above routines, our algorithm has the following structure.

Spectral Matrix Completion( matrix ME )

1: Trim ME , and let M̃E be the output;

2: Project M̃E to Tr(M̃
E);

3: Clean residual errors by minimizing the discrepancy F (X,Y ).
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Figure 1: Histogram of the singular values of a partially revealed matrix ME before trimming (left) and after

trimming (right) for 104×104 random rank-3 matrix M with ǫ = 30 and Σ = diag(1, 1.1, 1.2). After trimming

the underlying rank-3 structure becomes clear. Here the number of revealed entries per row follows a heavy

tail distribution with P{N = k} = const./k3.

The last step of the above algorithm allows to reduce (or eliminate) small discrepancies between

Tr(M̃
E) and M , and is described below.

Cleaning. Various implementation are possible, but we found the following one particularly appeal-
ing. Given X ∈ Rm×r, Y ∈ Rn×r with XT X = m1 and Y T Y = n1, we define

F (X,Y ) ≡ min
S∈Rr×r

F(X,Y, S) , (4)

F(X,Y, S) ≡ 1

2

∑

(i,j)∈E

(Mij − (XSY T )ij)
2 . (5)

The cleaning step consists in writing Tr(M̃
E) = X0S0Y

T
0 and minimizing F (X,Y ) locally with initial

condition X = X0, Y = Y0.
Notice that F (X,Y ) is easy to evaluate since it is defined by minimizing the quadratic function

S 7→ F(X,Y, S) over the low-dimensional matrix S. Further it depends on X and Y only through
their column spaces. In geometric terms, F is a function defined over the cartesian product of
two Grassmann manifolds (we refer to Section 5 for background and references). Optimization
over Grassmann manifolds is a well understood topic [EAS99] and efficient algorithms (in particular
Newton and conjugate gradient) can be applied. To be definite, we assume that gradient descent
with line search is used to minimize F (X,Y ).

Finally, the implementation proposed here implicitly assumes that the rank r is known. In
practice this is a non-issue. Since r ≪ n, a loop over the value of r can be added at little extra cost.
For instance, in collaborative filtering applications, r ranges between 10 and 30.

1.3 Main results

Notice that computing Tr(M̃
E) only requires to find the first r singular vectors of a sparse matrix.

Our main result establishes that this simple procedure achieves arbitrarily small relative root mean
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square error from O(nr) revealed entries. We define the relative root mean square error as

RMSE ≡
[

1

mnr
||M − Tr(M̃

E)||2F
]1/2

. (6)

where we denote by ||A||F the Frobenius norm of matrix A. Notice that the factor (1/mn) corresponds
to the usual normalization by the number of entries. The factor (1/r) is instead necessary because
(as described in Section 2), the typical size of the entries of M is

√
r.

Theorem 1.1. Assume M to be a rank r ≤ n1/2 matrix that satisfies the incoherence condition A2
(in particular, this is the case for random orthogonal matrices U, V ). Then with high probability

1

mnr
||M − Tr(M̃

E)||2F ≤ C(α)
nr

|E| . (7)

The proof is provided in Section 3.
Notice that the top r singular values and singular vectors of the sparse matrix M̃E can be

computed efficiently by subspace iteration [Ber92]. Each iteration requires O(|E|r) operations. As
proved in Section 3, the (r + 1)-th singular value is smaller than one half of the r-th one. As a
consequence, subspace iteration converges exponentially. A simple calculation shows that O(log n)
iterations are sufficient to ensure the error bound mentioned.

The ‘cleaning’ step in the above pseudocode improves systematically over Tr(M̃
E) and, for large

enough |E|, reconstructs M exactly.

Theorem 1.2. Assume M to be a rank r ≤ n1/2 matrix that satisfies the incoherence conditions A1
and A2. Further, assume Σmin ≤ Σ1, . . . ,Σr ≤ Σmax with Σmin,Σmax bounded away from 0 and ∞.
Then there exists C ′(α) such that, if

|E| ≥ C ′(α)nr max{log n, r} , (8)

then the cleaning procedure in Spectral Matrix Completion converges, with high probability, to
the matrix M .

The proof is provided in Section 5. The basic intuition is that, for |E| ≥ C ′(α)nr max{log n, r},
Tr(M̃

E) is so close to M that the cost function is well approximated by a quadratic function.
Theorem 1.1 is optimal: the number of degrees of freedom in M is of order nr, without the same

number of observations is impossible to fix them. The extra log n factor in Theorem 1.2 is due to a
coupon-collector effect [CR08, KMO08, KOM09]: it is necessary that E contains at least one entry
per row and one per column and this happens only for |E| ≥ Cn log n. As a consequence, for rank r
bounded, Theorem 1.2 is optimal. It is suboptimal by a polylogarithmic factor for r = O(log n).

1.4 Related work

Beyond collaborative filtering, low rank models are used for clustering, information retrieval, machine
learning, and image processing. In [Faz02], the NP-hard problem of finding a matrix of minimum
rank satisfying a set of affine constraints was addresses through convex relaxation. This problem is
analogous to the problem of finding the sparsest vector satisfying a set of affine constraints, which
is at the heart of compressed sensing [Don06, CRT06]. The connection with compressed sensing was
emphasized in [RFP07], that provided performance guarantees under appropriate conditions on the
constraints.
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In the case of collaborative filtering, we are interested in finding a matrix M of minimum rank
that matches the known entries {Mij : (i, j) ∈ E}. Each known entry thus provides an affine
constraint. Candès and Recht [CR08] introduced the incoherent model for M . Within this model,
they proved that, if E is random, the convex relaxation correctly reconstructs M as long as |E| ≥
C r n6/5 log n. On the other hand, from a purely information theoretic point of view (i.e. disregarding
algorithmic considerations), it is clear that |E| = O(n r) observations should allow to reconstruct M
with arbitrary precision. Indeed this point was raised in [CR08] and proved in [KMO08], through a
counting argument.

The present paper describes an efficient algorithm that reconstructs a rank-r matrix from O(n r)
random observations. The most complex component of our algorithm is the SVD in step 2. We were
able to treat realistic data sets with n ≈ 105. This must be compared with the O(n4) complexity of
semidefinite programming [CR08].

Cai, Candès and Shen [CCS08] recently proposed a low-complexity procedure to solve the convex
program posed in [CR08]. Our spectral method is akin to a single step of this procedure, with the
important novelty of the trimming step that improves significantly its performances. Our analysis
techniques might provide a new tool for characterizing the convex relaxation as well.

Theorem 1.1 can also be compared with a copious line of work in the theoretical computer science
literature [FKV04, AFK+01, AM07]. An important motivation in this context is the development of
fast algorithms for low-rank approximation. In particular, Achlioptas and McSherry [AM07] prove
a theorem analogous to 1.1, but holding only for |E| ≥ (8 log n)4n (in the case of square matrices).

A short account of our results was submitted to the 2009 International Symposium on Information
Theory [KOM09]. While the present paper was under completion, Cándes and Tao posted online
a preprint proving a theorem analogous to 1.2 [CT09]. Once more, their approach is substantially
different from ours.

1.5 Open problems and future directions

It is worth pointing out some limitations of our results, and interesting research directions:

1. Optimal RMSE with O(n) entries. Numerical simulations with the Spectral Matrix Com-

pletion algorithm suggest that the RMSE decays much faster with the number of observations
per degree of freedom (|E|/nr), than indicated by Eq. (7). This improved behavior is a product of
the cleaning step in the algorithm. It would be important to characterize the decay of RMSE with
(|E|/nr).

2. Threshold for exact completion. As pointed out, Theorem 1.2 is order optimal for r bounded.
It would nevertheless be useful to derive quantitatively sharp estimates in this regime. A systematic
numerical study was initiated in [KMO08]. It appears that available theoretical estimates (including
the recent ones in [CT09]) are for larger values of the rank, we expect that our arguments can be
strenghtened to prove exact reconstruction for |E| ≥ C ′(α)nr log n for all values of r.

3. More general models. The model studied here and introduced in [CR08] presents obvious
limitations. In applications to collaborative filtering, the subset of observed entries E is far from
uniformly random. A recent paper [SC09] investigates the uniqueness of the solution of the matrix
completion problem for general sets E. In applications to fast low-rank approximation, it would be
desirable to consider non-incoherent matrices as well (as in [AM07]).
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2 Incoherence property and some notations

The matrix M to be reconstructed takes the form (1) where U ∈ R
m×r, V ∈ R

n×r. We write
U = [u1, u2, . . . , ur] and V = [v1, v2, . . . , vr] for the columns of the two factors, with ||ui|| =

√
m,

||vi|| =
√

n and uT
i uj = 0, vT

i vj = 0 for i 6= j (there is no loss of generality in this, since normalizations
can be adsorbed by redefining Σ). We shall further write Σ = diag(Σ1, . . . ,Σr) with Σ1 ≥ Σ2 ≥
· · · ≥ Σr ≥ 0.

