
Matrix Decomposition: Analysis of an Access Control Approach
on Transaction-based DAGs without Finality

Florian Jacob

Karlsruhe Institute

of Technology

Institute of Telematics

florian.jacob@kit.edu

Luca Becker

Karlsruhe Institute

of Technology

Institute of Telematics

luca.becker@sunbury.xyz

Jan Grashöfer

Karlsruhe Institute

of Technology

Institute of Telematics

jan.grashoefer@kit.edu

Hannes Hartenstein

Karlsruhe Institute

of Technology

Institute of Telematics

hannes.hartenstein@kit.edu

ABSTRACT
TheMatrix message-oriented middleware

1
is gaining momentum

as a basis for a decentralized, secure messaging system as shown,

for example, by its deployment within the French government and

by the Mozilla foundation. Thus, understanding the corresponding

access control approach is important. This paper provides an ab-

straction and an analysis of the access control approach followed by

Matrix. We show that Matrix can be seen as a form of Distributed

Ledger Technology (DLT) based on Transaction-based Directed

Acyclic Graphs (TDAGs). TDAGs connect individual transactions

to form a DAG, instead of collecting transactions in blocks as in

blockchains. These TDAGs only provide causal order, eventual

consistency, and no finality. However, unlike conventional DLTs,

Matrix does not aim for a strict system-wide consensus. Thus, there

is also no guarantee for a strict consensus on access rights. By de-

composition of the Matrix approach, we show that a sound decen-

tralized access control can be implemented for TDAGs in general,

and for Matrix in particular, despite those weak guarantees. In ad-

dition, we discovered security issues in popular implementations

and emphasize the need for a formal verification of the employed

conflict resolution mechanism.

ACM Reference Format:
Florian Jacob, Luca Becker, Jan Grashöfer, and Hannes Hartenstein. 2020.

Matrix Decomposition: Analysis of an Access Control Approach on Trans-

action-based DAGs without Finality. In Proceedings of the 25th ACM Sym-
posium on Access Control Models and Technologies (SACMAT ’20), June
10–12, 2020, Barcelona, Spain. ACM, New York, NY, USA, 12 pages. https:

//doi.org/10.1145/3381991.3395399

1 INTRODUCTION
The starting point of our analysis is a specification of communica-

tion protocols and behavior of a decentralized publish-subscribe

middleware with integrated history and state tracking, calledMa-
trix.1 Currently,Matrix represents the basis for a popular decentral-
izedmessaging tool with a higher ambition to interconnect arbitrary

1
See https://matrix.org/. Please note that we use the term “middleware”, commonly

used in distributed systems, now for decentralized systems.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SACMAT ’20, June 10–12, 2020, Barcelona, Spain
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7568-9/20/06. . . $15.00

https://doi.org/10.1145/3381991.3395399

platforms for near real-time communication. The use of Matrix by
the French government [7] and the Mozilla foundation [10], among

others, and the discussion of its use in organizations like the Federal

Defence Forces of Germany [8] demonstrates its relevance. Since

theMatrix approach is evidently used, or intended to be used, in

deployments with strict security requirements, there is a natural

interest in understanding and assessing the underlying access con-

trol approach. However, the Matrix approach is an unconventional

one, resembling elements of distributed ledger technologies and

blockchains. Thus, an analysis of the access control system requires

an analysis of the decentralized approach itself. In this paper, we

address the following three questions:

(1) What type of decentralized system is given by Matrix?
(2) Are the foundations of such a system sufficient to provide a

valid access control approach?

(3) What access-control-related aspects need to be addressed

before a ‘mission-critical’ deployment can be recommended?

In this paper, these aspects are addressed by ‘decomposing’ the

Matrix approach. The first question will be answered by showing

that theMatrix approach to decentralization can be seen as a variant
of a distributed ledger, using a Transaction-based Directed Acyclic

Graph (TDAG) without finality as transaction store. This form of

abstraction does not only generalize results, but is essential for

understanding the system. While the notion of a Transaction-based

Directed Acyclic Graph without finality is clarified in the following,

it basically translates into rather weak guarantees upon which an

access control system is built. Surprisingly, as answer to the second

question, the decomposition shows that those weak guarantees

seem to be indeed sufficient to build a sound access control system.

However, in answering question three, we show that some further

actions are required.

Decentralized trust management has been a topic of research

for quite some time, see e.g. [2]. Decentralized access control for

publish-subscribe systems has been proposed, e.g., in [17]. However,

previous work has either not analyzed access control approaches

implemented on top of TDAGs or similar distributed ledgers, or

finality is assumed, like in the IOTA Tangle [18]. Our contribution

is the analysis of a TDAG-based access control approach without

finality. In this context, we solely focus on policy specification,

policy information, and policy enforcement.

Distributed ledger technologies implement distributed, highly-

available, append-only databases. In their earliest form, transactions

to the database are collected into blocks and linked together to form

a linear chain, the so-called blockchain concept. In contrast, the

Transaction-based Directed Acyclic Graph concept links transac-

tions together to form a Directed Acyclic Graph instead of a linear

https://doi.org/10.1145/3381991.3395399
https://doi.org/10.1145/3381991.3395399
https://matrix.org/
https://doi.org/10.1145/3381991.3395399

chain, which reduces the inherent ordering from a total to a partial

order [15]. Distributed ledger technologies can be characterized

by their trade-off decision between decentralization, consistency,

and scalability, also known as the DCS triangle
2
[23]. Similar to

the CAP theorem [4, 3], the DCS triangle’s yet to be proven conjec-

ture is that only two out of three properties can be fully achieved

simultaneously, and that there is a gradual trade-off between those

properties. The system under consideration, Matrix, trades consen-
sus on a total ordering of conflicting transactions and on which

transactions can be considered final (i.e. finality), for a high degree

of decentralization and scalability. Without the need to solve a

consensus problem, there is also no need for, e.g., proof of work or

similar mechanisms as used in the Bitcoin blockchain. However, as

a consequence there is no system-wide consensus on access control.

This paper is structured as follows. In Section 2, we classify what

type of decentralized system the Matrix middleware is. Further-

more, we explain and classify the fundamental data structure used

byMatrix as a TDAG. We elaborate on the challenges associated

with access control based on the weak guarantees given by TDAGs

as used byMatrix. We also define the requirements that a decen-

tralized access control system based on partial order has to fulfill

to be considered secure. Fundamental related work is also provided

in Section 2, however, as this paper touches various fields (Matrix
specification, access control models, publish-subscribe systems, dis-

tributed/decentralized system) we also give references to related

work in all of the following sections. In Section 3 we analyze how

Matrix deals with partial order and non-finality. In Subsection 3.1, a

conceptual model for access control for the given interface and guar-

antees is described based on Lattice-based Access Control (LBAC)

and Attribute-based Access Control (ABAC). As concurrency can

give rise to conflicts in causal relationships, we analyze in Subsec-

tion 3.2 a conflict resolution mechanism required to provide an

attribute store for the access control system. While the previous

sections only assumed an implementation of the interface and guar-

antees, we describe in Subsection 4.1 architecture and mechanisms

of a truly decentralized system based on TDAGs. We assess the

decentralized access control system implementation proposed by

Matrix for its security in Subsection 4.2, describe several security

issues and present insights gained from the assessment. Finally, we

conclude in Section 5 that decentralized, secure implementations of

the analyzed class of access control systems seems possible with the

given guarantees, but emphasize the need for formal verification

of the conflict resolution mechanism and the need to understand

the ‘characteristics’ of an access control approach based on TDAGs

without finality.

2 CONCEPTUAL OVERVIEW &
DECOMPOSITION

2.1 System Overview and Terminology
Matrix is a specification3 for a decentralized publish-subscribe mid-

dleware with integrated history and state tracking. Its most com-

monly used application is a messaging system: Messaging is based

on “rooms”, which are conversation groups on a theme, consisting

of an arbitrary number of users that can join, read, participate in

2
To the best of our knowledge, the idea was first found in

https://blog.bigchaindb.com/the-dcs-triangle-5ce0e9e0f1dc

and leave the conversation. Rooms have a history of current and

past communication messages as well as a state that is represented

by a set of currently valid attributes of the room. A user’s participa-

tion in a room is modeled in form of a membership relation, which

is augmented by attributes as well. Attributes are not only used as

“cosmetic” metadata on rooms and memberships, like their name

and avatar, but also for moderation and access control in general.

