
Matrix Decomposition Architecture for MIMO

Systems: Design and Implementation Trade-offs

C. Studer∗, P. Blösch, P. Friedli, and A. Burg∗

∗Integrated Systems Laboratory, ETH Zurich, Switzerland

email: {studer, apburg}@iis.ee.ethz.ch

Abstract— The singular value decomposition (SVD) and the
QR decomposition (QRD) are two prominent matrix decomposi-
tion algorithms used in various signal processing applications.
In the field of multiple-input multiple-output (MIMO) com-
munication systems, the SVD and the QRD are employed for
beamforming and for channel-matrix preprocessing for MIMO
detection, respectively. In this paper, we describe a minimum-
area matrix decomposition architecture that is programmable
to perform QRD and SVD with variable precision and we
investigate the associated design and implementation trade-offs.
Our reference implementation achieves a hardware efficiency of
up to 325 k SVDs/s/mm2 and 1.92 M QRDs/s/mm2 for complex-
valued 4× 4-matrices in 0.18 µm CMOS technology.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) communication

systems [1] constitute the basis for many upcoming wireless

communication standards (e.g., IEEE 802.11n) and offer in-

creased spectral efficiency (compared to single-antenna sys-

tems) by transmitting multiple data streams concurrently in the

same frequency band. Matrix decomposition algorithms [2],

such as the singular value decomposition (SVD) or the QR

decomposition (QRD), have applications in various signal

processing fields. The SVD, for example, is used in array

processing or data compression, but can also be applied to

MIMO systems in order to increase the system performance

by the use of beamforming and power allocation. The QRD,

for example, is a key prerequisite for many advanced MIMO

detectors, such as the sphere decoder [3].

The SVD and the QRD mainly base on a specific sequence

of Givens rotations [2]. CORDIC (coordinate rotation digital

computer) algorithms have shown to be a suitable tool to

efficiently perform Givens rotations in hardware [4]. Since

the QRD only requires a subset of operations required for the

SVD, an architecture which allows to compute the SVD would

also provide all the functionality to compute the QRD. Hence,

a programmable matrix decomposition architecture based on

CORDIC arithmetic results in a single matrix decomposition

unit (MDU) and is suitable for both decomposition algorithms.

Due to the relatively high computational complexity of the

SVD, systolic arrays based on the Jacobi method have been

proposed [4]–[6]. As illustrated in Fig. 1, systolic arrays lie on

one end of the area/delay trade-off and are usually designed to

achieve short computation time at the cost of large circuit area.

However, in MIMO-OFDM systems [1] for example, multiple
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problems need to be solved concurrently, where the number

of parallel tasks corresponds to the number of OFDM tones.

The throughput of fast but large architectures (e.g., systolic

arrays) is often difficult to match to an arbitrary number of

problems, e.g., one systolic array might be insufficient in terms

of throughput but two might exceed the available circuit area.

Low-area architectures can be obtained by the use of time-

sharing and lie on the other end of the area/delay trade-off (see

Fig. 1). Ideally, time-shared architectures are equally efficient

(in terms of area times the computation time) as systolic arrays

and have the key advantage to be easily adaptable to individual

throughput requirements by the use of parallel instantiation,

i.e., the target throughput can be achieved by replication of a

low-area instance. Additional area savings, while not reducing

the decomposition throughput, can be obtained by iterative

decomposition of each instance (see Fig. 1).

Contributions: We present reference VLSI implementation

results of two MDUs optimzied for MIMO systems. The low-

area implementation mainly bases on CORDIC arithmetic and

is able to perform the QRD and the SVD of complex-valued

4× 4 matrices. In order to improve the overall efficiency, the

involved design and implementation trade-offs are investigated

in detail. We present two architecture variants: one unit has

been optimized for throughput and the other offers enhanced

flexibility by controlling a precision/throughput trade-off.

Outline: The remainder of this paper is organized as fol-

lows. In Sec. II the SVD and QRD algorithms are described

and all required operations are identified. The time-shared ma-

trix decomposition archtecture is described in Sec. III and the

associated design and implementation trade-offs are explored

in Sec. IV. In Sec. V, we provide VLSI implementation results

and conclude in Sec. VI.
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Fig. 1. Ideal impact of architectural transformations [7] on systolic arrays
and time-shared architectures. The dashed box corresponds to the investigated
design-space exploration for both MDUs by the use of iterative decomposition.
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Fig. 2. Illustration of the bidiagonalization and diagonalization phases of the
SVD according to [2] for a complex-valued 3×3 matrix. The entries affected
in the corresponding update have been highlighted.