The matrices U , V and Σ will be said to be incoherent if they satisfy the following properties:

A1. There exists a constant µ0 > 0 such that for all i ∈ [m], j ∈ [n] we have
∑r

k=1 U2
i,k ≤ µ0r,∑r

k=1 V 2
i,k ≤ µ0r.

A2. There exists µ1 such that |∑r
k=1 Ui,kΣkVj,k| ≤ µ1r

1/2.

Apart from difference in normalization, these assumptions coincide with the ones in [CR08].
In the proof of Theorem 1.1, we only require the second incoherence assumption A2. In the

following, whenever we write that a property A holds with high probability (w.h.p.), we mean that
there exists a function f(n) = f(n;α, µ1) such that P(A) ≥ 1 − f(n) and f(n) → 0 for µ1 bounded
away from 0 and ∞. In the case of exact completion (i.e. in the proof of Theorem 1.2) f( · ) can also
depend on µ0, Σmin, Σmax, and f(n) → 0 for µ0,Σmin,Σmax bounded away from 0 and ∞.

Probability is taken with respect to the uniformly random subset E ⊆ [m]× [n]. It is convenient
to work with a model in which each entry is revealed independently with probability ǫ/

√
mn. Since,

with high probability |E| ∈ [ǫ
√

α n−A
√

n log n, ǫ
√

α n−A
√

n log n], any guarantee on the algorithm
performances that holds within one model, holds within the other model as well if we allow for a
vanishing shift in ǫ. Finally, we will use C, C ′ etc. to denote generic constants that depend uniquely
on α, µ1 and, when proving Theorem 1.2, µ0, Σmin, Σmax.

Given a vector x ∈ Rn, ||x|| will denote its Euclidean norm. For a matrix X ∈ Rn×n′
, ||X||F is its

Frobenius norm, and ||X||2 its operator norm (i.e. ||X||2 = supu 6=0 ||Xu||/||u||). The standard scalar
product between vectors or matrices will sometimes be indicated by 〈x, y〉 or 〈X,Y 〉, respectively.
Finally, we use the standard combinatorics notation [N ] = {1, 2, . . . , N} to denote the set of first N
integers.

3 Proof of Theorem 1.1 and technical results

As explained in the previous section, the crucial idea is to consider the singular value decomposition
of the trimmed matrix M̃E instead of the original matrix ME , as in Eq. (3). We shall then redefine
{σi}, {xi}, {yi}, by letting

M̃E =

min(m,n)∑

i=1

σixiy
T
i . (9)

Here ||xi|| = ||yi|| = 1, xT
i xj = yT

i yj = 0 for i 6= j and σ1 ≥ σ2 ≥ · · · ≥ 0.

We will prove Theorem 1.1 by controlling the operator norm of M − Tr(M̃
E).

Theorem 3.1. There exists C(α) < ∞ such that, with high probability,

1√
mn

∣∣∣∣M − Tr(M̃
E)
∣∣∣∣

2
≤ C

(r

ǫ

)1/2
. (10)
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This result is proved later in this section. The proof of Theorem 1.1 is a direct application the
of above theorem.

Proof. (Theorem 1.1) Since M − Tr(M̃
E) has rank at most 2r, it immediately follows that

1√
mnr

∣∣∣∣M − Tr(M̃
E)
∣∣∣∣

F
≤

√
2r

(
1√
mnr

∣∣∣∣M − Tr(M̃
E)
∣∣∣∣

2

)

≤ C
(r

ǫ

)1/2
,

which implies the thesis.

To prove Theorem 3.1, we will use following key technical results.

Lemma 3.2. There exists a constant C > 0 such that, with high probability

∣∣∣xT

(
ǫ√
mn

M − M̃E

)
y
∣∣∣ ≤ C

√
rǫ , (11)

for any x ∈ Rm and y ∈ Rn such that ||x|| = ||y|| = 1.

The proof of this lemma is given in Section 4. The next lemma, which is a direct consequence of
Lemma 3.2, relates the singular values of the trimmed matrix M̃E to the singular values of M .

Lemma 3.3. There exists a constant C > 0 such that, with high probability

∣∣∣σq

ǫ
− Σq

∣∣∣ ≤ C
(r

ǫ

)1/2
, (12)

where it is understood that Σq = 0 for q > r.

This lemma is proved later in this section. We can now prove Theorem 3.1.

Proof. (Theorem 3.1) Consider x ∈ Rn and y ∈ Rm such that ||x|| = ||y|| = 1. Then,

∣∣∣xT (M − Tr(M̃
E))y

∣∣∣ ≤
∣∣∣∣x

T

(
M −

√
mn

ǫ
M̃E

)
y

∣∣∣∣+
∣∣∣∣x

T

(√
mn

ǫ
M̃E − Tr(M̃

E)

)
y

∣∣∣∣

≤ C
√

mn
(r

ǫ

) 1
2

+
√

mn
σr+1

ǫ

≤ C ′√mn
(r

ǫ

) 1
2

,

where we used Lemma 3.2 for the second inequality and Lemma 3.3 for the last inequality. This

implies that 1√
mn

∣∣∣∣M − Tr(M̃
E)
∣∣∣∣

2
≤ C ′ (r/ǫ)

1
2 .

We end this section with the proof of Lemma 3.3.

Proof. (Lemma 3.3) Recall the variational characterization of the singular values.

σq = min
H,dim(H)=n−q+1

max
y∈H,||y||=1

||M̃Ey|| (13)

= max
H,dim(H)=q

min
y∈H,||y||=1

||M̃Ey|| . (14)

Here H is understood to be a linear subspace of Rn.
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Using Eq. (13) with H the orthogonal complement of span(v1, . . . , vq−1), we have, by Lemma 3.2,

σq ≤ max
y∈H,||y||=1

∣∣∣∣M̃Ey
∣∣∣∣

≤ ǫ√
mn

(
max

y∈H,||y||=1

∣∣∣∣My
∣∣∣∣
)

+ max
y∈H,||y||=||x||=1

∣∣∣∣x
T

(
M̃E − ǫ√

mn
M

)
y

∣∣∣∣
≤ ǫΣq + C

√
rǫ

In order to get a lower bound, we use Eq. (14) with H = span(v1, . . . , vq). By Lemma 3.2 we
have

σq ≥ min
y∈H,||y||=1

∣∣∣∣M̃Ey
∣∣∣∣

≥ ǫ√
mn

(
min

y∈H,||y||=1

∣∣∣∣My
∣∣∣∣
)
− max

y∈H,||y||=||x||=1

∣∣∣∣x
T

(
M̃E − ǫ√

mn
M

)
y

∣∣∣∣
≥ ǫΣq − C

√
rǫ

Combining the upper and lower bounds, we get the desired result.

4 Proof of Lemma 3.2

We want to show that |xT (M̃E − ǫ√
mn

M)y| ≤ C
√

rǫ for each x ∈ Rm, y ∈ Rn such that ||x|| =

||y|| = 1. Following the technique of [FKS89], this will be done by first reducing ourselves to x, y
belonging to finite sets. We define

Tn =

{
x ∈

{
∆√
n

Z

}n

: ||x|| ≤ 1

}
,

Notice that Tn ⊆ Sn ≡ {x ∈ Rn : ||x|| ≤ 1}. The next two remarks are proved in [FKS89, FO05],
and relate the original problem to the discretized one.

Remark 4.1. Let R ∈ R
m×n be a matrix. If |xT Ry| ≤ B for all x ∈ Tm and y ∈ Tn, then

|x′T Ry′| ≤ (1 − ∆)−2B for all x′ ∈ Sm and y′ ∈ Sn.

Remark 4.2. |Tm| ≤ (10/∆)m.

Hence it is enough to show that |xT (M̃E − ǫ√
mn

M)y| ≤ C
√

rǫ for all x ∈ Tm and y ∈ Tn. There

are two parts to the proof of this claim. One bounds the contribution of light couples L ⊆ [m]× [n],
defined as

L =

{
(i, j) : |xiMijyj| ≤

( rǫ

mn

)1/2
}

,

and the other bounds the contribution of its complement L, which we call heavy couples. We have

∣∣∣∣x
T

(
M̃E − ǫ√

mn
M

)
y

∣∣∣∣ ≤

∣∣∣∣∣∣

∑

(i,j)∈L

xiM̃
E
ij yj −

ǫ√
mn

xT My

∣∣∣∣∣∣
+

∣∣∣∣∣∣

∑

(i,j)∈L

xiM̃
E
ij yj

∣∣∣∣∣∣
(15)

In the next two subsections, we will prove that the first contribution is upper bounded by C1
√

rǫ

and the second by C2
√

rǫ for all x ∈ Tm, y ∈ Tn. Applying Remark 4.1 to |xT (M̃E − ǫ√
mn

M)y|, this

proves the thesis.
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4.1 Bounding the contribution of light couples

Let us define the subset of row and column indices which have not been trimmed as Al and Ar:

Al = {i ∈ [m] : deg(i) ≤ 2ǫ√
α
} ,

Ar = {j ∈ [n] : deg(j) ≤ 2ǫ
√

α} ,

where deg(·) denotes the degree (number of revealed entries) of a row or a column. Notice that
A = (Al,Ar) is a function of the random set E. It is easy to get a rough estimate of the sizes of Al,
Ar.