Attributes can represent whether a room is a public channel free for

anyone to join or a private, invite-only group. Similarly, attributes

can specify whether anybody is free to speak in a room or only a

subset of users is allowed to send messages. For access control, it

is particularly important to note that administrative permissions,

i.e. permissions to change policy attributes, are represented as at-

tributes as well.

One user can have multiple devices associated with their ac-

count, which are not required to be online all the time in order

to receive messages. Instead, users associate themselves with a

so-called “homeserver”, a server which acts as a representative for

them in theMatrix network, and is in charge of relaying user ac-

tions from and to the homeservers of other users. Users either use

a homeserver provided by a third party or operate their own.

For each room, homeservers of joined users form a federation in

which they exchange new messages and attribute changes. Each

room is strictly independent of other rooms, i.e. there is no protocol-

level interaction between rooms. For access control decisions, only

the attributes of the concerned room and memberships are relevant.

For the remainder of the paper, we assume the presence of a single

room and a single federation only. However, all considerations can

be generalized to multiple rooms existing in parallel.

We will use the terminology of publish-subscribe and access

control systems instead of Matrix terminology as follows. We con-

sider the union of all devices of a user to be a subject of the access
control system, which subscribe to and publish to topics instead
of sending to and receiving from rooms. While being subscribed

to a topic implicitly grants receive permissions, a subject is not

required to exercise them, although a subscription is required for

publishing to a topic. Subjects publish messages to a topic’s history

or attribute changes on the topic or a topic’s memberships. Mes-

sages and attribute changes always have a type, which specifies the

semantics of the content.Matrix therefore is a topic-based, typed
publish-subscribe system.

We can also compare the Matrix middleware to distributed

ledgers. More specifically, each topic in Matrix is considered an in-

dependent distributed ledger. According to Zhang et al., distributed

ledgers can be split up into three major components:

• The append-only data structure that stores transactions

• The peer-to-peer-network that distributes transactions

• The consensus mechanism that provides conflict resolution

to conflicting transactions

In this paper, we do not address aspects of the peer-to-peer network

as a distribution mechanism (see, e.g., [11] for a monitoring study

of theMatrix network). In contrast, this paper addresses the data

structure and analyzes the “consensus mechanism” component with

respect to its ability to support access control enforcement.

3
https://matrix.org/docs/spec/

https://blog.bigchaindb.com/the-dcs-triangle-5ce0e9e0f1dc
https://matrix.org/docs/spec/

Publish/Subscribe + History

Application

Append / Query
Transactions

Query
Attributes

Reference Monitor

Append / Query
Transactions

Query
Attributes

Query
Transactions

Transaction Store

Conflict
Resolution

[matrix]
middleware

Figure 1: Layer model for the Matrix middleware. Rounded, blue-
filled boxes are layers, rectangles are interfaces provided by the
lower layer and used by the upper layer. The layers are abstracted
from decentralization aspects, i.e. reduced to a single instance.

Figure 1 shows the inner working of the Matrix middleware:

At its core lies the per-topic Transaction Store, which only allows

appending new and querying past transactions. To the application

layer, however, Matrix provides a publish-subscribe interface with
history access. This is achieved by a translation between the inter-

nal and external interface, which maps the publication of a message

to appending a message transaction, and the publication of an at-

tribute change to appending an attribute transaction. The internal
transaction-based interface is more powerful, as it allows the specifi-

cation of a causal relation of a new transaction with respect to other

transactions, which is not possible using the publish-subscribe in-

terface. Utilizing all attribute transactions in the Transaction Store,

the Conflict Resolution layer resolves conflicts between concurrent

or contradicting attribute changes. The Conflict Resolution layer

derives a consistent total ordering based on the causal ordering

of transactions, and, thus, is able to provide an interface to query

the resolved attributes. The attribute interface and the transaction

interface together enable provisioning of the publish-subscribe in-

terface with history access. Both interfaces are intercepted by the

Reference Monitor layer that is responsible for evaluation and en-

forcement of access control. The Reference Monitor depends on

the conflict-resolved attributes provided by Conflict Resolution as

sole policy information source to make an access control decision.

2.2 TDAG-based Ledgers without Finality and
their Guarantees

In this section, we classify the Transaction Store used by Matrix
as a Transaction-based Directed Acyclic Graph (TDAG) and expli-

cate the (weak) guarantees that it provides: partial (causal) order,

eventual consistency, and no finality.

topic.creator← “A”

A.level← 100

topic.permissions← {
topic.permissions: 100
subject.level: 100
chatmsg: 50

}

B.level← 50Subject A Subject B

chatmsg: “Hi!”

topic.name← “Smalltalk”

chatmsg: “Hello!”

chatmsg: “How are you?”

chatmsg: “I’m fine.”

chatmsg: “And you?” chatmsg: “Now what?”

Figure 2: Example of a Matrix Transaction-based Directed Acyclic
Graph storing all transactions for a topic. Both message and at-
tribute transactions are stored in the same data structure.

Partial (causal) order. New local transactions can be in a causal

relationship to the past transactions currently available to the local

replica of the data structure, but not in causal relation to concur-

rent or past transactions from remote replicas not yet known to

the local replica. This potential causal relationship is known as

the “happened before” relationship as defined
4
by Lamport [16],

which leads to a partial order on all transaction, the so-called causal
order. New transaction only need to reference existing transactions

without descendants due to transitivity: If transaction 𝑥 happened

before 𝑦 and 𝑦 happened before 𝑧, then 𝑥 happened before 𝑧.

In Matrix, the causal order is established by the homeservers:

When a user creates a new transaction and forwards it to their

homeserver, the homeserver will append it to all local transactions

that are not yet in a “happened before” relation with newer transac-

tions, which keeps the number of references minimal. Using the fact

that every partial order can be presented as a directed acyclic graph

(DAG), homeservers use a DAG to store all transactions and their

causal order. Such a DAG is called a TDAG (c.f. [15]). An example

of such a TDAG is given in Fig. 2.

Eventual consistency. Every homeserver with users subscribed

to a topic will try to synchronize its full TDAG with every other

subscribed server. Due to synchronization not being instantaneous,

different servers can append concurrent transactions to their TDAG

replica, which are later synchronized and result in parallel transac-

tions that cannot be compared causally. In graph terms, concurrent

4
Note that Lamport defines 𝑥 “happened before” 𝑦 as 𝑥 → 𝑦. In this paper, we

actually use the converse relation 𝑦 → 𝑥 , so that new transactions can reference old

transactions and the metadata of transactions can be kept immutable. It follows that

for 𝑦 → 𝑥 , we say 𝑥 is the parent transaction of 𝑦.

transactions are a fork in the DAG and create independent causal

chains. When synchronization is not possible for an extended pe-

riod of time, e.g., during a network partition, chains of transactions

independently grow and replicas will be in an inconsistent state

until synchronization is possible again. New transactions after the

synchronization will reference the most recent transaction from

both chains, whichwill lead to the independent chains beingmerged

again.When reading the data structure, it is up to the reader to inter-

pret the independent transactions of different chains. The TDAG as

described above, thus, provides eventual consistency, which means

that replicas can get inconsistent temporarily, but will eventually

reach a consistent state when the partition is resolved.

No finality. To be able to resynchronize after an arbitrary long

time of network partition, a design principle of Matrix is to have

no upper limit on the time required to eventually reach consis-

tency between replicas: Transactions always get accepted and are

never lost regardless of the duration of network partitions. This

means that replicas have to accept new transactions regardless of

their “happened before” relation to other transaction in the TDAG.

Consequently, no parts of the TDAG can ever be considered final.

The TDAG used by Matrix is constructed in an append-only

fashion, which especially means that the metadata of transactions

is immutable. For referencing, each transaction is assigned a unique

identifier by means of a cryptographic hash function based on its

immutable parts. This identifier is used for encoding the “happened

before” relation, and can be used to verify the integrity of a full

transaction given its hash. The fact that Matrix is based on an

append-only, fully replicated data structure for transactions, which

are linked by the “happened before” relationship using transaction

hashes to verify their integrity, suggests that Matrix can be con-

sidered a distributed ledger. However, in contrast to other popular

distributed ledger technologies,Matrix realizes a distributed ledger

without finality.

