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Abstract

Matrix completion is a basic machine learning problem that has wide applica-
tions, especially in collaborative filtering and recommender systems. Simple
non-convex optimization algorithms are popular and effective in practice. Despite
recent progress in proving various non-convex algorithms converge from a good
initial point, it remains unclear why random or arbitrary initialization suffices in
practice. We prove that the commonly used non-convex objective function for
positive semidefinite matrix completion has no spurious local minima – all local
minima must also be global. Therefore, many popular optimization algorithms such
as (stochastic) gradient descent can provably solve positive semidefinite matrix
completion with arbitrary initialization in polynomial time. The result can be
generalized to the setting when the observed entries contain noise. We believe that
our main proof strategy can be useful for understanding geometric properties of
other statistical problems involving partial or noisy observations.

1 Introduction

Matrix completion is the problem of recovering a low rank matrix from partially observed entries. It
has been widely used in collaborative filtering and recommender systems [Kor09, RS05], dimension
reduction [CLMW11] and multi-class learning [AFSU07]. There has been extensive work on
designing efficient algorithms for matrix completion with guarantees. One earlier line of results
(see [Rec11, CT10, CR09] and the references therein) rely on convex relaxations. These algorithms
achieve strong statistical guarantees, but are quite computationally expensive in practice.

More recently, there has been growing interest in analyzing non-convex algorithms for matrix
completion [KMO10, JNS13, Har14, HW14, SL15, ZWL15, CW15]. Let M 2 R

d⇥d be the target
matrix with rank r ⌧ d that we aim to recover, and let Ω = {(i, j) : Mi,j is observed} be the
set of observed entries. These methods are instantiations of optimization algorithms applied to the
objective1,

f(X) =
1

2

X

(i,j)2Ω

⇥
Mi,j � (XX>)i,j

⇤2
, (1.1)

These algorithms are much faster than the convex relaxation algorithms, which is crucial for their
empirical success in large-scale collaborative filtering applications [Kor09].

1In this paper, we focus on the symmetric case when the true M has a symmetric decomposition M = ZZT .
Some of previous papers work on the asymmetric case when M = ZWT , which is harder than the symmetric
case.
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All of the theoretical analysis for the nonconvex procedures require careful initialization schemes:
the initial point should already be close to optimum. In fact, Sun and Luo [SL15] showed that after
this initialization the problem is effectively strongly-convex, hence many different optimization
procedures can be analyzed by standard techniques from convex optimization.

However, in practice people typically use a random initialization, which still leads to robust and
fast convergence. Why can these practical algorithms find the optimal solution in spite of the non-
convexity? In this work we investigate this question and show that the matrix completion objective
has no spurious local minima. More precisely, we show that any local minimum X of objective
function f(·) is also a global minimum with f(X) = 0, and recovers the correct low rank matrix M .

Our characterization of the structure in the objective function implies that (stochastic) gradient
descent from arbitrary starting point converge to a global minimum. This is because gradient
descent converges to a local minimum [GHJY15, LSJR16], and every local minimum is also a global
minimum.

1.1 Main results

Assume the target matrix M is symmetric and each entry of M is observed with probability p
independently 2. We assume M = ZZ> for some matrix Z 2 R

d⇥r.

There are two known issues with matrix completion. First, the choice of Z is not unique since
M = (ZR)(ZR)> for any orthonormal matrix Z. Our goal is to find one of these equivalent
solutions.

Another issue is that matrix completion is impossible when M is “aligned” with standard basis. For
example, when M is the identity matrix in its first r ⇥ r block, we will very likely be observing only
0 entries. To address this issue, we make the following standard assumption:

Assumption 1. For any row Zi of Z, we have kZik 6 µ/
p
d · kZkF . Moreover, Z has a bounded

condition number �max(Z)/�min(Z) = .

Throughout this paper we think of µ and  as small constants, and the sample complexity depends
polynomially on these two parameters. Also note that this assumption is independent of the choice of
Z: all Z such that ZZT = M have the same row norms and Frobenius norm.

This assumption is similar to the “incoherence” assumption [CR09]. Our assumption is the same as
the one used in analyzing non-convex algorithms [KMO10, SL15].

We enforce X to also satisfy this assumption by a regularizer

f(X) =
1

2

X

(i,j)2Ω

⇥
Mi,j � (XX>)i,j

⇤2
+R(X), (1.2)

where R(X) is a function that penalizes X when one of its rows is too large. See Section 4 and
Section A for the precise definition. Our main result shows that in this setting, the regularized
objective function has no spurious local minimum:

Theorem 1.1. [Informal] All local minimum of the regularized objective (1.1) satisfy XXT =
ZZT = M when p > poly(, r, µ, log d)/d.