Remark 4.3. There exists C1 and C2 depending only on α such that, with probability larger than
1 − 1/n3, |Al| ≥ m − max{e−C1ǫm,C2α}, and |Ar| ≥ n − max{e−C1ǫn,C2}.

For the proof of this claim, we refer to Appendix A. For any E ⊆ [m] × [n] and A = (Al, Ar)
with Al ⊆ [m], Ar ⊆ [n], we define ME,A by setting to zero the entries of M that are not in E, those
whose row index is not in Al, and those whose column index not in Ar. Consider the event

H(E,A) =



∃x, y :

∣∣∣∣∣∣

∑

(i,j)∈L

xiM
E,A
ij yj −

ǫ√
mn

xT My

∣∣∣∣∣∣
> C1

√
rǫ



 , (16)

where it is understood that x and y belong, respectively, to Tm and Tn. Note that M̃E = ME,A,
and hence we want to bound P{H(E,A)}. We proceed as follows

P {H(E,A)} =
∑

A

P {H(E,A), A = A}

≤
∑

|Al|≥m(1−δ),
|Ar|≥n(1−δ)

P {H(E,A), A = A} +
1

n3

≤ 2(n+m)H(δ) max
|Al|≥m(1−δ),
|Ar |≥n(1−δ)

P {H(E;A)} +
1

n3
, (17)

with δ ≡ max{e−C1ǫ, C2/n} and H(x) the binary entropy function.
We are now left with the task of bounding P {H(E;A)} uniformly over A where H is defined as

in Eq. (16). The key step consists in proving the following tail estimate

Lemma 4.4. Let x ∈ Sm, y ∈ Sn, Z =
∑

(i,j)∈L xiM
E,A
ij yj− ǫ√

mn
xT My, and assume |Al| ≥ m(1−δ),

|Ar| ≥ n(1 − δ) with δ small enough. Then

P
(
Z > L

√
rǫ
)
≤ exp

{
− nα1/2

2

(
L − 2µ2

1 − µ1

)}
.

Proof. We begin by bounding the mean of Z as follows (for the proof of this statement we refer to
Appendix B).

Remark 4.5. |E [Z]| ≤
(
µ1 + µ2

1

)√
rǫ.
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For A = (Al, Ar), let MA be the matrix obtained from M by setting to zero those entries whose
row index is not in Al, and those whose column index not in Ar. Define the potential contribution
of the light couples aij and independent random variables Zij as

aij =

{
xiM

A
ij yj if |xiM

A
ij yj| ≤ (rǫ/mn)1/2 ,

0 otherwise,

Zij =

{
ai,j w.p. ǫ/

√
mn,

0 w.p. 1 − ǫ/
√

mn,

Let Z1 =
∑

i,j Zij so that Z = Z1 − ǫ√
mn

xT My. Note that
∑

i,j a2
ij ≤ ∑i,j

(
xiM

A
ij yj

)2
≤ µ2

1r. Fix

λ = (mn/4rǫ)1/2 so that |λai,j| ≤ 1/2, whence eλaij − 1 ≤ λaij + 2(λaij)
2. It then follows that

E[eλZ ] = exp
{ ǫ√

mn

(∑

i,j

λai,j + 2
∑

i,j

(λai,j)
2
)
− λ ǫ√

mn
xT My

}

≤ exp
{

λE[Z] + 2rǫµ2
1

λ2

nα1/2

}
.

The thesis follows by Chernoff bound P(Z > a) ≤ e−λa
E[eλZ ] after simple calculus.

Note that P (−Z > L
√

rǫ) can also be bounded analogously. We can now finish the upper bound
on the light couples contribution. Consider the error event Eq. (16). Using Remark 4.2, we can
apply union bound over Tm and Tn to Eq. (17) to obtain

P{H(E,A)} ≤ 2

(
20

∆

)n+m

e−(C1−2µ2
1−µ1)α1/2n/2 +

1

n3
,

If C1 is a large enough constant, the first term is of order e−Θ(n) (for, say, ǫ ≥ r) thus finishing the
proof.

4.2 Bounding the contribution of heavy couples

Let Q be an m×n matrix with Qij = 1 if (i, j) ∈ E and i 6∈ Ar, j 6∈ Al (i.e. entry (i, j) is not trimmed
by our algorithm), and Qij = 0 otherwise. Due to the incoherence assumption A2, |Mij | ≤ µ1r

1/2

and therefore the heavy couples satisfy |xiyj| ≥
√

ǫ/(µ2
1mn) = C

√
ǫ/n. We then have

∣∣∣∣∣∣

∑

(i,j)∈L

xiM̃
E
ij yj

∣∣∣∣∣∣
≤ µ1

√
r
∑

(i,j)∈L

Qij |xiyj|

≤ µ1

√
r

∑

(i,j)∈E:
|xiyj |≥C

√
ǫ/n

Qij |xiyj| .

Notice that Q is the adjacency matrix of a random bipartite graph with vertex sets [m] and [n]
and maximum degree bounded by 2ǫmax(α1/2, α−1/2). The following remark strengthens a result of
[FO05].

Remark 4.6. Given vectors x, y, let L
′

= {(i, j) ∈ E : |xiyj| ≥ C
√

ǫ/n}. Then there exist a
constant C ′ such that, w.h.p.,

∑
(i,j)∈L

′ Qij |xiyj| ≤ C ′√ǫ, for all x ∈ Tm, y ∈ Tn.
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For the reader’s convenience, a proof of this fact is proposed in Appendix C. The analogous result
in [FO05] (for the adjacency matrix of a non-bipartite graph) is proved to hold only with probability
larger than 1 − e−Cǫ. The stronger statement quoted here can be proved using concentration of
measure inequalities. The last remark implies that for all x ∈ Tm, y ∈ Tn and for large enough C
the contribution of heavy couples is, w.h.p., bounded by C2

√
rǫ for some C2 < ∞.

5 Minimization on Grassmann manifolds and proof of Theorem 1.2

The function F (X,Y ) defined in Eq. (4) and to be minimized in the last part of the algorithm
can naturally be viewed as defined on Grassmann manifolds. Here we recall from [EAS99] a few
important facts on the geometry of Grassmann manifold and related optimization algorithms. We
then prove Theorem 1.2. Technical calculations are deferred to section Sections 6, 7, and to the
appendices.

We recall that, for the proof of Theorem 1.2, it is assumed that Σmin, Σmax are bounded away from
0 and ∞. Constants (denoted by C,C ′, . . . ) depend implicitly on Σmin, Σmax. Finally, throughout
this section, we use the notation X(i) ∈ Rr to refer to the i-th row of the matrix X ∈ Rm×n or
X ∈ Rn×r.

5.1 Geometry of the Grassmann manifold

Denote by O(d) the orthogonal group of d × d matrices. The Grassmann manifold is defined as the
quotient G(n, r) ≃ O(n)/O(r)×O(n− r). In other words, a point in the manifold is the equivalence
class of an n × r orthogonal matrix A

[A] = {AQ : Q ∈ O(r)} . (18)

For consistency with the rest of the paper, we will assume the normalization AT A = n1. To represent
a point in G(n, r), we will use an explicit representative of this form. More abstractly, G(n, r) is the
manifold of r-dimensional subspaces of Rn.

It is easy to see that F (X,Y ) depends on the matrices X, Y only through their equivalence
classes [X], [Y ]. We will therefore interpret it as a function defined on the manifold M(m,n) ≡
G(m, r) × G(n, r):

F : M(m,n) → R , (19)

([X], [Y ]) 7→ F (X,Y ) . (20)

In the following, a point in this manifold will be represented as a pair x = (X,Y ), with X an n × r
orthogonal matrix and Y an m×r orthogonal matrix. Boldface symbols will be reserved for elements
of M(m,n) or of its tangent space, and we shall use u = (U, V ) for the point corresponding to the
matrix M = UΣV T to be reconstructed.

Given x = (X,Y ) ∈ M(m,n), the tangent space at x is denoted by Tx and can be identified with
the vector space of matrix pairs w = (W,Z), W ∈ Rm×r, Z ∈ Rn×r such that W TX = ZTY = 0.
The ‘canonical’ Riemann metric on the Grassmann manifold corresponds to the usual scalar product
〈W,W ′〉 ≡ Tr(W T W ′). The induced scalar product on Tx between w = (W,Z) and w′ = (W ′, Z ′)
is 〈w,w′〉 = 〈W,W ′〉 + 〈Z,Z ′〉.