Overall, only the following weak guarantees are provided by the

Transaction Store of Matrix that is implemented as a TDAG:

• the ordering consistency error is lower-bounded to causal

order

• the staleness consistency error is lower-bounded to eventual

consistency

• no finality: no upper limit is enforced on the resynchro-

nization time for eventual consistency between independent

replicas.

In the following, we will analyze the characteristics of an access

control system built on these weak guarantees.

2.3 Course of Analysis and Requirements
We follow a two-step approach in our analysis. First, we start in

Section 3 by assuming that Transaction Store, Conflict Resolution

and Reference Monitor (c.f. Fig. 1) are provided by a central trusted

third party, but with the same guarantees as described in Subsec-

tion 2.2. This means that the Reference Monitor has to cope with a

Transaction Store that only provides a partial order on the stored

transactions and no finality. Second, in Section 4, we replace the

trusted third party with an architecturally [5] and politically de-

centralized system. The Reference Monitor, Conflict Resolution

and Transaction Store layers are distributed over multipleMatrix

servers cooperating to provide the layer, without a single party

being in control of all replicas.

In a distributed system, eventual consistency without finality

means that arbitrarily old transactions can come in at any point in

time. Thus, attackers can send artificially aged transactions. While

eventual consistency and non-finality of a partial order originate

from the distributed nature of a system, we “concentrate” them in

the first step: The Reference Monitor interface allows subjects to

append new transactions in an arbitrary “happened before” relation,

as long as the new transaction does not contradict other transac-

tions in the chosen causal relation. This way, we can concentrate

on dealing with partial order and non-finality without accounting

for the technicalities induced by decentralization of Transaction

Store, Conflict Resolution and Reference Monitor in the presence

of attackers.

In the first step, attackers are malicious subjects limited to the

interface provided by the Reference Monitor which try to abuse

their interaction permissions and the non-finality of the Trans-

action Store. Although its interface is simple and provides weak

guarantees, as detailed in Subsection 2.2, we facilitate reasoning by

modeling the Transaction Store using a trusted third party.

Using the trusted third party abstraction, we generalize the ac-

cess control system employed byMatrix to an access control model

for publish-subscribe systems with the given Transaction Store

and Conflict Resolution interface. Note that policy decision by

the Reference Monitor requires policy information obtained from

the Conflict Resolution layer. Conflict Resolution uses the partial

order on transactions provided by the Transaction Store and re-

solves conflicts by deriving a total order on concurrent transactions.

While deriving some total order from a given partial order is a well-

understood and solved task [14], the task here is to derive a secure
total order. To derive a secure total order, the conflict resolution

mechanism proposed byMatrix is inherently tied to properties of

the access control model, which is why both are described conjunc-

tively in Section 3.

To maintain security, the Reference Monitor layer has to fulfill

the following requirements:

• interrupt all accesses of subjects on Conflict Resolution and

Transaction Store

• allow an initially omnipotent topic creator subject to effec-

tively and granularly pass on or restrict regular and admin-

istrative permissions

• prevent any privilege escalation that is not directly or indi-

rectly originating from the topic creator subject

• resolve conflicts to the advantage of honest subjects

In the second step (Section 4), malicious subjects are in full

control of their replica, but not of the replica of honest subjects.

For the system to be considered secure, we require equivalence

between the decentralized system and the system using a central

trusted third party for all honest subjects, regardless of the presence

of an arbitrary number of malicious subjects whose replicas exhibit

byzantine faults.

3 DEALINGWITH PARTIAL ORDER AND
NON-FINALITY

In this section, we assume that a central trusted third party provides

the ledger, i.e. the Reference Monitor, Conflict Resolution and the

Transaction Store. The central trusted third party can easily provide

the required Transaction Store interface and guarantees, as repli-

cation and decentralization is put out of scope. We first describe

and analyze an access control model generalized from theMatrix
system in Subsection 3.1. This model is used for policies which

are evaluated and enforced by the Reference Monitor. The access

control model and Reference Monitor do not deal with partial order

and non-finality itself, but instead externalize it to the Conflict Res-

olution layer, which is used as authorization database and described

in Subsection 3.2. Resolving conflicts in itself is simple: A conflict

between two concurrent, partially ordered transactions is, in theory,

resolved by deriving any form of total order. The key point is to

derive a secure total order, which is neither trivial to define nor

to implement. We describe the Matrix approach to secure conflict

resolution, which is tied to the employed access control model.

3.1 Level- and Attribute-Based Access Control
Matrix primarily employs a reduced variant of Lattice-based Access

Control (LBAC), an access control model where security levels or

clearances are assigned to subjects and objects [19]. The security

levels are expressed as a partially ordered set. Policies define which

security level is required for an access, usually differentiating be-

tween read and write accesses to control the flow of information.

For example, subjects could be allowed write access if their security

level is equal or greater than the object’s, and read access if their

security level is equal or lower than the object’s. Another, more

commonly used approach is Role-based Access Control (RBAC) [21]:

Access permissions are assigned to roles, and roles are assigned to

users. In the Hierarchical Role-based Access Control (HRBAC) vari-

ant, a role hierarchy is defined as a partial order, where higher roles

inherit all the permissions of lower roles. With a role hierarchy, all

LBAC variants can be expressed as RBAC [20].

3.1.1 Entities and Operations. In the following, we will introduce

a conceptual model for access control on publish/subscribe interac-

tions of subjects and topics, which is depicted in Fig. 3. The relation

between subjects and topics, i.e. whether a subject is subscribed to

a topic, is explicitly modeled through a Subscription. We assume

that subjects have direct access to the Reference Monitor interface

shown in Fig. 1 and therefore can define the “happened before”

relationship at their discretion, i.e. their parent transactions in the

underlying DAG (c.f. Fig. 2). This means that the model performs

access control on two operations: appending new transactions to

the data store in a subject-defined causal relationship and querying

previously published transactions. Subjects might be dishonest and

can try to circumvent access control or elevate their privileges.

All transactions have a type, which differentiates between trans-

actions with different kinds of application-specific semantics. All

types of transactions fall in one of two
5
categories, but which type

belongs to which category is up to the application. All transactions

5
For clarity, we omit thatMatrix includes a third type for redacting other transactions,
which makes no fundamental difference to the access control model.

Le
ve
lH

ie
ra
rc
hy

1 n n 1

n

1

Level
Assignment

1 n

Permision
Assignment

Subject Subscription Topic

Levels
Transaction

Types

Figure 3: Conceptual Model of Le(A)BAC

Subscription
level: Level
. . .

Topic
creator: Subscription
permissions: Type → Level
. . .

Figure 4: Attributes in Level-based Access Control (LeBAC)

have a content field as main payload. The basic form of transac-

tions are message transactions which represent one-off messages

published by a subscribed sender to a specific topic. The second

transaction category are attribute transactions which set or update

attributes of Subscriptions and Topics. The attribute name is the

transaction’s type, the attribute value is the transaction’s content
and can be arbitrary, e.g. an integer, string, reference to another

transaction, list or map. Usage of the “Query Attributes” interface

of the Reference Monitor is treated equal to a query to the corre-

sponding latest attribute transaction of the specified type.

3.1.2 Level-based Access Control. In its basic form, we describe

LeBAC, a variant of Biba’s LBAC without information flow control.

As shown in Fig. 3, each subscription is assigned to a level. Levels is
a totally ordered set representing the permissions a subscriber has,

e.g. a set of clearance levels or a range of integers. Requiring a total

order on levels is a key difference to LBAC, and the total comparison

between subjects by level is used in the Matrix Conflict Resolution
layer implementation to deal with partial order and non-finality (see

Subsection 3.1). TransactionTypes is the set of all existing transac-
tion types of all categories, representing the permission to publish

a transaction of the specific type. Each level inherits all permis-

sion assignments from lower levels, creating a linear hierarchy of

permissions. As shown in Fig. 4, subscriptions are assigned to a

level through their level attribute, and permissions are mapped to

levels through the topic’s permissions attribute. Subjects create
new Topics by sending an attribute transaction of type creator
with themselves as attribute value, targeting a non-existent Topic.
The transaction is the only transaction which is valid with an empty

happened_before relation, and grants the creator universal permis-

sions until they send their first permissions attribute transaction.