Combined with the results in [GHJY15, LSJR16] (see more discussions in Section 1.2), we have,

Theorem 1.2 (Informal). With high probability, stochastic gradient descent on the regularized
objective (1.1) will converge to a solution X such that XXT = ZZT = M in polynomial time from
any starting point. Gradient descent will converge to such a point with probability 1 from a random
starting point.

Our results are also robust to noise. Even if each entry is corrupted with Gaussian noise of standard
deviation µ2kZk2F /d (comparable to the magnitude of the entry itself!), we can still guarantee that

all the local minima satisfy kXXT � ZZT kF 6 " when p is large enough. See the discussion in
Appendix B for results on noisy matrix completion.

2The entries (i, j) and (j, i) are the same. With probability p we observe both entries and otherwise we
observe neither.
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Our main technique is to show that every point that satisfies the first and second order necessary
conditions for optimality must be a desired solution. To achieve this we use new ideas to analyze the
effect of the regularizer and show how it is useful in modifying the first and second order conditions
to exclude any spurious local minimum.

1.2 Related Work

Matrix Completion. The earlier theoretical works on matrix completion analyzed the nuclear
norm heuristic [Rec11, CT10, CR09]. This line of work has the cleanest and strongest theoretical

guarantees; [CT10, Rec11] showed that if |Ω| & drµ2 log2 d the nuclear norm convex relaxation
recovers the exact underlying low rank matrix. The solution can be computed via the solving a
convex program in polynomial time. However the primary disadvantage of nuclear norm methods
is their computational and memory requirements. The fastest known algorithms have running time
O(d3) and require O(d2) memory, which are both prohibitive for moderate to large values of d.
These concerns led to the development of the low-rank factorization paradigm of [BM03]; Burer and

Monteiro proposed factorizing the optimization variable cM = XXT , and optimizing over X 2 R
d⇥r

instead of cM 2 R
d⇥d . This approach only requires O(dr) memory, and a single gradient iteration

takes time O(r|Ω|), so has much lower memory requirement and computational complexity than the
nuclear norm relaxation. On the other hand, the factorization causes the optimization problem to be
non-convex in X , which leads to theoretical difficulties in analyzing algorithms. Under incoherence
and sufficient sample size assumptions, [KMO10] showed that well-initialized gradient descent
recovers M . Similary, [HW14, Har14, JNS13] showed that well-initialized alternating least squares
or block coordinate descent converges to M , and [CW15] showed that well-initialized gradient
descent converges to M . [SL15, ZWL15] provided a more unified analysis by showing that with
careful initialization many algorithms, including gradient descent and alternating least squres, succeed.
[SL15] accomplished this by showing an analog of strong convexity in the neighborhood of the
solution M .

Non-convex Optimization. Recently, a line of work analyzes non-convex optimization by separat-
ing the problem into two aspects: the geometric aspect which shows the function has no spurious
local minimum and the algorithmic aspect which designs efficient algorithms can converge to local
minimum that satisfy first and (relaxed versions) of second order necessary conditions.

Our result is the first that explains the geometry of the matrix completion objective. Similar geometric
results are only known for a few problems: phase retrieval/synchronization, orthogonal tensor
decomposition, dictionary learning [GHJY15, SQW15, BBV16]. The matrix completion objective
requires different tools due to the sampling of the observed entries, as well as carefully managing the
regularizer to restrict the geometry. Parallel to our work Bhojanapalli et al.[BNS16] showed similar
results for matrix sensing, which is closely related to matrix completion. Loh and Wainwright [LW15]
showed that for many statistical settings that involve missing/noisy data and non-convex regularizers,
any stationary point of the non-convex objective is close to global optima; furthermore, there is a
unique stationary point that is the global minimum under stronger assumptions [LW14].

On the algorithmic side, it is known that second order algorithms like cubic regularization [NP06]
and trust-region [SQW15] algorithms converge to local minima that approximately satisfy first and
second order conditions. Gradient descent is also known to converge to local minima [LSJR16] from
a random starting point. Stochastic gradient descent can converge to a local minimum in polynomial
time from any starting point [Pem90, GHJY15]. All of these results can be applied to our setting,
implying various heuristics used in practice are guaranteed to solve matrix completion.