This metric induces a canonical notion of distance on M(m,n) which we denote by d(x1,x2)
(geodesic or arc-length distance). If x1 = (X1, Y1) and x2 = (X2, Y2) then

d(x1,x2) ≡
√

d(X1,X2)2 + d(Y1, Y2)2 (21)

11



where the arc-length distances d(X1,X2), d(Y1, Y2) on the Grassmann manifold can be defined ex-
plicitly as follows. Let cos θ = (cos θ1, . . . , cos θr), θi ∈ [−π/2, π/2] be the singular values of XT

1 X2/n.
Then

d(X1,X2) = ||θ||2 . (22)

The θi’s are called the ‘principal angles’ between the subspaces spanned by the columns of X1 and
X2. It is useful to introduce two equivalent notions of distance:

dc(X1,X2) =
1√
n

min
Q1,Q2∈O(r)

||X1Q1 − X2Q2||F (chordal distance), (23)

dp(X1,X2) =
1√
2n

||X1X
T
1 − X2X

T
2 ||F (projection distance). (24)

Notice that dc and dp do not depend on the specific representatives X1, X2, but only on the equiv-
alence classes [X1] and [X2]. Distances on M(m,n) are defined through Pythagorean theorem, e.g.
dc(x1,x2) =

√
dc(X1,X2)2 + dc(Y1, Y2)2.

Remark 5.1. The geodesic, chordal and projection distance are equivalent, namely

2

π
d(X1,X2) ≤

1√
2

dc(X1,X2) ≤ dp(X1,X2) ≤ dc(X1,X2) ≤ d(X1,X2) . (25)

For the reader’s convenience, a proof of this fact is proposed in Section D.
An important remark is that geodesics with respect to the canonical Riemann metric admit an

explicit and efficiently computable form. Given u ∈ M(m,n), w ∈ Tx the corresponding geodesic
is a curve t 7→ x(t), with x(t) = u + wt + O(t2) which minimizes arc-length. If u = (U, V ) and
w = (W,Z) then x(t) = (X(t), Y (t)) where X(t) can be expressed in terms of the singular value
decomposition W = LΘRT [EAS99]:

X(t) = UR cos(Θt)RT + L sin(Θt)RT , (26)

which can be evaluated in time of order O(nr). An analogous expression holds for Y (t).

5.2 Gradient and incoherence

The gradient of F at x is the vector grad F (x) ∈ Tx such that, for any smooth curve t 7→ x(t) ∈
M(m,n) with x(t) = x + w t + O(t2), one has

F (x(t)) = F (x) + 〈grad F (x),w〉 t + O(t2) . (27)

In order to write an explicit representation of the gradient of our cost function F , it is convenient to
introduce the projector operator

PE(M)ij =

{
Mij if (i, j) ∈ E,
0 otherwise.

(28)

The two components of the gradient are then

grad F (x)X = PE(XSY T − M)Y ST − XQX , (29)

grad F (x)Y = PE(XSY T − M)T XS − Y QY , (30)

where QX , QY ∈ Rr×r are determined by the condition grad F (x) ∈ Tx. This yields

QX =
1

m
XTPE(M − XSY T )Y ST , (31)

QY =
1

n
Y TPE(M − XSY T )T XS . (32)

12



5.3 Algorithm

At this point the gradient descent algorithm is fully specified. It takes as input the factors of Tr(M̃
E),

to be denoted as x0 = (X0, Y0), and minimizes a regularized cost function

F̃ (X,Y ) = F (X,Y ) + ρG(X,Y ) (33)

≡ F (X,Y ) + ρ

m∑

i=1

G1

(
||X(i)||2

2µ0r

)
+ ρ

n∑

j=1

G1

(
||Y (j)||2

2µ0r

)
, (34)

where X(i) denotes the i-th row of X, and Y (j) the j-th row of Y . The role of the regularization is
to force x to remain incoherent during the execution of the algorithm.

G1(z) =

{
0 if z ≤ 1,

e(z−1)2 − 1 if z ≥ 1.
(35)

We will take ρ = nǫ. Notice that G(X,Y ) is again naturally defined on the Grassmann manifold,
i.e. G(X,Y ) = G(XQ,Y Q′) for any Q,Q′ ∈ O(r).

Let

K(µ′) ≡
{

(X,Y ) such that ||X(i)||2 ≤ µ′r, ||Y (j)||2 ≤ µ′r
}

. (36)

We have G(X,Y ) = 0 on K(2µ0). Notice that u ∈ K(µ0) by the incoherence property. Without loss
of generality we can assume x0 ∈ K(2µ0), because otherwise we can rescale all lines of X0, Y0 that
violate the constraint.

Gradient descent( matrix ME , factors x0 )

1: For k = 0, 1, . . . do:

2: Compute wk = grad F̃ (xk);
4: Let t 7→ xk(t) be the geodesic with xk(t) = xk + wkt + O(t2);

5: Minimize t 7→ F̃ (xk(t)) for t ≥ 0, subject to d(xk(t),x0) ≤ γ;
6: Set xk+1 = xk(tk) where tk is the minimum location;
7: End For.

In the above, γ must be set in such a way that d(u,x0) ≤ γ. The next remark determines the
correct scale.

Remark 5.2. Let U,X ∈ Rn×r with UT U = XT X = m1, V, Y ∈ Rm×r with V T V = Y T Y = n1,
and M = UΣV T , M̂ = XSY T for Σ = diag(Σ1, . . . ,Σr) and S ∈ Rr×r. If Σ1, . . . ,Σr ≥ Σmin, then

dp(U,X) ≤ 1

mΣmin
||M − M̂ ||F , dp(V, Y ) ≤ 1

nΣmin
||M − M̂ ||F (37)

As a consequence of this remark and Theorem 1.1, we can assume that d(u,x0) ≤ C r/
√

ǫ. We
shall then set γ = C ′r/

√
ǫ (the value of C ′ is set in the course of the proof).

Before passing to the proof of Theorem 1.2, it is worth discussing a few important points con-
cerning the gradient descent algorithm.

(i) The appropriate choice of γ might seem to pose a difficulty. In reality, this parameter is
introduced only to simplify the proof. We will see that the constraint d(xk(t),x0) ≤ γ is, with
high probability, never saturated.
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(ii) Indeed, the line minimization instruction 5 (which might appear complex to implement) can
be replaced by a standard step selection procedure, such as the one in [Arm66].

(iii) Similarly, there is no need to know the actual value of µ0 in the regularization term. One can
start with µ0 = 1 and then repeat the optimization doubling it at each step.

(iv) The Hessian of F can be computed explicitly as well. This opens the way to quadratically
convergent minimization algorithms (e.g. the Newton method).

5.4 Proof of Theorem 1.2

The proof of Theorem 1.2 breaks down in two lemmas. The first one implies that, in a sufficiently
small neighborhood of u, the function x 7→ F (x) is well approximated by a parabola.

Lemma 5.3. Assume ǫ ≥ Amax{r log n, r2} with A large enough. Then there exists constants
C1, C2, δ > 0 (independent of m, n, ǫ and r) such that, with high probability

C1 nǫ
(
d(x,u)2 + ||S − Σ||2F

)
≤ F (x) ≤ C2 nǫ d(x,u)2 (38)

for all x ∈ M(m,n) ∩ K(3µ0) such that d(x,u) ≤ δ (where S ∈ Rr×r is the matrix realizing the
minimum in Eq. (4)).

The second Lemma implies that x 7→ F (x) does not have any other stationary point (apart from
u) within such a neighborhood.

Lemma 5.4. Assume ǫ ≥ Amax{r log n, r2} with A large enough. Then there exists constants
C, δ > 0 (independent of m, n, ǫ and r) such that, with high probability

||grad F̃ (x)||2 ≥ C nǫ2 d(x,u)2 (39)

for all x ∈ M(m,n) ∩ K(3µ0) such that d(x,u) ≤ δ.

We can now prove Theorem 1.2.

Proof. (Theorem 1.2) Let δ > 0 be such that Lemma 5.3 and Lemma 5.4 are verified, and C1, C2

be defined as in Lemma 5.3. We further assume δ ≤
√

(e1/4 − 1)/C1. Take ǫ large enough that
d(u,x0) ≤ C r/

√
ǫ ≤ min(1, (C1/2C2)

1/2)δ/10. Further, set the algorithm parameter to γ = δ/4.
We make the following claims:

1. xk ∈ K(3µ0) for all k.

Indeed x0 ∈ K(2µ0) whence F̃ (x0) = F (x0) ≤ C2nǫ δ2. The claim follows because F̃ (xk) is
non-increasing and F̃ (x) ≥ ρG(X,Y ) ≥ nǫ(e1/4 − 1) for x 6∈ K(3µ0).