Other subjects are subscribed to a topic by permissioned subjects

sending an attribute transaction of type level targeting the non-
existent subscription of unsubscribed subjects. This process results

in discretionary access control from the point of view of the topic

creator, and mandatory access control for other subscribers, as they

can not subscribe to the topic or publish any kind of transaction to

the topic at their discretion. However, the creator can transfer per-

missions, including the permission to change levels and permission

assignments. While this effectively creates new subscribers with

discretionary access rights, every transfer of permissions can be

traced back to the initial creator having had all permissions. Due to

administrative permissions being handled with the same primitives

as regular permissions, LeBAC is its own administrative model.

For a query operation, the policy evaluation by the Reference

Monitor is simple: First, it checks whether the queried topic and

transaction exist. If they exist, it checks whether the querying

subject has a valid Subscription to the topic at the time of the queried

transaction or is the topic creator. To check this, the Reference

Monitor uses the Conflict Resolution layer, asking for the value of

the level attribute of the Subscription and the creator attribute
of the topic. The point in time is given by passing the transaction

to query, for which the Conflict Resolution layer computes the

attribute state, i.e. the Subscription’s level and the topic’s creator,
and returns it to the Reference Monitor. If the subject has been

assigned a level, the subject is considered to be subscribed to the

topic and the access is seen as valid.

For append operations, the policy to evaluate is more elaborate:

Like for the query operation, it begins with checking whether the

queried topic exists, and whether the subject has subscribed to the

given topic. All transactions require a “happened before” relation

to at least one existing previous transaction in an existing topic,

transactions of type creator are required to be sent to non-existing
topics and have an empty “happened before” relation. Using the

type of the transaction to append, the permissions of the subject

are checked. For this, the Conflict Resolution layer is queried for the

permission attribute of the topic. If there is none, i.e. there has not
yet been a permission assignment, the Reference Monitor checks

the creator attribute of the topic to see whether the subject is the

topic creator and therefore is allowed all permissions until first

permission assignment. Permission assignments are a map from

transaction types to required levels. The reference monitor checks

whether the required level is less than or equal to the subject’s level.

To get the topic’s permission assignment and the subject’s level, the

Conflict Resolution layer is queried for the required attributes, using

the list of all “happened before” relations from the transaction, i.e.

the causally independent chains to append the transaction to. The

response contains the attribute values after combining the state of

all causally independent chains. For this, conflicts between chains

are resolved to end up with a single attribute value considered

to be the current state for the new transaction to append. If the

transaction to append is an attribute transaction which targets

another subject than the publisher, the Reference Monitor enforces

that the publisher has a greater level than the target. Lastly, there

is a set of policies that control and restrict the flow of permissions,

i.e. attribute transactions relevant for access control. First, a subject

that is allowed to set the level attribute cannot assign subjects

to a greater level than its own level. This means that a subject

cannot elevate its own rights, and cannot grant other subjects more

rights than it possesses itself. Second, the permission assignment

for a given transaction type cannot be elevated to a higher level

than the subject’s own level. This means that a subject cannot

remove permissions from other subjects on the same level. However,

permissions can be made unreachable if a single subject which has

the greatest level sets the required level for a given type to its

current level, and then demotes itself to a lower level.

LeBAC’s policy decision mainly applies permissions to publish-

ing, not to receiving transactions, i.e. it only checks for the sub-

scription existence. The idea is that in publish-subscribe systems,

different receiving permissions are modeled through the allowance

to different publish-subscribe topics, but not restricted inside the

same topic.

3.1.3 Comparison of LeBAC to other Models. The main difference

between LeBAC and LBAC is that LeBAC uses a total order instead

of a partial order on levels and has no concept of information flow

control. However, the LeBAC system policies include rules which

can be considered permission flow control, which LeBAC can support

due to being its own administrativemodel. Missing information flow

control, however, means that confidentiality cannot be provided if

any subject that was made part of the topic is malicious and decides

to copy the information and make it available by external means.

Comparison of LeBAC to other access control models yields an

impression on its capabilities and limits. Sandhu already showed

that RBAC can be used to realise a LBAC model and thus also

LeBAC. Yet, the single hierarchy of LeBAC prevents the realization

of permission assignments that are not in a total order, i.e. the

permission of two subjects are either identical or a strict subset

/ superset of one another, as subjects higher in the permission

hierarchy always have all permissions of any subject lower in the

hierarchy. This means that LeBAC is less expressive than LBAC and

RBAC. However, the requirement of totality of the “more powerful

than” relation is a key point for theMatrix idea of implementing

Conflict Resolution, which we will cover in Subsection 3.2, and

could not be implemented easily using the partial order permission

hierarchies employed by LBAC and RBAC.

3.1.4 Level- and Attribute-based Access Control. To overcome the

limited flexibility of LeBAC, the LeBAC policy decision can be

augmented with principles from Attribute-based Access Control

(ABAC) [12]. Policies are defined by the implementation, using the

policy decision of LeBAC, level and permissions attributes, and

other attributes of topics and subscriptions.

Level- and Attribute-based Access Control (LeABAC) allows

extending the set of attributes used for policy decision as well as to

restrict attribute values and value transitions: For example, Matrix
extends topic subscriptions to explicitly model the subscription

state as a status enumeration restricted to values “subscribed”,

“unsubscribed”, “invited” and “banned”. This subscription state can

be used for policies, e.g. only allow subjects in the “subscribed”

state to receive transactions instead of using the existence of a level

assignment like in LeBAC. In addition, the transition between states

can be restricted, e.g. to disallow the subject of a subscription in

the “banned” state from entering the “subscribed” state on their

discretion, even if the attribute is on their own subscription.

Also,Matrix extends topics with an attribute for a default level

assignment to subjects and categories of transactions. This e.g.

allows specifying that publishing attribute transactions requires a

level greater than the default subject level, except if the attribute is

on a subject’s own subscription. In addition, there are attributes to

specify whether a topic can be subscribed to by anyone or needs an

invitation, whether newly subscribed users can access topic history

from before their subscription existed, and many more.
6

However, due to the Conflict Resolution layer being dependent

on the total order on subjects provided by LeBAC’s level assignment,

the additional attributes from LeABAC are for increased policy

expressiveness and do not fundamentally change the dealing with

partial order and non-finality.

3.2 Conflict Resolution
The core issue of access control on partially ordered transactions

is conflict resolution between concurrent, conflicting transactions.

Some form of conflict resolution has to be executed when a new

transaction has more than one other transaction in its “happened

before” relation, as it then merges two causally independent chains

which might contain conflicting transactions. The general idea of

conflict resolution is to use a partial order on transactions, and

extend that to a total order. The key idea is to use the total order on

levels from the access control system as specified in Subsection 3.1

to do this extension. The Conflict Resolution layer is comparable to

concurrency control algorithms in database systems [1], for which

approaches based on the significance of subjects exist as well [22].

However, a key difference is that, in database systems, concurrency

control is employed to schedule the application of transactions on

the database, i.e. at write time, while Conflict Resolution is used

to get a resolved state from transactions already committed to the

database, i.e. at read time.