2 Preliminaries

Notations: For Ω ⇢ [d] ⇥ [d], let PΩ be the linear operator that maps a matrix A to PΩ(A),
where PΩ(A) has the same values as A on Ω, and 0 outside of Ω. We will use the following
matrix norms: k · kF the frobenius norm, k · k spectral norm, |A|1 elementwise infinity norm, and
|A|p!q = maxkxkp=1 kAkq. We use the shorthand kAkΩ = kPΩAkF . The trace inner product of

two matrices is hA,Bi = tr(A>B), and �min(X), �max(X) are the smallest and largest singular
values of X . We also use Xi to denote the i-th row of a matrix X .
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2.1 Necessary conditions for Optimality

Given an objective function f(x) : Rn ! R, we use rf(x) to denote the gradient of the function,
and r2f(x) to denote the Hessian of the function (r2f(x) is an n⇥ n matrix where [r2f(x)]i,j =

∂
2

∂xi∂xj
f(x)). It is well known that local minima of the function f(x) must satisfy some necessary

conditions:

Definition 2.1. A point x satisfies the first order necessary condition for optimality (later abbreviated
as first order optimality condition) if rf(x) = 0. A point x satisfies the second order necessary
condition for optimality (later abbreviated as second order optimality condition)if r2f(x) ⌫ 0.

These conditions are necessary for a local minimum because otherwise it is easy to find a direction
where the function value decreases. We will also consider a relaxed second order necessary condition,
where we only require the smallest eigenvalue of the Hessian r2f(x) to be not very negative:

Definition 2.2. For ⌧ > 0, a point x satisfies the ⌧ -relaxed second order optimality condition, if
r2f(x) ⌫ �⌧ · I .

This relaxation to the second order condition makes the conditions more robust, and allows for
efficient algorithms.

Theorem 2.3. [NP06, SQW15, GHJY15] If every point x that satisfies first order and ⌧ -relaxed
second order necessary condition is a global minimum, then many optimization algorithms (cubic
regularization, trust-region, stochastic gradient descent) can find the global minimum up to " error in
function value in time poly(1/", 1/⌧, d).

3 Proof Strategy: “simple” proofs are more generalizable

In this section, we demonstrate the key ideas behind our analysis using the rank r = 1 case. In
particular, we first give a “simple” proof for the fully observed case. Then we show this simple
proof can be easily generalized to the random observation case. We believe that this proof strategy is
applicable to other statistical problems involving partial/noisy observations. The proof sketches in
this section are only meant to be illustrative and may not be fully rigorous in various places. We refer
the readers to Section 4 and Section A for the complete proofs.

In the rank r = 1 case, we assume M = zz>, where kzk = 1, and kzk1 6 µp
d

. Let " ⌧ 1 be the

target accuracy that we aim to achieve in this section and let p = poly(µ, log d)/(d").

For simplicity, we focus on the following domain B of incoherent vectors where the regularizer R(x)
vanishes,

B =

⇢
x : kxk1 <

2µp
d

�
. (3.1)

Inside this domain B, we can restrict our attention to the objective function without the regularizer,
defined as,

g̃(x) =
1

2
· kPΩ(M � xx>)k2F . (3.2)

The global minima of g̃(·) are z and �z with function value 0. Our goal of this section is to
(informally) prove that all the local minima of g̃(·) are O(

p
")-close to ±z. In later section we will

formally prove that the only local minima are ±z.

Lemma 3.1 (Partial observation case, informally stated). Under the setting of this section, in the
domain B, all local mimina of the function g̃(·) are O(

p
")-close to ±z.

It turns out to be insightful to consider the full observation case when Ω = [d]⇥[d]. The corresponding
objective is

g(x) =
1

2
· kM � xx>k2F . (3.3)

Observe that g̃(x) is a sampled version of the g(x), and therefore we expect that they share the same
geometric properties. In particular, if g(x) does not have spurious local minima then neither does
g̃(x).
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Lemma 3.2 (Full observation case, informally stated). Under the setting of this section, in the domain
B, the function g(·) has only two local minima {±z} .

Before introducing the “simple” proof, let us first look at a delicate proof that does not generalize
well.

Difficult to Generalize Proof of Lemma 3.2. We compute the gradient and Hessian of g(x),
rg(x) = Mx� kxk2x,
r2g(x) = 2xx> �M + kxk2 · I .Therefore, a critical point x satisfies rg(x) = Mx� kxk2x = 0,
and thus it must be an eigenvector of M and kxk2 is the corresponding eigenvalue. Next, we
prove that the hessian is only positive definite at the top eigenvector . Let x be an eigenvector with
eigenvalue � = kxk2, and � is strictly less than the top eigenvalue �⇤. Let z be the top eigenvector.
We have that hz,r2g(x)zi = �hz,Mzi+ kxk2 = ��⇤ + � < 0, which shows that x is not a local
minimum. Thus only z can be a local minimizer, and it is easily verified that r2g(z) is indeed
positive definite.