2. d(xk,u) ≤ δ/10 for all k.

Indeed by triangular inequality we can assume to have d(xk,u) ≤ δ/2. Since d(x0,u) ≤
(C1/2C2)

1/2δ/10, we have F̃ (x) ≥ F (x) ≥ F (x0) for all x such that d(x,u) ∈ [δ/10, δ]. Since
F̃ (xk) is non-increasing and F̃ (x0) = F (x0), the claim follows.

Notice that, by the last observation, the constraint d(xk(t),x0) ≤ γ is never saturated, and
therefore our procedure is just gradient discent with exact line search. Therefore [Arm66] this must
converge to the unique stationary point of F̃ in K(3µ0)∩ {x : d(x,u) ≤ δ/10, which, by Lemma 5.4,
is u.
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6 Proof of Lemma 5.3

We will make use of the following Lemma.

Lemma 6.1. Assume ǫ = A log n with A large enough. Then there exists C > 0 such that with high
probability

∑

(i,j)∈E

xiyj ≤
Cǫ

n
||x||1||y||1 + C

√
ǫ||x||2 ||y||2 . (40)

for all x ∈ Rm, y ∈ Rn.

Proof. Write xi = x0 + x′
i where

∑
i x

′
i = 0. Then

∑

(i,j)∈E

xiyj = x0

∑

j∈[n]

deg(j)yj +
∑

(i,j)∈E

x′
iyj , (41)

where we recall that deg(j) = {i ∈ [m] : such that (i, j) ∈ E}. Further |x0| = |∑i xi/n| ≤ ||x||1/n.
The first term is upper bounded by

x0 max
j

deg(j)||y||1 ≤ max
j

deg(j)||x||1||y||1/n . (42)

For ǫ = A log n, the maximum degree is with high probability of the same order as the average one,
and therefore this term is at most Cǫ||x||1||y||1/n.

The second term is upper bounded by C
√

ǫ||x′||2||y||2 using Theorem 1.1 in [FO05] or, equiva-
lently, Theorem 3.3 in the case r = 1. The thesis follows because ||x′||2 ≤ ||x||2.

Proof. (Lemma 5.3) Throughout the proof we assume m = n to simplify notations.
Let w = (W,Z) ∈ Tu, and t 7→ (X(t), Y (t)) be the geodesic such that (X(t), Y (t)) = (U, V ) +

(W,Z)t+O(t2). By setting (X,Y ) = (X(1), Y (1)), we establish a one-to-one correspondence between
the points x as in the statement and a neighborhood of the origin in Tu. If we let W = LΘRT be
the singular value decomposition of W (with LT L = n1 and RT R = 1), the explicit expression for
geodesics in Eq. (26) yields

X = U + W , W = UR(cos Θ − 1)RT + L sin ΘRT . (43)

An analogous expression can obviously be written for Y = V +Z. Notice that, if u,x ∈ K(3µ0), then

(W,Z) ∈ K(12µ0) and w ∈ K(48µ0/π
2). In the first case this follows from ||W (i)||2 ≤ 2||X(i)||2 +

2||U (i)||2. In order to prove w ∈ K(48µ0/π
2), we notice that

||W (i)||2 = ||ΘL(i)||2 ≤ 4

π2
|| sin ΘL(i)||2

≤ 4

π2
||X(i) − R cos ΘRT U (i)||2 ≤ 8

π2

(
||X(i)||2 + ||U (i)||2

)
.

The claim follows by showing a similar bound for ||Z(i)||2.
Denote by S ∈ Rr×r the matrix realizing the minimum in Eq. (4). We will start by proving the

lower bound in Eq. (38):

F (X,Y ) =
1

2

∑

(i,j)∈E

(U(S − Σ)V T + USZ
T

+ WSV T + WSZ
T
)2ij

≥ 1

4
A2 − B2
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where in we used Cauchy-Schwarz inequality to argue that (1/2)(A+B)2 ≥ (A2/4)−B2 and defined

A2 ≡
∑

(i,j)∈E

(U(S − Σ)V T + USZ
T

+ WSV T )2ij ,

B2 ≡
∑

(i,j)∈E

(WSZ
T
)2ij .

We will show that, with high probability A2 ≥ Cnǫ||S−Σ||2F +Cnǫd(x,u)2 and B2 ≤ (C/100)nǫ (1+
||S − Σ||2F )d(x,u)2 whence the lower bound in Eq. (38) follows.

Lower bound on A. By Theorem 4.1 in [CR08], we have A2 ≥ (1− ξ)E{A2} with high probability
for each ξ > 0. Further

E{A2} =
ǫ

n
||U(S − Σ)V T + USZ

T
+ WSV T ||2F =

=
ǫ

n
||U(S − Σ)V T ||2F +

ǫ

n
||USZ

T ||2F +
ǫ

n
||WSV T ||2F

+
2ǫ

n
〈USZ

T
,WSV T 〉 +

2ǫ

n
〈U(S − Σ)V T ,WSV T 〉 +

2ǫ

n
〈USZ

T
, U(S − Σ)V T 〉 .

The first term is equal to nǫ||S − Σ||2F . The second and third terms are lower bounded by

ǫσmin(S)2(||Z||2F + ||W ||2F ) ≥ Cσmin(S)2nǫdc(x,u)2 ≥ C ′σmin(S)2nǫd(x,u)2 .

The absolute value of the fourth term can be written as

E4 =
ǫ

n
|〈USZ

T
,WSV T 〉| ≤ ǫ

n
||USZ

T ||F ||WSV T ||F ≤ ǫ

n
σmax(S)2||W T

U ||F ||V T Z||F

≤ ǫ

n
σmax(S)2(||W T

U ||2F + ||V T Z||2F ) .

In order proceed, consider Eq. (43). Since by tangency condition UT L = 0, we have UT W =
nR(cos Θ − 1)RT whence

||UT W ||F = n|| cos θ − 1|| =
n

2
||4 sin2(θ/2)|| ≤ n

2
||2 sin(θ/2)||2 (44)

(here θ = (θ1, . . . , θr) is the vector containing the diagonal elements of Θ). A similar calculation
reveals that ||W ||2F = n||2 sin(θ/2)||2 thus proving ||UT W ||2F ≤ ||W ||4F /4 ≤ Cnδ2||W ||2F . The bound
||V T Z||2F ≤ Cnδ2||Z||2F is proved in the same way, thus yielding

E4 ≤ Cnǫσmax(S)2δ2 d(x,u)2 .

Proceeding analogously for the other terms in the expression of E{A2}, we proved that with high
probability

A2 ≥ nǫ||S − Σ||2F + nǫ
(
Cσmin(S)2 − C ′δ2 σmax(S)2

)
d(x,u)2 (45)

≥ nǫ(1 − Cd(x,u)2)||S − Σ||2F + nǫ
(
CΣ2

min − Cδ2 Σ2
max

)
d(x,u)2 , (46)

where we used the bounds σmin(S)2 ≥ Σ2
min/2 − ||S − Σ||2F and σmax(S)2 ≤ 2Σ2

max + 2 ||S − Σ||2F .
The above inequality implies the desired claim if we take d(x,u) ≤ δ small enough.
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Upper bound on B. By Lemma 6.1 we have

B2 ≤ σmax(S)2
∑

a,b

∑

(i,j)∈E

W
2
iaZ

2
jb (47)

≤ Cǫ

n
σmax(S)2

∑

i,j

||W (i)||2||Z(j)||2 + Cσmax(S)2
√

ǫ
∑

a,b

(
∑

i

||W (i)||4
)1/2


∑

j

||Z(j)||4



1/2

(48)

≤ Cǫ

n
σmax(S)2

∑

i,j

||W (i)||2||Z(j)||2 + C ′σmax(S)2
√

ǫr

(
∑

i

||W (i)||2
)1/2


∑

j

||Z(j)||2



1/2

.(49)

where in the last step we used the incoherence condition. We conclude therefore that

B2 ≤ nσmax(S)2
(
Cǫ δ2 + C ′√ǫr

)
d(x,u)2 (50)

≤ Cnǫ(Σ2
max + ||S − Σ||2F )max(r/

√
ǫ, δ2)d(x,u)2 (51)

which implies the thesis for r/
√

ǫ, δ small enough.

In order to prove the upper bound in Eq. (38) we can set Σ = S, thus obtaining

F (X,Y ) =
1

2

∑

(i,j)∈E

(UΣZ
T

+ WΣV T + WΣZ
T
)2ij

≤ Â2 + B̂2 ,

where we defined

Â2 ≡
∑

(i,j)∈E

(UΣZ
T

+ WΣV T )2ij ,

B̂2 ≡
∑

(i,j)∈E

(WΣZ
T
)2ij .