As message transactions do not modify shared state, concurrent

messages can not conflict. However, concurrent attribute transac-

tions can, and conflicts caused by administrative attribute transac-

tions, which modify attributes relevant to the access control deci-

sion, are especially sensitive. The challenge is to design a conflict

resolution algorithm that combines several properties:

• deterministic: every execution on equal transaction sets

should give identical output

• secure: subjects should not be able to manipulate resolution

outcome to gain new or regain past permissions

• expectable: subjects expect that appending a new transac-

tions leads to a resolved state close to the recent state, even

if the transaction references old transactions

• efficient: every new transaction can trigger the execution

of the conflict resolution mechanism, and combine several

causally independent transaction chains

In Subsection 3.1, we used the Conflict Resolution layer to get

attributes of topics and subscriptions after the combined applica-

tion of all referenced “happened before” transactions by a new

transaction. In general, it is desirable for transactions to include

more than one “happened before” transaction, in order to reduce

the width of the DAG for efficiency reasons. To achieve determin-

ism, the function has to be a pure function that only depends on

the currently known transactions and their causal relation to each

other. For security, a major point is that malicious subjects cannot

evade the withdrawal of rights by other subjects with a higher ac-

cess level. For example, if an administrator publishes a transaction

6
The full system policy definition of Matrix, which Matrix calls its “authorization
rules”, can be found at https://matrix.org/docs/spec/rooms/v1#id3.

that reduces the level of a subject, this subject could fork the DAG

before the reduction by publishing an arbitrary concurrent trans-

action that keeps their level intact, and then merge both causally

independent chains by a third transaction referencing both. State

resolution has to ensure that the withdrawal always ends up in the

resolved attribute set. In a more elaborate version of this attack, the

attacker can try to use their past access permissions by publishing

an attribute transaction for which their level is not sufficient any-

more in parallel to the withdrawal transaction, which then could

end up in the resolved attributes when both chains are merged. A

state resolution algorithm therefore has to treat causally indepen-

dent chains with an attribute and chains without an attribute as

possibly conflicting, and it has to ensure that the withdrawal is ex-

ecuted before the concurrent transaction. The general idea of how

to achieve this is to execute a deterministic topological sorting on

the partial order given by the causal relation to yield a linear order

in which parallel transactions are applied to the state from before

forking. This linear order is what then has to guarantee the above

properties. A description of the concurrency in a distributed system

with a causal “happened before” relation on events and generating

a linear order from it dates back to Lamport’s “Time, Clocks, and

the Ordering of Events in a Distributed System” [16]. Policy-related

events always have to be preferred in order to avoid withdrawal

evasion, but without violating the causal relation. An efficient state

resolution algorithm minimizes the number of transactions that

have to be accessed, and optimally works incrementally, i.e. the

result for new transactions can be computed from the result for old

transactions without having to take the full DAG into account.

3.2.1 The Matrix State Resolution Algorithm. The idea of the Ma-
trix state resolution algorithm [6, 13] is to split transactions into

non-conflicting and possibly conflicting sets, and execute the pos-

sibly conflicting transactions in two passes: In a first pass, sort

and apply transactions that could lead to a permission reduction,

and break ties by preferring transactions of subjects with a higher

level. In a second pass, sort and apply the remaining transactions.

This is based on the assumption that the subject with higher level

is not the attacker, as those subjects actually have the ability to

insert concurrent transactions to past transactions that shift state

resolution in their favor. We now explain the core ideas of how the

Matrix state resolution algorithm works
7
, simplified to focus on the

access control fundamentals. The algorithm combines the possibly

conflicting attribute sets of 𝑛 causally independent chains into a

single attribute set.

(1) For all 𝑛 causally independent chains: Reduce the chain to a

set of the most recent attribute transactions of each type.
(2) If a given type of attribute transaction has equal content in all

𝑛 sets, that attribute is considered non-conflicting. The trans-

actions are therefore removed and the attribute is added to

the resolved attribute state result set. All remaining attribute

transactions are considered to be potentially conflicting.

(3) From the remaining attribute transactions, separate all trans-

actions that can potentially withdraw access rights, as well

as all policy transactions relevant for the separated transac-

tion’s authorization which “happened before” them. Such

7
In accordance with https://matrix.org/docs/spec/rooms/v2

https://matrix.org/docs/spec/rooms/v1#id3
https://matrix.org/docs/spec/rooms/v2

authorization transactions are the level and permissions
transaction from LeBAC, but also include transactions rel-

evant for LeABAC extended policy decision making. The

creator transaction is relevant for authorization as well,

but as there can neither be a second creator transaction

nor a concurrent transaction, it cannot end up in the con-

flicting transactions.

(4) Sort the extracted transactions topologically using the partial

order given by their transitive happened before relation in

theDAG. To resolve ties in a deterministic and securemanner,

for two concurrent transactions, the smaller one is:

(a) The one whose sender has a higher level at the point of
those transactions

(b) The one with the earlier sender timestamp.

(c) The one with the lower hash value.

(5) Apply the linearized transactions to the attribute state result

set from the non-conflicting transactions. For each transac-

tion, check before application whether the access control

system would accept the transaction based on the current

state, as specified in Subsection 3.1. If this is not the case, the

transaction is ignored. This is why the relevant authorization

transactions are required: The authorizing transactions for

the withdrawal transaction has to be applied to the attribute

state before the withdrawal transaction.

(6) Take the remaining conflicting transactions and sort them

topologically by the partial order given by their transitive

happened before relation in the DAG. To resolve ties in a

deterministic and secure manner, for two concurrent trans-

actions, the smaller one is considered to be:

(a) The one with the earlier sender timestamp.

(b) The one with the lower hash value.

The idea is that because all permission withdrawals are

already applied, the tie-breaking step of checking for the

higher level can safely be omitted and instead applied in

an order which is closer to the actual temporal order.

(7) Apply the linearized transactions to the resolved attribute

state result set from the non-conflicting and withdrawal

transactions. For each transaction, check before application

whether the access control system would accept the transac-

tion based on the current state, as specified in Subsection 3.1.

If this is not the case, the transaction is ignored.

The algorithm extends transactions by a sender_timestamp
attribute which is set to the transaction publication time by honest

subjects. However, it can be set to arbitrary values by faulty subjects,

especially they can set their sender_timestamp to an arbitrarily

high value to always appear as the most recent transaction after

the resolution. In contrast to arbitrary, i.e. hash-based orderings,

timestamps have a meaning for users and can be easily recognized

as forged or improbable. Honest subjects with a higher power level

can then still enforce permission removal on the faulty subject, as

their transactions administrative actions are favored in step (4).

As soon as a honest subject then sends a new transaction that

references the faulty one as “happened before”, the advantage is

gone as causal ordering is used before sender_timestamp.

3.2.2 Soft Failure. A general problem for all conflict resolution

algorithms is that, due to the non-finality of the “happened before”

DAG, attackers can always append transactions to arbitrary exist-

ing transactions, including “old” ones, and exercise the permissions

they had at that point in time. As transactions that purposefully

reference old transactions cannot be distinguished from actually

old transactions that just have not been successfully synchronized,

those transactions have to be treated as valid, due to the lack of

some form of consensus on a point in the DAG after which all

transactions are seen as final. For attribute transactions, the state

resolution algorithm as described above will handle this, because,

as soon as a new transaction unifies both chains, state resolution

will prioritize the possible withdrawal of rights and authorize that

parallel transaction afterwards. However, message transactions

are always accepted and end up in the topic’s message history if

they were valid at that point in time. To prevent this attacker be-

havior, Matrix uses the concept of “soft failure” as a third state

between accepted and rejected transactions: If a newly received

transaction does pass the authorization checks as described in Sub-

section 3.1, but would not pass the authorization checks based on

the hypothetical current attribute state of the topic, i.e. assuming

that the transaction would attach to all current leaf transactions,
it is assumed to be a malicious event and soft-failed. A soft-failed

transaction will be appended at its place, but will neither be re-

layed to clients nor be used in the “happened before” relation of

new transactions. Nevertheless, the transaction takes part in state

resolution as normal. The idea is that accepting but not delivering

the malicious messages disincentivizes sending such transactions.

3.2.3 Optimization: Proof of Permission. The actualMatrix state
resolution algorithm includes an important optimization [13]: Each

and every transaction has a reference to all policy and permission

transactions that are required to authorize the transaction, i.e. a

“proof of permission”. State resolution is executed using the par-

tial ordering given by the “Authorization DAG” that emerges from

recursively taking in all relevant policy and permission transac-

tions, instead of the DAG that emerges from the causal relation

of all transactions. This reduces the need to keep every transac-

tion as long as a topic exists to those transactions contained only

in the “Authorization DAG” as well as the most recent attribute

transactions. This also enables a transaction retention time not

only dictated by disk space or other resources, but actually as a

subject-defined topic policy. However, this optimization has the

potential for new security issues that are not apparent in the base

idea. For example, there are circumstances where non-conflicting

transactions can be overwritten by mistake due to not using the

full “happened before” relation. The optimization therefore needs

an additional last step where all non-conflicting transactions are

applied to the result again.