The difficulty of generalizing the proof above to the partial observation case is that it uses the
properties of eigenvectors heavily. Suppose we want to imitate the proof above for the partial
observation case, the first difficulty is how to solve the equation g̃(x) = PΩ(M � xx>)x = 0.
Moreover, even if we could have a reasonable approximation for the critical points (the solution of
rg̃(x) = 0), it would be difficult to examine the Hessian of these critical points without having the
orthogonality of the eigenvectors.

“Simple” and Generalizable proof. The lessons from the subsection above suggest us find an
alternative proof for the full observation case which is generalizable. The alternative proof will be
simple in the sense that it doesn’t use the notion of eigenvectors and eigenvalues. Concretely, the key

observation behind most of the analysis in this paper is the following,

Proofs that consist of inequalities that are linear in 1Ω are often easily generalizable to partial
observation case.

Here statements that are linear in 1Ω mean the statements of the form
P

ij 1(i,j)2ΩTij 6 a. We

will call these kinds of proofs “simple” proofs in this section. Roughly speaking, the observation
follows from the law of large numbers — Suppose Tij , (i, j) 2 [d]⇥ [d] is a sequence of bounded real
numbers, then the sampled sum

P
(i,j)2Ω

Tij =
P

i,j 1(i,j)2ΩTij is an accurate estimate of the sum

p
P

i,j Tij , when the sampling probability p is relatively large. Then, the mathematical implications

of p
P

Tij 6 a are expected to be similar to the implications of
P

(i,j)2Ω
Tij 6 a, up to some small

error introduced by the approximation. To make this concrete, we give below informal proofs for
Lemma 3.2 and Lemma 3.1 that only consists of statements that are linear in 1Ω. Readers will see that
due to the linearity, the proof for the partial observation case (shown on the right column) is a direct
generalization of the proof for the full observation case (shown on the left column) via concentration
inequalities (which will be discussed more at the end of the section).

A “simple” proof for Lemma 3.2.

Claim 1f. Suppose x 2 B satisfies rg(x) = 0,
then hx, zi2 = kxk4.

Proof. We have,

rg(x) = (zz> � xx>)x = 0

) hx,rg(x)i = hx, (zz> � xx>)xi = 0
(3.4)

) hx, zi2 = kxk4

Intuitively, this proof says that the norm of a criti-
cal point x is controlled by its correlation with z.
Here at the lasa sampling version of the f the lasa
sampling ver the f the lasa sampling vesio

Generalization to Lemma 3.1.

Claim 1p. Suppose x 2 B satisfies rg̃(x) = 0,
then hx, zi2 = kxk4 � ".

Proof. Imitating the proof on the left, we have

rg̃(x) = PΩ(zz
> � xx>)x = 0

) hx,rg̃(x)i = hx, PΩ(zz
> � xx>)xi = 0

(3.5)

) hx, zi2 > kxk4 � ε

The last step uses the fact that equation (3.4)
and (3.5) are approximately equal up to scaling
factor p for any x 2 B, since (3.5) is a sampled
version of (3.4).
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Claim 2f. If x 2 B has positive Hessian
r2g(x) ⌫ 0, then kxk2 > 1/3.

Proof. By the assumption on x, we have that
hz,r2g(x)zi > 0. Calculating the quadratic
form of the Hessian (see Proposition 4.1 for de-
tails),

hz,r2g(x)zi

= kzx> + xz>k2

� 2z>(zz> � xx>)z > 0aaaaaa (3.6)

) kxk2 + 2hz, xi2 > 1

) kxk2 > 1/3 (since hz, xi2 6 kxk2)

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Claim 2p. If x 2 B has positive Hessian
r2g̃(x) ⌫ 0, then kxk2 > 1/3� ".

Proof. Imitating the proof on the left, cal-
culating the quadratic form over the Hes-
sian at z (see Proposition 4.1) , we have
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

hz,r2g̃(x)zi

= kPΩ(zx
> + xz>)k2

� 2z>PΩ(zz
> � xx>)z > 0 (3.7)

) · · · · · · (same step as the left)

) kxk2 > 1/3� ε

Here we use the fact that hz,r2g̃(x)zi ⇡
phz,r2g(x)zi for any x 2 B.