II. MATRIX DECOMPOSITION ALGORITHMS

To identify all required arithmetic operations and the under-

lying computational sequences, the SVD and QRD algorithms

are briefly summarized below. More details for both matrix

decomposition algorithms can be found in [2].

A. Singular Value Decomposition

The SVD of a complex-valued M ×N -dimensional matrix

A is defined1 as [8]

A = UΣVH (1)

where U and V are complex-valued unitary matrices of

dimension M × M and N × N , respectively. The M × N -

matrix Σ contains the real-valued singular values on its

main diagonal, i.e., diag(Σ) = {σ1, σ2, . . . , σr}, where r =
min{N,M} and σ1 ≥ σ2 ≥ . . . ≥ σr. The SVD procedure

under consideration bases on the Golub-Kahan algorithm

described in [2] and mainly performs the SVD in two phases:

1) Bidiagonalization: First, a memory is initialized with

M = {IM ,A, IN} where IL stands for a L × L identity

matrix. During the bidiagonalization phase, Givens rotations

are successively applied to A from the left-hand side (LHS)

and from the right-hand side (RHS), such that the M × N -

dimensional inner matrix A gets bidiagonal and real-valued

(denoted by B0) as illustrated in Fig. 2. All Givens rotations

applied to A from the LHS and RHS are applied to the

corresponding identity matrices. The resulting unitary matrices

are denoted by Ũ and ṼH and the memory content after the

bidiagonalization phase corresponds to M =
{

Ũ,B0, Ṽ
H

}

where A = ŨB0Ṽ
H .

2) Diagonalization: The diagonalization phase consists of

multiple diagonalization steps (indicated with k) and is illus-

trated in Fig. 2. Givens rotations are subsequently applied from

the LHS and from the RHS to the bidiagonal matrix Bk such

1In the following, the superscripts H and T stand for conjugate transposi-
tion and transposition, respectively.
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Fig. 3. Matrix decomposition architecture overview: the instruction-based
sequencer controls the arithmetic unit and the matrix memory, in order to
perform the decomposition sequence stored in the instruction RAM.

that all off-diagonal entries fi (for i = 1, 2, . . . , r − 1) of Bk

become zero. The diagonalization phase is stopped whenever

all fi are considered to be zero and all di (for i = 1, 2, . . . , r)

correspond to the unordered singular values. In order to ensure

convergence of the diagonalization phase and to reduce the

overall computation time of the SVD, the first Givens rotation

of each diagonalization step (indicated with RHS∗ in Fig. 2) is

performed with a modified input vector [x y]T , where y = t12
and x = t11 − µ uses the Wilkinson shift [2]

µ = an + c − sign(c)
√

a2 + b2

n−1
(2)

with c = 1

2
(an−1−an), T = BH

k
Bk, and the trailing non-zero

sub-matrix of T corresponds to

T(n − 1 : n, n − 1 : n) =

(

an−1 bn−1

b∗n−1
an

)

. (3)

Analogous to the bidiagonalization phase, all Givens rotations

are also applied to the corresponding unitary matrices such

that finally, M =
{

U,Σ,VH
}

is the SVD in (1).

B. QR Decomposition

The QR decomposition of a M ×N -dimensional complex-

valued matrix A is defined as [8]

A = QR (4)

where Q is a complex-valued M×N -matrix with orthonormal

colums and the upper-triangular N × N -matrix R has real-

valued entries on its main diagonal. The QRD is performed

in a similar fashion as the bidiagonalization phase of the

SVD (cf. Fig. 2) where only the LHS Givens rotations are

applied. This minor modification of the SVD algorthm results

in an upper-triangular matrix R with real-valued entries on its

main diagonal. All Givens rotations applied from the LHS

to A are also applied to the unitary matrix Q such that

M = {Q,R, IN} corresponds to the QRD in (4).

III. VLSI ARCHITECTURE

In contrast to a systolic array implementation, we describe a

low-area matrix decomposition architecture, which is designed

to operate on complex-valued 4×4-dimensional matrices. The

time-shared architecture is depicted in Fig. 3 and consists of

tree main components described in the following.
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Fig. 4. CORDIC architecture overview: iterative decomposition can (ideally)
reduce the area without affecting the computation time per CORDIC. The
unroll factor corresponds to the number of micro-rotations per clock cycle.

A. Matrix Memory

The matrix memory provides storage for three complex-

valued 4 × 4 matrices M =
{

M1,M2,M3

}

, which is suffi-

cient to store the result of an SVD and of a QRD (see Sec. II).