4 DECENTRALIZATION AND ASSESSMENT
The explained access control model and conflict resolution is inde-

pendent of whether it is implemented as a centralized, distributed,

or decentralized system. Both, a distributed and a decentralized

implementation, have to distribute the Reference Monitor and the

Transaction Store layer to multiple nodes. We now focus on a de-

centralized implementation where nodes (servers) are operated by

(politically) independent entities.

Publish/Subscribe + History

User

Append / Query
Transactions

Query
Attributes

Reference Monitor

Append / Query
Transactions

Query
Attributes

Query
Transactions

Transaction Store

Conflict
Resolution

Homeserver

Publish/Subscribe + History

Remote User

Query
Attributes

Append / Query
Transactions

Reference Monitor

Query
Transactions

Query
Attributes

Append / Query
Transactions

Transaction Store

Conflict
Resolution

Remote Server

Replication

Figure 5: Layer model for a decentralized TDAG and Reference
Monitor. Rounded, blue-filled boxes are layers, rectangles are inter-
faces provided by the lower layer and used by the upper layer. In
contrast to Fig. 1, this shows entities and not only functionality.

4.1 Decentralized Access Control with
Eventual Consistency

Figure 5 shows the decentralized implementation of Matrix. The
Transaction Store can be implemented by a Transaction-based Di-

rected Acyclic Graph (TDAG) in a decentralized manner where

servers maintain a local replica of the TDAG for their clients. Each

topic has its own, independent TDAG representing its full history.

This means that only servers with users subscribed to a topic take

part in a given TDAG, and therefore the concepts inherently pro-

vides sharding. We say a server is subscribed to a topic when at

least one user of the server subscribed to the topic. Each server sub-

scribed to a topic maintains a local copy of all transactions related

to the topic, i.e. a replica of the topic’s TDAG.

A new transaction to be published and given to a server is

checked for validity and authorization by the local Reference Mon-

itor and then appended to the server’s local replica. The “happened

before” transactions of this new transaction are determined by the

server, always using transactions without descendants known to

the server. In terms of the causal order given by the DAG as shown

in Fig. 2, transactions without descendants are the set of causally lat-

est transactions.Matrix limits the number of referenced “happened

before” transactions to reduce the effort required for conflict reso-

lution. Concretely, from the set of all transactions without known

descendants, servers choose the five known transactions with the

longest distance to the unique, causally earliest transaction in the

DAG, i.e. the creator transaction, and five random transactions

with a shorter distance to the earliest transaction. This strategy

is intended to ensure that all causally independent chains even-

tually converge during a phase without concurrent transactions.

Afterwards, the transaction is broadcasted to all other subscribed

servers. As shown in Fig. 5, subscribed servers will enforce that new

transactions from other servers pass the local Reference Monitor

based on the current policy information in their TDAG replica. If

the authorization checks are passed, the servers append the new

transaction to their local replica. If a transaction is ‘dropped’ on a

link between two servers, e.g. due to network partitions, the DAGs

will get out of sync, i.e. get in an inconsistent state. All servers will

still always accept local transactions if they pass their authorization

checks done by their Reference Monitor. In the underlying DAG,

as shown in Fig. 2, appending concurrent transactions leads to a

fork in the DAG and two causally independent chains. As soon as

the partition is recovered and the servers receive a new transaction

whose “happened before” transactions are missing in their replica,

the server will query other servers for the missing transactions

round-robin. The receiving server can verify that the transaction

is correct by computing its hash. This process is called backfilling
in Matrix. Backfilling is executed recursively, walking down the

“happened before” relation until the server encounters a known

transaction. Through backfilling and the append-only nature of the

TDAG, eventual consistency is achieved. After eventual consistency

is achieved, new transactions will reference both causal chains in

their “happened before” relation, which will merge the chains again,

while potential conflicts in attributes between the two chains are

handled by Conflict Resolution.

As shown in Fig. 5, each server independently operates a Conflict

Resolution layer on its TDAG replica to compute current attributes

values, as well as a ReferenceMonitor layer to enforce authorization

policies. As stated in Subsection 3.2, the conflict resolution algo-

rithm is required to be deterministic and to only have the TDAG as

input. To achieve equivalence of the distributed Reference Monitor

and Conflict Resolution with the trusted third party model from

Section 3, the implementations executed by the replicas have to be

equivalent with each other. We say that two implementations are

equivalent if they derive identical attributes and access decisions

based on equivalent sets of transactions. This means that employed

algorithms can e.g. differ in complexity, as long as their output

remains the same. While each server executes Conflict Resolution

and Reference Monitor independently, with equivalent, determinis-

tic algorithms and an eventually consistent Transaction Store, all

honest, non-faulty servers will eventually reach agreement with

each other on whether a given transaction should be accepted. Thus,

the Reference Monitor that was provided by the trusted third party

in the conceptual model is distributed and placed on all subscribed

servers, which interrupt incoming as well as outgoing transactions

as seen in Fig. 5, make an independent access control decision based

on its current state, and enforce the decision regardless of the deci-

sions of other servers. Servers do not vote or announce some form

of consensus, there is no quorum, and majority does not win.

In addition, decentralized implementations can introduce specific

attributes that are relevant for access control, e.g.Matrix allows for
a “server access control list” attribute which bans certain servers

and subsequently all of their users from participation in a topic.

4.2 Assessment of TDAG-based Decentralized
Access Control

Let us now come back to the guiding question given in the Introduc-

tion and analyze whether the requirements stated in Subsection 2.3

are fulfilled. In summary, the access control of Matrix or of a similar

TDAG-based system are based on the following assumptions:

(1) Out of two subjects, the one with the higher level is the

‘honest’ one.

(2) Authorization policies and conflict resolution are determin-

istic and equivalently implemented by all ‘honest’ subjects.

(3) Whatever an attacker is doing: authorization policies and

conflict resolution

• do not allow unauthorized transactions

• do not allow unauthorized privilege escalation

• always prefer the ‘honest’ subject.

While the first assumption is simply an axiomatic one ("by de-

sign"), the second and third assumptions are not easily guaranteed.

We proceed as follows: first, the attacker model is clarified and some

existing countermeasures against some attacks are listed. Based

on the first step, we argue in an ‘evidence-based’ way that guar-

anteeing assumptions (2) and (3) requires more than the existing

countermeasures by showing a class of attacks on each assumption.

In particular, we derive the need for a formal verification of the

conflict resolution mechanism and authorization policies.

4.2.1 Attacker model and existing countermeasures. It is sufficient

to look at the possibilities of an attacker subscribed to a single

topic, as each topic is strictly independent from any other topic

and the subscribed servers form an independent federation without

any non-subscribed servers. The assessment focuses on attackers

that participate in the system, assuming that means like mutual

authentication and encryption prevent man in the middle attacks.

The TDAG approach works in the following attacker models:

honest users are on honest servers, byzantine users are on byzantine

servers they fully control, and byzantine users are on honest servers

they don’t control. As a homeserver acts as representative for its

users and is their only source of information on the current state

of topics, a user’s homeserver is in the position of a Dolev-Yao

attacker and is also in full control of the reference monitor for their

users. This trust model is comparable to e-mail with the difference

that the Matrix protocol mandates transport layer authentication,

integrity checks, and encryption between servers.