With these two claims, we are ready to prove Lemma 3.2 and 3.1 by using another step that is linear
in 1Ω.

Proof of Lemma 3.2. By Claim 1f and 2f, we
have x satisfies hx, zi2 > kxk4 > 1/9. More-
over, we have that rg(x) = 0 implies

hz,rg(x)i = hz, (zz> � xx>)xi = 0
(3.8)

) hx, zi(1� kxk2) = 0

) kxk2 = 1 (by hx, zi2 > 1/9)

Then by Claim 1f again we obtain hx, zi2 = 1,
and therefore x = ±z. aaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Proof of Lemma 3.1. By Claim 1p and 2p, we
have x satisfies hx, zi2 > kxk4 > 1/9 � O(").
Moreover, we have that rg̃(x) = 0 implies

hz,rg̃(x)i = hz, PΩ(zz
> � xx>)xi = 0

(3.9)

) · · · · · · (same step as the left)

) kxk2 = 1±O(") (same step as the left)

Since (3.9) is the sampled version of equa-
tion (3.8), we expect they lead to the same con-
clusion up to some approximation. Then by
Claim 1p again we obtain hx, zi2 = 1±O("), and
therefore x is O(

p
")-close to either of ±z.

Subtleties regarding uniform convergence. In the proof sketches above, our key idea is to use
concentration inequalities to link the full observation objective g(x) with the partial observation
counterpart. However, we require a uniform convergence result. For example, we need a statement
like “w.h.p over the choice of Ω, equation (3.4) and (3.5) are similar to each other up to scaling”. This
type of statement is often only true for x inside the incoherent ball B. The fix to this is the regularizer.
For non-incoherent x, we will use a different argument that uses the property of the regularizer. This
is besides the main proof strategy of this section and will be discussed in subsequent sections.

4 Warm-up: Rank-1 Case

In this section, using the general proof strategy described in previous section, we provide a formal
proof for the rank-1 case. In subsection 4.1, we formally work out the proof sketches of Section 3
inside the incoherent ball. The rest of the proofs is deferred to supplementary material.

In the rank-1 case, the objective function simplifies to,

f(x) =
1

2
kPΩ(M � xx>)k2F + �R(x) . (4.1)

Here we use the the regularization R(x)

R(x) =

dX

i=1

h(xi), and h(t) = (|t|� ↵)4 It>α .
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The parameters � and ↵ will be chosen later as in Theorem 4.2. We will choose ↵ > 10µ/
p
d so

that R(x) = 0 for incoherent x, and thus it only penalizes coherent x. Moreover, we note R(x) has
Lipschitz second order derivative. 3

We first state the optimality conditions, whose proof is deferred to Appendix A.

Proposition 4.1. The first order optimality condition of objective (4.1) is,

2PΩ(M � xx>)x = �rR(x) , (4.2)

and the second order optimality condition requires:

8v 2 R
d, kPΩ(vx

> + xv>)k2F + �v>r2R(x)v > 2v>PΩ(M � xx>)v . (4.3)

Moreover, The ⌧ -relaxed second order optimality condition requires

8v 2 R
d, kPΩ(vx

> + xv>)k2F + �v>r2R(x)v > 2v>PΩ(M � xx>)v � ⌧kvk2 . (4.4)

We give the precise version of Theorem 1.1 for the rank-1 case.

Theorem 4.2. For p > cµ6 log1.5 d
d where c is a large enough absolute constant, set ↵ = 10µ

p
1/d

and � > µ2p/↵2.Then, with high probability over the randomness of Ω, the only points in R
d that

satisfy both first and second order optimality conditions (or ⌧ -relaxed optimality conditions with
⌧ < 0.1p) are z and �z.

In the rest of this section, we will first prove that when x is constrained to be incoherent (and hence
the regularizer is 0 and concentration is straightforward) and satisfies the optimality conditions, then
x has to be z or �z. Then we go on to explain how the regularizer helps us to change the geometry
of those points that are far away from z so that we can rule out them from being local minimum. For
simplicity, we will focus on the part that shows a local minimum x must be close enough to z.

Lemma 4.3. In the setting of Theorem 4.2, suppose x satisfies the first-order and second-order
optimality condition (4.2) and (4.3). Then when p is defined as in Theorem 4.2,

��xx> � zz>
��2
F
6 O(") .

where " = µ3(pd)�1/2.