Bounds for these two quantities are derived as for A2 and B2. More precisely, by Theorem 4.1 in
[CR08], we have Â2 ≤ (1 − ξ)E{Â2} and

E{Â2} =
ǫ

n
||UΣZ

T
+ WΣV T ||2F =

=
2ǫ

n
||UΣZ

T ||2F +
2ǫ

n
||WΣV T ||2F

≤ ǫΣ2
max(||Z||2F + ||W ||2F ) ≤ Cnǫd(x,u)2 .

Further by setting S = Σ in the derivation for B we get B̂2 ≤ (C/100)nǫ d(x,u)2 .

7 Proof of Lemma 5.4

Throughout this proof we assume m = n to lighten the notation.
As in the proof of Lemma 5.3, we let t 7→ x(t) = (X(t), Y (t)) be the geodesic starting at x(0) = u

with velocity ẋ(0) = w = (W,Z) ∈ Tu. We also define x = x(1) = (X,Y ) with X = U + W and

Y = V + Z. Let ŵ = ẋ(1) = (Ŵ , Ẑ) be its velocity when passing through x. An explicit expression
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is obtained in terms of the singular value decomposition of W and Z. If we let W = LΘRT , we
obtain

Ŵ = −URΘ sinΘ RT + LΘ cos Θ RT . (52)

An analogous expression holds for Ẑ. Since LT U = 0, we have ||Ŵ ||2F = n||Θ sin Θ||2F +n||Θ cos Θ||2F =
n||θ||2. Hence ||ŵ||2 = nd(x,u)2. In order to prove the thesis, it is therefore sufficient to show
that 〈grad F̃ (x), ŵ〉 ≥ Cnǫ d(x,u)2. In the following we will indeed show that 〈grad F (x), ŵ〉 ≥
Cnǫ d(x,u)2, and 〈grad G(x), ŵ〉 ≥ 0.

As a preliminary remark, we notice that ŵ ∈ K((3π2/2 + 96/π2)µ0). Indeed

||Ŵ (i)||2 ≤ 2||Θ sin ΘRTU (i)||2 + 2||Θ cos ΘL(i)||2 ≤ π2

2
||U (i)||2 + 2||W (i)||2 , (53)

By assumption we have ||U (i)||2 ≤ 3µ0r and we proved ||W (i)||2 ≤ 48µ0r/π
2 in the previous section.

7.1 Lower bound on gradF (x)

Recalling that PE is the projector defined in Eq. (28), and using the expression (29), (30), for the
gradient, we have

〈grad F (x), ŵ〉 = 〈PE(XSY T − M), (XSẐT + ŴSY T )〉
= 〈PE(U(S − Σ)V T + USZ

T
+ WSV T + WSZ

T
), (USẐT + ŴSV T + WSẐT + ŴSZ

T
)〉

≥ A − B1 − B2 − B3 (54)

where we defined

A = 〈PE(USZ
T

+ WSV T ), (USẐT + ŴSV T )〉 , (55)

B1 = |〈PE(USZ
T

+ WSV T ), (WSẐT + ŴSZ
T
)〉| , (56)

B2 = |〈PE(U(S − Σ)V T + WSZ
T
), (USẐT + ŴSV T )〉| , (57)

B3 = |〈PE(U(S − Σ)V T + WSZ
T
), (WSẐT + ŴSZ

T
)〉| . (58)

At this point the proof becomes very similar to the one in the previous section and consists in lower
bounding A and upper bounding B1, B2, B3. One important fact that we will use is that Ŵ is well
approximated by W or by W , and Ẑ is well approximated by Z or by Z. Before proceeding, it is
worth deriving a few estimates of this type. In particular, using Eqs. (43) and (52) we get

||Ŵ ||2F = ||W ||2F = n||θ||2 , (59)

||W ||2F = n||2 sin θ/2||2 , (60)

〈Ŵ ,W 〉 = n
r∑

a=1

θa sin θa , (61)

〈Ŵ ,W 〉 = n

r∑

a=1

θ2
a cos θa , (62)

and therefore

||Ŵ − W ||2F = n
r∑

i=a

[(2 sin θa/2)
2 + θ2

a − 2θa sin θa] (63)

≤ n

r∑

i=a

(θa − 2 sin θa/2)
2 ≤ n

242
||θ||4 ≤ n

242
d(u,x)4 . (64)
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Analogously

||Ŵ − W ||2F = n

r∑

i=a

[2θ2
a − 2θ2

a cos θa] ≤ n ||θ||4 ≤ n d(u,x)4 (65)

The last inequality implies in particular

||UT Ŵ ||F = ||UT (W − Ŵ )||F ≤ nd(u,x)2 . (66)

Similar bounds hold of course for Z, Ẑ, Z (for instance we have ||V T Ẑ||F ≤ nd(u,x)2). Finally, we
shall use repeatedly the fact that ||S − Σ||2F ≤ Cd(x,u)2, which follows from Lemma 5.3. This in
turns implies

σmax(S) ≤ Σmax + C d(x,u)2 , (67)

σmin(S) ≥ Σmin − C d(x,u)2 . (68)

We can now bound the various terms on Eq. (54).
Lower bound on A. Using Theorem 4.1 in [CR08] we obtain, with high probability for any ξ > 0:

A ≥ ǫ

n
〈(USZ

T
+ WSV T ), (USẐT + ŴSV T )〉 (69)

−ξ ǫ

n
||USZ

T
+ WSV T ||F ||USẐT + ŴSV T ||F ≥ (1 − ξ)A0 − (1 + ξ)B0 (70)

where

A0 =
ǫ

n
||USZ

T
+ WSV T ||2F (71)

B0 =
ǫ

n
||USZ

T
+ WSV T ||F ||US(Z − Ẑ)T + (W − Ŵ )SV T ||F . (72)

The term A0 is lower bounded analogously to E{A2} in the proof of Lemma 5.3 (see Eq. (44) and
below). Using the eigenvalue bounds Eq. (67) and (68), we obtain A0 ≥ Cnǫd(x,u)2. As for the
second term we notice that

B0 ≤ 2ǫTr(SST (Z − Ẑ)(Z − Ẑ)T ) + 2ǫTr(ST S(W − Ŵ )(W − Ŵ )T ) (73)

≤ 2ǫσmax(S)(||Z − Ẑ||2F + ||W − Ŵ ||2F ) ≤ Cnǫd(x,u)4 . (74)

Therefore for δ ≥ d(x,u) small enough A0 > 2B0, whence A0 ≥ Cnǫd(x,u)2/4.
Upper bound on B1. We begin by using Cauchy-Schwarz inequality:

B1 ≤ ||PE(USZ
T

+ WSV T )||F ||PE(WSẐT + ŴSZ
T
)||F , (75)

Proceeding as above we obtain (with high probability)

||PE(USZ
T

+ WSV T )||2F ≤ (1 + ξ)
ǫ

n
||USZ

T
+ WSV T ||2F (76)

≤ (1 + ξ)
2ǫ

n
(||USZ

T ||2F + ||WSV T ||2F ) (77)

≤ (1 + ξ)2ǫ
(
Tr(ST SZ

T
Z) + Tr(SST W

T
W )
)

(78)

≤ Cnǫd(x,u)2 . (79)
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In order to estimate the second factor in Eq. (75), we first notice that ||PE(WSẐT + ŴSZ
T
)||2F ≤

2||PE(WSẐT )||2F + 2||PE(ŴSZ
T
)||2F and then bound each of the two terms in the same way. Con-

sider, to be definite, the first one:

||PE(WSẐT )||2F =
∑

(ij)∈E

(WSẐT )2ij ≤ σmax(S)2
r∑

a,b=1

∑

(ij)∈E

W
2
iaẐ

2
jb .

At this point we can apply Lemma the same argument as after Eq. (47). Bounding σmax(S)2 and
using the fact that both W, Ẑ ∈ K(Cµ0) we get

||PE(WSẐT )||2F = Cnǫmax(r/
√

ǫ, δ2)d(x,u)2 .

Putting together Eqs. (79) and (80) we finally get

B1 = Cnǫmax(r1/2/ǫ1/4, δ)d(x,u)2 ,

which is smaller than A/100 for δ, r/
√

ǫ small enough.
Upper bound on B2. We have

B2 ≤ ||PE(USẐT + ŴSV T )||F ||WSZ
T ||F + |〈PE(USẐT ), U(S − Σ)V T 〉|

+|〈PE(ŴSV T ), U(S − Σ)V T 〉|
≡ B′

2 + B′′
2 + B′′′

2

The upper bound on B′
2 is obtained similarly to the the one on B1. Indeed proceeding as above we

obtain

||PE(USẐT + ŴSV T )||2F ≤ Cnǫd(x,u)2 , (80)

||WSZ
T ||2F ≤ Cnǫmax(r/

√
ǫ, δ)d(x,u)2 , (81)

whence B′
2 ≤ Cnǫd(x,u)2/100 for δ, r/

√
ǫ small enough.