To cope with message forging or tampering by byzantine servers,

each server has a public/private key pair that is used to sign trans-

actions published by its users. Subscribed servers can validate the

signature and verify whether the transaction was sent by the origin

server and is unmodified. To provide some end-to-end guaran-

tees even with malicious servers, authenticity, integrity and non-

repudiation could be provided by public/private key pairs for each

user, signing both message and attribute transactions, but only en-

crypting transactions which are not needed for server-side policy

enforcement. Keys can be verified by a Public Key Infrastructure

or out-of-band / in-person validation. Alternatively, depending on

the concrete goals, ratcheting-based end-to-end encryption proto-

cols can provide repudiation.Matrix currently only supports the

repudiable end-to-end encryption through their own cryptographic

ratchet protocols, which are based on the Signal protocol, and in-

person validation. If both repudiable and non-repudiable end-to-end

encryption were supported by Matrix, a topic attribute could spec-

ify the concrete per-topic end-to-end security mechanism. Also,

Matrix currently does not encrypt Attribute Transactions en-to-

end, which would be possible for all attributes that are not relevant

for policy decision. While providing end-to-end guarantees are one

way of reducing the impact of a malicious server that has honest

users, i.e. reducing the trust required in a user’s server, the refer-

ence monitor is still controlled by a malicious party, and metadata

is not protected. TheMatrix project tries to solve those issues by
making it possible for users to be multihomed, i.e. a user’s account

can be associated with multiple servers, which easily allows them

to move away from a server in which they lost trust. In addition,

the goal is making server implementations and transaction distribu-

tion efficient enough so that they can be run directly on the user’s

devices [9], makingMatrix a hybrid of a federated and peer-to-peer
protocol. Multihomed users will pose an interesting new challenge

for the access control system, as a server then has to prove that it

currently is allowed to represent a given user, which requires some

kind of access rights delegation from users to servers. Peer-to-peer

servers also need to remove the dependency on the Domain Name

System for inter-server authentication. This also improves security:

An attacker which gains control over a server’s domain name can-

not impersonate the server anymore and e.g. access and backfill

transactions in all topics that impersonated server has access to.

In byzantine fault tolerant consensus systems or distributed

ledger technologies, byzantine fault resilience is usually expressed

as the share of the full network controlled by attackers that con-

sensus finding can tolerate. For the decentralized access control

system described in Subsection 4.1, this logic is not applicable, since,

through the causal order on transactions and the decentralized ac-

cess control decision and enforcement, the system does not have to

solve a consensus problem. Regardless of the number of attackers,

each and every user has their own reference monitor in form of

their homeserver which enforces access control on incoming and

outgoing transactions. As every reference monitor makes its access

decision independently, i.e. does not care about the access decision

of the majority of subscribed servers, attackers cannot influence the

decision through their numbers of participating servers. As long as

an attacker cannot interrupt the connection between two honest

servers, those will reach a consistent DAG state, enforce the same

access control, and provide availability for their users, even if all

other servers subscribed to a topic are malicious.

4.2.2 Attack surface and found issues. The (evident) first class of
attacks is enabled by incorrectly specified policy rules that give

someone ‘unintended’ access rights and, thus, allow for privilege

escalation or the capability of deleting a user’s access rights. While

this class of attacks is, of course, not specific toMatrix or TDAG-
based approaches, we encountered this type of policy misspecifica-

tion in the Matrix specification (see below). This class of attacks

targets assumption (3). The (less evident) second class of attacks is

enabled by deviations in how servers deal with conflict resolution,

which targets assumption (2). Both classes of attacks result in the

universal or partial acceptance of a malicious transaction. Thereby,

an attacker could, for example, unsolicitedly subscribe to a topic

breaking confidentiality, elevate access rights to a higher level, or

even break the eventual consistency by having different servers

make different policy decisions. While the first class is present in

the trusted third party conceptual model as well, the second class

only exists in the decentralized implementation due to differing

behavior in the decentralized Reference Monitor implementation.

When analyzing the Matrix specification and implementations,

we found the following vulnerabilities which mainly belong to the

second class of issues, i.e. subtle differences between specification

and implementations due to inconsistencies or omissions on ei-

ther side. Concretely, this class describes the issue of two groups

of servers making different decisions on which transactions to in-

clude in the DAG. For this, two server implementations that deviate

in behavior as well as an attacker are needed to be subscribed

on the same topic. Depending on the inconsistency, the attacker

needs to control not only their client but also their server, and have

sufficient access rights to cause the inconsistent behavior. If one

implementation accepts the attacker’s transaction and the other im-

plementation rejects it, the attacker forced an inconsistency of the

DAG between the implementations that cannot be resolved, break-

ing eventual consistency. If the attacker transaction is relevant for

access control, this will lead to a deviation in the policy information

and therefore to the Reference Monitors making different access

control decisions. But even if not for the policy information, broken

eventual consistency leads to two independent views of a topic,

which cannot be combined again and can render the topic unusable

for its purpose and requires to switch to a new one without the

malicious transaction. This situation is reminiscent of a “hard fork”

in blockchain distributed ledger technologies.

The found issues were as follows:

a) The wire format of integers in the specification restricts their

value to the range [−253 + 1, 253 − 1]. This restriction was not

enforced by synapse
8
, the reference Matrix server, and effectively

limited to the range of 64 bit signed integers. This allows for a class

two attack.While this attack can be executed on any integer present

in the wire format like the sender timestamp, it can especially be

used by the attacker to send a level attribute transaction with a

value beyond the range allowed in the specification but still accepted

by synapse, leading to an inconsistent policy database between

synapse and a specification-compliant homeserver. This is planned

to be corrected in room specification v7.

b) For the permission to publish a message transaction with a

highlighting notification, the authorization policies did not follow

the general rule of denying to set the required level higher than the

policy sender’s current level. This is a class one attack that allows

to remove the permission to send notifications from other users

with the same level. Synapse did implement the check anyway and

rejected such transactions, but a specification-compliant implemen-

tation would have had to accept it, leading to a possible class two

attack. This will be corrected in room specification
9
v6.

c) The specification does not limit the number of transaction

linked as “happened before” and does not specify a transaction

selection algorithm other than taking all known leaf transactions,

but Synapse does reject transactions with more than 20 parent

transactions. This can be abused by an attacker by sending enough

concurrent transactions to always make sure there are more than 20

leaf transactions in the DAG. The specification-compliant servers

will list all of them as “happened before”, which will lead synapse

to reject the transaction. In a variation of mechanism from the

other class two attacks, this does not send an in-itself malicious

transaction, but seemingly honest transactions lead to a denial of

service on the channel between the specification-compliant server

8
https://github.com/matrix-org/synapse/

9
https://github.com/matrix-org/matrix-doc/pull/2240

implementations and synapse. As an effect of the denial of service on

the channel, this breaks eventual consistency and therefore is a class

two attack. This is planned to be corrected in room specification

v7, and will be retroactively enforced in older versions.

d) Server access control lists allow publishing subjects to ban a

server including all of its users from a topic. However, no equivalent

of the rule of not being able to withdraw access rights from subjects

with a higher level was demanded, which allows the attacker to

ban users with a higher level. This an error in the authorization

policy and therefore a class one attack. While synapse accurately

implemented this inconsistency in the specification, alternative

implementations could deviate from the specification replace it with

a secure version, e.g. enforcing a check that none of the users on

the banned server have a higher level than the banning user, which

would then lead to an additional class two attack. A mitigation in

synapse was introduced
10

which restricts the modification of server

access control lists to administrators by default.

All issues were responsibly disclosed to theMatrix core team.

4.2.3 Gained insights. The security of Matrix faces two funda-

mental threats: Incorrect specification, i.e. authorization errors also

present in the trusted third party model, and non-equivalence, i.e.

divergence of decentralized implementations that leads to diver-

gence from the trusted third party model. All security issues from

Subsection 4.2 were implications from those threats. One impor-

tant way to mitigate both threats and, thereby, to prevent all found

issues, is the formalization of the authorization policies and conflict

resolution algorithm. Using the formalization to prove security and

correctness properties helps to prevent the first threat. We identi-

fied the following security properties as crucial to be satisfied by

any set of authorization policies and conflict resolution mechanism

to be secure:

• The algorithms have to be deterministic and only depend

on data present in the DAG, to create a decentralized refer-

ence monitor that makes the same policy decision at each

consistent replica.

• Users are unable to gain permissions out of nowhere, but

have to receive those permissions from someone who has

the permission to provide others with them.

• If two transactions are conflicting, the one with the higher

level has to be preferred
11
.

• A permission withdrawal always has to be preferred to a

concurrent permission usage with lower level.

While the set currently employed by Matrix is engineered to fulfill

those properties in most cases, any action for which they are not

satisfied is a potential security vulnerability.

To protect against the second threat, the formalization can be

used to generate code in any language the implementations require,

providing them with equivalent implementations of authorization

policy checks and conflict resolution. In addition, in face of new and

improved algorithms, the formalization can be used to prove equiv-

alence and therefore compatibility with the current ones without

relying on empirical evidence.