This turns out to be the main challenge. Once we proved x is close, we can apply the result of Sun
and Luo [SL15] (see Lemma C.1), and obtain Theorem 4.2.

4.1 Handling incoherent x

To demonstrate the key idea, in this section we restrict our attention to the subset of Rd which contains
incoherent x with `2 norm bounded by 1, that is, we consider,

B =

⇢
x : kxk1 6

2µp
d
, kxk 6 1

�
. (4.5)

Note that the desired solution z is in B, and the regularization R(x) vanishes inside B.

The following lemmas assume x satisfies the first and second order optimality conditions, and deduce
a sequence of properties that x must satisfy.

Lemma 4.4. Under the setting of Theorem 4.2 , with high probability over the choice of Ω, for any
x 2 B that satisfies second-order optimality condition (4.3) we have,

kxk2 > 1/4.

The same is true if x 2 B only satisfies ⌧ -relaxed second order optimality condition for ⌧ 6 0.1p.

Proof. We plug in v = z in the second-order optimality condition (4.3), and obtain that

��PΩ(zx
> + xz>)

��2
F
> 2z>PΩ(M � xx>)z . (4.6)

3This is the main reason for us to choose 4-th power instead of 2-nd power.
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Intuitively, when restricted to Ω, the squared Frobenius on the LHS and the quadratic form on the
RHS should both be approximately a p fraction of the unrestricted case. In fact, both LHS and RHS
can be written as the sum of terms of the form hPΩ(uv

T ), PΩ(st
T )i, because

��PΩ(zx
> + xz>)

��2
F
= 2hPΩ(zx

T ), PΩ(zx
T )i+ 2hPΩ(zx

T ), PΩ(xz
T )i

2z>PΩ(M � xx>)z = 2hPΩ(zz
T ), PΩ(zz

T )i � 2hPΩ(xx
T ), PΩ(zz

T )i.

Therefore we can use concentration inequalities (Theorem D.1), and simplify the equation

LHS of (4.6) = p
��zx> + xz>

��2
F
±O(

p
pdkxk21kzk21kxk2kzk2)

= 2pkxk2kzk2 + 2phx, zi2 ±O(p") , (Since x, z 2 B)

where " = O(µ2
q

log d
pd ). Similarly, by Theorem D.1 again, we have

RHS of (4.6) = 2
�
hPΩ(zz

>), PΩ(zz
>)i � hPΩ(xx

>), PΩ(zz
>)i

�
(Since M = zz>)

= 2pkzk4 � 2phx, zi2 ±O(p") (by Theorem D.1 and x, z 2 B)

(Note that even we use the ⌧ -relaxed second order optimality condition, the RHS only becomes
1.99pkzk4 � 2phx, zi2 ±O(p") which does not effect the later proofs.)

Therefore plugging in estimates above back into equation (4.6), we have that

2pkxk2kzk2 + 2phx, zi2 ±O(p") > 2kzk4 � 2hx, zi2 ±O(p") ,

which implies that 6pkxk2kzk2 > 2pkxk2kzk2 + 4phx, zi2 > 2pkzk4 � O(p"). Using kzk2 = 1,
and " being sufficiently small, we complete the proof.

Next we use first order optimality condition to pin down another property of x – it has to be close
to z after scaling. Note that this doesn’t mean directly that x has to be close to z since x = 0 also
satisfies first order optimality condition (and therefore the conclusion (4.7) below).

Lemma 4.5. With high probability over the randomness of Ω, for any x 2 B that satisfies first-order
optimality condition (4.2), we have that x also satisfies

��hz, xiz � kxk2x
�� 6 O(") . (4.7)

where " = Õ(µ3(pd)�1/2).

Finally we combine the two optimality conditions and show equation (4.7) implies xxT must be
close to zzT .

Lemma 4.6. Suppose vector x satisfies that kxk2 > 1/4, and that
��hz, xiz � kxk2x

�� 6 � . Then

for � 2 (0, 0.1),
��xx> � zz>

��2
F
6 O(�) .

5 Conclusions

Although the matrix completion objective is non-convex, we showed the objective function has very
nice properties that ensures the local minima are also global. This property gives guarantees for many
basic optimization algorithms. An important open problem is the robustness of this property under
different model assumptions: Can we extend the result to handle asymmetric matrix completion? Is
it possible to add weights to different entries (similar to the settings studied in [LLR16])? Can we
replace the objective function with a different distance measure rather than Frobenius norm (which is
related to works on 1-bit matrix sensing [DPvdBW14])? We hope this framework of analyzing the
geometry of objective function can be applied to other problems.
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