Consider now B′′
2 . By Theorem 4.1 in [CR08], we have

B′′
2 ≤ ǫ

n
|〈USẐT , U(S − Σ)V T 〉| + ξǫ

n
||USẐT ||F ||U(S − Σ)V T ||F (82)

≤ σmax(S)ǫ||S − Σ||F ||ẐT V ||F + ξǫ||USẐT ||F ||S − Σ||F . (83)

The first term is bounded using (the analogous of) Eq. (66) and ||S −Σ||F ≤ d(x,u). For the second
term we use ||Ẑ||2F ≤ Cnd(x,u)2, thus getting

B′′
2 ≤ Cnǫd(x,u)3 + Cnǫξd(x,u)2 ≤ Cnǫ(δ + ξ)d(x,u)2 (84)

whence B′′
2 ≤ Cnǫd(x,u)2/100 for δ small enough. The same argument applies to B′′′

2 thus proving
the desired bound.

Upper bound on B3. Finally for the last term it is sufficient to use a crude bound

B3 ≤ 4
(
||PE(WSẐT )||F + ||PE(ŴSZ

T
)||F

)(
||PE(U(S − Σ)V T )||F + ||PE(WSZ

T
)||F

)
, (85)

and all of the factors have been estimated above.

20



7.2 Lower bound on gradG(x)

By the definition of G in Eq. (34), we have

〈grad G(x), ŵ〉 =
1

µ0r

m∑

i=1

G′
1

(
||X(i)||2

2µ0r

)
〈X(i), Ŵ (i)〉 +

1

µ0r

n∑

j=1

G′
1

(
||Y (i)||2
2µ0r

)
〈Y (i), Ẑ(i)〉 . (86)

It is therefore sufficient to show that if ||X(i)||2 > 2µ0r, then 〈X(i), Ŵ (i)〉 > 0, and if ||Y (j)||2 >
2µ0r, then 〈Y (j), Ẑ(j)〉 > 0. We will just consider the first statement, the second being completely
symmetrical.

From the explicit expressions (43) and (52) we get

X(i) = R
{
cos Θ RT U (i) + sin Θ L(i)

}
, (87)

Ŵ (i) = R
{
Θ cos ΘL(i) − Θ sin ΘRTU (i)

}
. (88)

From the first expression it follows that

|| sin Θ L(i)||2 ≤ ||X(i)||2 + || cos Θ RT U (i)||2 ≤ 3µ0r . (89)

On the other hand, by taking the difference of Eqs. (87) and (88) we have

||X(i) − Ŵ (i)|| ≤ ||(sin Θ − Θ cos Θ)L(i)|| + ||(cos Θ + Θ sinΘ)RT U (i)|| (90)

≤ max
i

(θ2
i )|| sin ΘL(i)|| + ||U (i)|| ≤ δ

√
3µ0r +

√
µ0r . (91)

where we used the inequality (sin ω − ω cos ω) ≤ ω2 sin ω valid for ω ∈ [0, π/2]. For δ small enough

we have therefore ||X(i) − Ŵ (i)|| ≤ (9/10)
√

2µ0r. To conclude, for ||X(i)|| ≥ 2µ0r

〈X(i), Ŵ (i)〉 ≥ ||X(i)||2 − ||X(i)|| ||X(i) − Ŵ (i)|| ≥ ||X(i)||(
√

2µ0r − (9/10)
√

2µ0r) ≥ 0 . (92)
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A Proof of Remark 4.3

The proof consists in showing that |Al| > max{e−C1ǫm,C2α} with probability less than 1/2n3, using
Chernoff bound. In the case of large ǫ, when ǫ > 2

√
α log(n), we have P

{
|Al| > C2α

}
≤ 1/2n3, for

C2 > 4/α. In the case of small ǫ, when ǫ ≤ 2
√

α log(n), P
{
|Al| > e−C1ǫm

}
≤ 1/2n3, for C1 < 1/4

√
α,

which proves the thesis.
Analogously, we can prove that P

{
|Ar| > max{e−C1ǫn,C2}

}
≤ 1/2n3 , which finishes the proof

of Remark 4.3.
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B Proof of Remark 4.5

The expectation of the contribution of light couples, when each edge is independently revealed with
probability ǫ/

√
mn, is

E[Z] =
ǫ√
mn


 ∑

(i,j)∈L

xiM
A
ij yj − xT My


 ,

where we define MA by setting to zero the rows of M whose index is not in Al and the columns of
M whose index is not in Ar.

In order to bound
∑

(i,j)∈L xiM
A
ij yj − xT My, we write,

∣∣∣∣∣∣

∑

(i,j)∈L

xiM
A
ij yj − xT My

∣∣∣∣∣∣
=

∣∣∣∣∣∣
xT
(
MA − M

)
y −

∑

(i,j)∈L

xiM
A
ij yj

∣∣∣∣∣∣

≤
∣∣∣xT
(
MA − M

)
y
∣∣∣+

∣∣∣∣∣∣

∑

(i,j)∈L

xiM
A
ij yj

∣∣∣∣∣∣
.

The first term can be bounded by noting that |(MA − M)ij | is positive only if i /∈ Al or j /∈ Ar

in which case |(MA − M)ij | ≤ µ1
√

r by the incoherence condition A2. Also, by Remark 4.3, there
exists δ ≤ max{e−C1ǫ, C2/n} such that |i : i /∈ Al| ≤ δm and |j : j /∈ Ar| ≤ δn. Denoting by I( · ) the
indicator function, we have

∣∣∣xT
(
MA − M

)
y
∣∣∣ ≤

∑

ij

∣∣xi

∣∣∣∣yj

∣∣
(
I(i /∈ Al) + I(j /∈ Ar)

)
µ1

√
r

=


∑

i

∣∣xi

∣∣I(i /∈ Al)
∑

j

∣∣yj

∣∣+
∑

j

∣∣yj

∣∣I(j /∈ Ar)
∑

i

∣∣xi

∣∣

µ1

√
r

≤
(√

δm
√

n +
√

δn
√

m
)

µ1

√
r

≤ µ1
√

mnr√
ǫ

.

for δ ≤ 1
4ǫ . We can bound the second term as follows

∣∣∣∣∣∣

∑

(i,j)∈L

xiM
A
ij yj

∣∣∣∣∣∣
≤

∑

(i,j)∈L

∣∣∣xiM
A
ij yj

∣∣∣
2

∣∣∣xiMA
ij yj

∣∣∣

≤
√

mn

rǫ

∑

(i,j)∈L

∣∣xiM
A
ij yj

∣∣2

≤
√

mn

rǫ

∑

i∈[m],j∈[n]

∣∣xiM
A
ij yj

∣∣2

≤ µ2
1

√
mnr√
ǫ

,
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where the second inequality follows from the definition of heavy couples and the last inequality is
due to incoherence condition A2.

Hence summing two contributions, we get

|E [Z]| ≤
(
µ1 + µ2

1

)√
rǫ .

C Proof of Remark 4.6

We can associate to the matrix Q a bipartite graph G = ([m], [n], E). The proof is similar to the one
in [FKS89, FO05] and is based on two properties of the graph cG:

1. The graph G has maximum degree bounded by a constant times the average degree:

deg(i) ≤ 2ǫ√
α

, (93)

deg(j) ≤ 2ǫ
√

α , (94)

for all i ∈ [m] and j ∈ [n].

2. Discrepancy. We will say that G (equivalently, the adjacency matrix Q) has the discrepancy
property if, for any A ⊆ [m] and B ⊆ [n], one of the following is true:

1.
e(A,B)

µ(A,B)
≤ ξ1 , (95)

2. e(A,B) ln
( e(A,B)

µ(A,B)

)
≤ ξ2 max{|A|, α|B|} ln

( √
mn

max{|A|, α|B|}
)

. (96)

for two numerical constants ξ1, ξ2 (independent of n and ǫ). Here e(A,B) denotes the number
of edges between A and B and µ(A,B) = |A||B||E|/mn denotes the average number of edges
between A and B before trimming.

We will prove that the discrepancy property holds with high probability later in this section, see
Lemma C.1.

Let us partition row and column indices with respect to the value of xu and yv:

Ai = {u ∈ [m] :
∆√
m

2i−1 ≤ |xu| <
∆√
m

2i} ,

Bj = {v ∈ [n] :
∆√
n

2j−1 ≤ |yv| <
∆√
n

2j} ,

for i ∈ {1, 2, . . . , ⌈log (
√

m/∆)/ log 2⌉}, and j ∈ {1, 2, . . . , ⌈log (
√

n/∆)/ log 2⌉}, and we denote the
size of subsets Ai and Bj by ai and bj respectively. Furthermore, we define ei,j to be the number
of edges between two subsets Ai and Bj , and we let µi,j = aibj(ǫ/

√
mn). Notice that all indices u

of non zero xu fall into one of the subsets Ai’s defined above, since, by discretization, the smallest
non-zero element of x ∈ Tm in absolute value is ∆/

√
m. The same applies for the entries of y ∈ Tn.
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By grouping the summation into Ai’s and Bj’s, we get

∑

(u,v):

|xuyv|≥C
√

ǫ
n

Quv|xuyv| ≤
∑

(i,j):2i+j≥ 4C
√

αǫ

∆2

ei,j
∆2i

√
m

∆2j

√
n

= ∆2
∑

aibj
ǫ√
mn

ei,j

µi,j

2i

√
m

2j

√
n

= ∆2√ǫ
∑

ai
22i

m︸ ︷︷ ︸
αi

bj
22j

n︸ ︷︷ ︸
βj

ei,j
√

ǫ

µi,j2i+j

︸ ︷︷ ︸
σi,j

.