10
https://github.com/matrix-org/synapse/pull/6834

11
In case of same level, a deterministic tie break is required.

https://github.com/matrix-org/synapse/
https://github.com/matrix-org/synapse/pull/6834

The security assessment shows that a valid decentralized access

control system can potentially be built on top of the weak guar-

antees of causal order, eventual consistency and no finality, but

requires that the distributed reference monitor instances make the

same policy decisions when presented with the same data. Here,

some form of logical centrality comes into play. The use of Matrix
and its access control approach as an open, decentralized system in

"mission-critical" environments should, thus, require formal verifi-

cation of authorization policies as well as of conflict resolution.

5 CONCLUSION & FUTUREWORK
We positioned and generalized the concepts used by the Matrix
federated publish-subscribe middleware with respect to both access

control models and distributed ledger technologies. We have shown

that a causal-order TDAG-based distributed ledger without finality

can indeed be sufficient for the decentralized implementation of a

conceptual model for access control systems based on Lattice- and

Attribute-based Access Control. We described and categorized the

model, and explicitly stated its assumptions and required interface.

To the best of our knowledge,Matrix is the only system that imple-

ments access control based on an eventually consistent partial order

without finality and without a consensus algorithm. While this re-

sults in a valid access control system, the system behaves differently

than traditional, consensus-based access control systems:Matrix
allows for “pluralism of opinions” on the current state of the system

and provides access control mechanisms that cope with that fact

instead of following the majority or an assigned leader. Therefore, a

good understanding of the resulting consequences is recommended

with regard to deployments in sensitive environments.

Our security analysis found no inherent flaws in the decentral-

ized implementation of the reference monitor and policy informa-

tion data structure, but showed possible points of attack on concrete

implementations. The found issues were disclosed responsibly. In

our security assessment, we stressed the importance of specifying

the conflict resolution algorithm as the core security mechanism

in a formal calculus. First, this allows code generation from the

calculus as a single source of truth, thus avoiding implementation

differences. Second, this allows a formal proof of the security of the

authorization policies and conflict resolution as crucial parts of the

decentralized access control system.

ACKNOWLEDGMENTS
We thank the Matrix developers for their ingenious system de-

sign and their open and cooperative spirit towards the research

community.

REFERENCES
[1] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Good-

man. 1987. Concurrency Control and Recovery in Database
Systems. Addison-Wesley. isbn: 0-201-10715-5.

[2] Matt Blaze, Joan Feigenbaum, and Jack Lacy. 1996. Decen-

tralized Trust Management. In Proceedings of the 1996 IEEE
Conference on Security and Privacy (SP’96). IEEE Computer

Society, Oakland, California, 164–173. isbn: 0818674172.

[3] Eric Brewer. 2012. CAP Twelve Years Later: How the "Rules"

Have Changed. Computer, 2, 23–29.

[4] Eric A Brewer. 2000. Towards robust distributed systems. In

PODC. Vol. 7.
[5] Vitalik Buterin. 2017. TheMeaning of Decentralization. (Feb. 6,

2017). https://medium.com/@VitalikButerin/the-meaning-

of-decentralization-a0c92b76a274.

[6] Travis Ralston et al. 2019. Room version 2. Retrieved Jan. 31,

2020 from https://matrix.org/docs/spec/rooms/v2.

[7] Matthew Hodgson. 2019. Matrix in the French State. https:

//fosdem.org/2019/schedule/event/matrix_french_state/.

[8] Matthew Hodgson. 2019. The 2019 Matrix Holiday Update!

https : / /matrix .org/blog/2019/12/24/ the- 2019-matrix-

holiday-update.

[9] Matthew Hodgson. 2020. The Path to Peer-to-Peer Matrix.

https://fosdem.org/2020/schedule/event/dip_p2p_matrix/.

[10] Mike Hoye. 2019. Synchronous Messaging at Mozilla: The

Decision. (Dec. 1, 2019). https://discourse.mozilla.org/t/

synchronous-messaging-at-mozilla-the-decision/.

[11] Florian Jacob, Jan Grashöfer, and Hannes Hartenstein. 2019.

A Glimpse of the Matrix: Scalability issues of a new message-

oriented data synchronization middleware. In Proc. ACM
20th Int. Middleware Conference Demos and Posters, 5–6.

[12] Xin Jin, Ram Krishnan, and Ravi Sandhu. 2012. A unified

attribute-based access control model covering DAC, MAC

and RBAC. In IFIP Annual Conference on Data and Applica-
tions Security and Privacy. Springer, 41–55.

[13] Erik Johnston. 2018. State Resolution: Reloaded. https : / /

github.com/matrix-org/matrix-doc/blob/server_server/

release-r0.1.3/proposals/1442-state-resolution.md.

[14] Arthur B Kahn. 1962. Topological sorting of large networks.

Communications of the ACM, 5, 11, 558–562.

[15] Niclas Kannengießer, Sebastian Lins, Tobias Dehling, and

Ali Sunyaev. 2019. What Does Not Fit Can be Made to Fit!

Trade-offs in Distributed Ledger Technology Designs. In

Proceedings of the 52nd Hawaii International Conference on
System Sciences.

[16] Leslie Lamport. 1978. Time, Clocks, and the Ordering of

Events in a Distributed System. Communications of the ACM,

21, 7, 558–565.

[17] Lauri IW Pesonen, David M Eyers, and Jean Bacon. 2007.

Access Control in Decentralised Publish/Subscribe Systems.

JNW, 2, 2, 57–67.

[18] Serguei Popov, Olivia Saa, and Paulo Finardi. 2019. Equilibria

in the Tangle. Computers & Industrial Engineering, 136.
[19] Ravi S. Sandhu. 1993. Lattice-based access control models.

Computer, 26, 11, 9–19.
[20] Ravi S. Sandhu. 1996. Role Hierarchies and Constraints for

Lattice-Based Access Controls. In ESORICS.
[21] Ravi S Sandhu, Edward J Coyne, Hal L Feinstein, and Charles

E Youman. 1996. Role-based access control models. Computer,
29, 2, 38–47.

[22] Tomoya Enokido and Makoto Takizawa. 2005. Concurrency

control based on significancy on roles. In 11th Int. Conf. on
Parallel and Distributed Systems (ICPADS’05). Vol. 1. (July
2005), 196–202. doi: 10.1109/ICPADS.2005.112.

[23] Kaiwen Zhang and Hans-Arno Jacobsen. 2018. Towards De-

pendable, Scalable, and Pervasive Distributed Ledgers with

Blockchains. In ICDCS, 1337–1346.

https://medium.com/@VitalikButerin/the-meaning-of-decentralization-a0c92b76a274
https://medium.com/@VitalikButerin/the-meaning-of-decentralization-a0c92b76a274
https://matrix.org/docs/spec/rooms/v2
https://fosdem.org/2019/schedule/event/matrix_french_state/
https://fosdem.org/2019/schedule/event/matrix_french_state/
https://matrix.org/blog/2019/12/24/the-2019-matrix-holiday-update
https://matrix.org/blog/2019/12/24/the-2019-matrix-holiday-update
https://fosdem.org/2020/schedule/event/dip_p2p_matrix/
https://discourse.mozilla.org/t/synchronous-messaging-at-mozilla-the-decision/
https://discourse.mozilla.org/t/synchronous-messaging-at-mozilla-the-decision/
https://github.com/matrix-org/matrix-doc/blob/server_server/release-r0.1.3/proposals/1442-state-resolution.md
https://github.com/matrix-org/matrix-doc/blob/server_server/release-r0.1.3/proposals/1442-state-resolution.md
https://github.com/matrix-org/matrix-doc/blob/server_server/release-r0.1.3/proposals/1442-state-resolution.md
https://doi.org/10.1109/ICPADS.2005.112

	Abstract
	1 Introduction
	2 Conceptual Overview & Decomposition
	2.1 System Overview and Terminology
	2.2 TDAG-based Ledgers without Finality and their Guarantees
	2.3 Course of Analysis and Requirements

	3 Dealing with Partial Order and Non-Finality
	3.1 Level- and Attribute-Based Access Control
	3.2 Conflict Resolution

	4 Decentralization and Assessment
	4.1 Decentralized Access Control with Eventual Consistency
	4.2 Assessment of TDAG-based Decentralized Access Control

	5 Conclusion & Future Work
	Acknowledgments