Note that, by definition, we have

∑

i

αi ≤ 4||x||2/∆2 , (97)

∑

i

βi ≤ 4||y||2/∆2 . (98)

We are now left with task of bounding
∑

αiβjσi,j, for Q that satisfies bounded degree property and
discrepancy property.

Define,

C1 ≡
{

(i, j) : 2i+j ≥ 4C
√

αǫ

∆2
and (Ai, Bj) satisfies (95)

}
, (99)

C2 ≡
{

(i, j) : 2i+j ≥ 4C
√

αǫ

∆2
and (Ai, Bj) satisfies (96)

}
\ C1 . (100)

We need to show that
∑

(i,j)∈C1∪C2
αiβjσi,j is bounded.

For the terms in C1 this bound is easy. Since summation is over pairs of indices (i, j) such that

2i+j ≥ 4C
√

αǫ
∆2 , it follows that σi,j ≤ ξ1∆

2/4C
√

α. By Eqs. (97) and (98), we have
∑

C1
αiβjσi,j ≤

(ξ1∆
2/4C

√
α)(2/∆)4 = O(1).

For the terms in C2 the bound is more complicated. We assume ai ≤ αbj for simplicity and
the other case can be treated in the same manner. By change of notation the second discrepancy
condition becomes

ei,j log

(
ei,j

µi,j

)
≤ ξ2 max{ai, αbj} log

( √
mn

max{ai, αbj}

)
. (101)

We start by changing variables on both sides of Eq. (101).

ei,jaibjǫ

µi,j
√

mn
log

(
ei,j

µi,j

)
≤ ξ2αbj log

(
22j

βj
√

α

)
.

Now, multiply each side by 2i/bj
√

ǫ2j to get

σi,jαi log

(
ei,j

µi,j

)
≤ ξ22

i

√
ǫ2j

[
log(22j) − log(βj

√
α)
]

. (102)

To achieve the desired bound, we partition the analysis into 5 cases:
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1. σi,j ≤ 1 : By Eqs. (97) and (98), we have
∑

αiβjσi,j ≤ (2/∆)4 = O(1).

2. 2i >
√

ǫ2j : By the bounded degree property in Eq. (94), we have ei,j ≤ ai2ǫ/
√

α, which implies
that ei,j/µi,j ≤ 2n/bj . For a fixed i we have,

∑
j βjσi,jI(2

i >
√

ǫ2j) ≤ 2
√

ǫ
∑

j 2j−i
I(2i >

√
ǫ2j) ≤

4. Then,
∑

αiβjσi,j ≤ 16/∆2 = O(1).

3. log (ei,j/µi,j) > 1
4

[
log(22j) − log(βj

√
α)
]

: From Eq.(102), it immediately follows that σi,jαi ≤
4ξ22i
√

ǫ2j . Because of case 2, we can assume 2i ≤ √
ǫ2j , which implies that for a fixed j we have the

following inequality :
∑

i σi,jαi ≤ 4ξ2
∑

i
2i√
ǫ2j I(2i ≤ √

ǫ2j) ≤ 8ξ2. Then it follows by Eq. (98)

that
∑

αiβjσi,j ≤ 32ξ2/∆
2 = O(1).

4. log(22j) ≥ − log(βj
√

α) : Because of case 3, we can assume log (ei,j/µi,j) ≤ 1
4

[
log(22j) − log(βj

√
α)
]
,

which implies that log (ei,j/µi,j) ≤ log(2j). Further, because of case 1, we assume 1 < σi,j =
ei,j

√
ǫ/µi,j2

i+j . Combining those two inequalities, we get 2i ≤ √
ǫ.

Since in defining C2 we excluded C1, if (i, j) ∈ C2 then log (ei,j/µi,j) ≥ 1. Applying Eq. (102)
we get σi,jαi ≤ σi,jαi log (ei,j/µi,j) ≤ (ξ22

i−j/
√

ǫ)
[
log(22j) − log(βj

√
α)
]
≤ 4ξ22

i/
√

ǫ.

Combining above two results, it follows that
∑

i σi,jαi ≤ 4ξ2
∑

i
2i√

ǫ
I(2i ≤ √

ǫ) ≤ 8ξ2 . Then,

we have the desired bound :
∑

αiβjσi,j ≤ 32ξ2
∆2 = O(1).

5. log(22j) < − log(βj
√

α) : Because of case 4, we assume log(22j) ≤ − log(βj
√

α). Then it
follows, since we’re not in case 3, that log (ei,j/µi,j) ≤ 1

4

[
log(22j) − log(βj

√
α)
]
≤ − log(βj

√
α).

Hence, ei,j/µi,j ≤ 1/βj
√

α. This implies that σi,j = ei,j
√

ǫ/µi,j2
i+j ≤ √

ǫ/βj
√

α2i+j . Since the

summation is over pairs of indices (i, j) such that 2i+j ≥ 4C
√

αǫ/∆2, we have
∑

j σi,jβj ≤ ∆2

2αC .

Then it follows that
∑

αiβjσi,j ≤ 2
αC = O(1).

Summing up the results, we get that there exists a constant C ′ ≤ 16
∆4 + 4ξ1

C∆2
√

α
+ 16

∆2 + 32ξ2
∆2 + 2

αC ,

such that

∑

(i,j):2i+j≥ 4C
√

αǫ

∆2

αiβjσi,j ≤ C ′ .

This finishes the proof of Remark 4.6.

Lemma C.1. The adjacency matrix Q has discrepancy property with probability at least 1 − 1/n.

Proof. The proof is a generalization of analogous result in [FKS89, FO05] which is proved to hold only
with probability larger than 1−e−Cǫ. The stronger statement quoted here is a result of the observation
that, when we trim the graph the number of edges between any two subsets does not increase. Define
Q0 to be the adjacency matrix corresponding to original random matrix ME before trimming. If
the discrepancy assumption holds for Q0, then it also holds for Q, since eQ(A,B) ≤ eQ0(A,B), for
A ⊆ [m] and B ⊆ [n].

Now we need to show that the desired property is satisfied for Q0. This is proved for the case
of non-bipartite graph in Section 2.2.5 of [FO05], and analogous analysis for bipartite graph shows
that for all subsets A ⊆ [m] and B ⊆ [n], with probability at least 1−1/n, the discrepancy condition
holds with ξ1 = max{4, 2e} and ξ2 = max{12 + 15

α , 15 + 12
α }.

25



D Proof of remarks 5.1 and 5.2

Proof. (Remark 5.1.) Let θ = (θ1, . . . , θp), θi ∈ [−π/2, π/2] be the principal angles between the
planes spanned by the columns of X1 and X2. It is known that dc(X1,X2) = ||2 sin(θ/2)||2 and
dp(X1,X2) = || sin θ||2. The thesis follows from the elementary inequalities

1

π
α ≤

√
2 sin(α/2) ≤ sin α ≤ 2 sin(α/2) (103)

valid for α ∈ [0, π/2].

Proof. (Remark 5.2.) We start by observing that

dp(V, Y ) =
1√
n

min
A∈Rr×r

||V − Y A||F . (104)

Indeed the minimization on the right hand side can be performed explicitly (as ||V − Y A||2F is a
quadratic function of A) and the minimum is achieved at A = Y T V/n. The inequality follows by
simple algebraic manipulations.

Take A = ST XT UΣ−1/n. Then

||V − Y A||F = sup
B,||B||F≤1

〈B, (V − Y A)〉 (105)

= sup
B,||B||F≤1

〈BT ,
1

n
Σ−1UT (UΣV T − XSY T )〉 (106)

=
1

n
sup

B,||B||F≤1
〈UΣ−1BT , (M − M̂)〉 (107)

≤ 1

n
sup

B,||B||F≤1
||UΣ−1BT ||F ||M − M̂ ||F . (108)

On the other hand

||UΣ−1BT ||2F = Tr(BΣ−1UT UΣ−1BT ) = nTr(BT BΣ−2) ≤ nΣ−2
min||B||2F ,

whereby the last inequality follows from the fact that Σ is diagonal. Together (104) and (108), this
implies the thesis.
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