A complex value in M is stored at a single memory adress, is

32 bits wide, and each real and imaginary part requires 16 bits.

The matrix memory consists of a two-port 48× 32 bit SRAM

and requires 0.06 mm2 in 0.18 µm CMOS technology. The

matrix memory interface allows to read or write two different

real or imaginary parts in at most two clock cycles.

B. Arithmetic Unit

In order to design a high-level VLSI architecture of the

arithmetic unit (AU), Givens rotations, square-roots, multi-

plications, and additions/subtractions are required to compute

the SVD and the QRD (cf. Sec. II). Givens rotations and the

square root can efficiently be computed by CORDIC, whereas

multiplications and additions/subtractions are computed in a

multiply-accumulate (MAC) unit.

CORDIC Unit: CORDICs can efficiently compute two-

dimensional rotations [9] by performing a series of micro-

rotations with the aid of shifts and additions/subtractions

(cf. Fig. 4). To keep the circuit area low, a single CORDIC

is used by the means of time sharing and has been designed

to support vectoring and rotation. A complex-valued Givens

rotation is performed by three real-valued vectoring CORDICs

(denoted by C1, C2, and C3), i.e.,

[

C

C

]

C1→
[

R

C

]

C2→

[

R

R

]

C3→

[

R

0

]

.

In order to perform the corresponding rotation on a complex-

valued 2-dimensional vector, four rotation CORDICs are re-

quired: the first two (C1 and C2) rotate each complex entry

independently, whereas the third and fourth CORDICs rotates

the real and imaginary part of both complex values by C3.

We emphasize that the square-root required in (2) can

efficiently be computed with the CORDIC in vectoring mode,

since
√

d2 + b2

n−1
corresponds to the nonzero result of the

CORDIC with [d bn−1]
T applied to the input.

Multiply-Accumulate Unit: To compute the trailing sub-

matrix of T = BH

k
B

k
as described in (3), a real-valued

multiply-accumulate (MAC) unit has been instantiated. The

multiplier can be switched off in order to perform additions

or subtractions required in (2).

C. Instruction-Based Sequencer

The programmable MDU contains a micro-code controlled

sequencer. This sequencer consists of a 64× 20 bit instruction

RAM (of size 0.04 mm2 in 0.18 µm CMOS technology) that

provides storage for 64 instructions. The finite state machine

(FSM) decodes instructions, generatates memory adresses, and

provides control signals for the AU.

Instruction Set: The SVD and QRD mainly base on a

specific rotation sequence applied to the matrices in M
(cf. Sec. III-A). To this end, a set of eight instructions has

been defined. Four instructions are used to apply CORDICs

from the left-hand side (LHS) or the right-hand side (RHS) to

one complex-value or two real/imaginary-valued entries of M2

and to update all other affected entries in M. One instruction

is used to initialize the diagonalization phase of the SVD

which subsequently performs all required diagonalization steps

in a self-controlled manner. The remaining instructions are

reserved to configure the number of CORDIC micro-rotations

(see Sec. IV-A) or to control the program flow. The SVD of a

complex-valued 4×4 matrix requires 27 instructions, whereas

a QRD of equal size requires only 17 instructions.

SVD-Algorithm Modifications: To simplify the diagonaliza-

tion phase of the SVD and to obtain a fixed throughput, the

following modifications have been applied to [2]:

1) Off-diagonal entries of Bk (see Fig. 2) are considered

to be zero, whenever fi < 2−ε for i = 1, 2, . . . , r − 1.

2) Since the computational complexity of the diagonaliza-

tion phase is data dependent, an early-stopping criterion

has been introduced to obtain a fixed decomposition

throughput. Whenever k = Kmax, the diagonalization

phase is stopped and the current M is used as an

estimate of (1).

Note that ε and Kmax can be defined in the SVD-initialization

instruction, which allows to reconfigure the arithmetic preci-

sion and the decomposition throughput at run time.

IV. IMPLEMENTATION TRADE-OFFS

To reduce the area of the MDU and to improve the overall

efficiency, implementation trade-offs associated with arith-

metic precision, circuit area, and throughput are investigated

in the following.

A. Fixed-Point Implementation Trade-offs

The arithmetic precision of a fixed-point implementation is

assessed by the bit error rate (BER) of an IEEE 802.11n-

based MIMO-OFDM system with coded beamforming [10].

The baseband input-output relation of the wireless channel

is y = Hs + n where H corresponds to the MR × MT -

dimensional channel matrix, s denotes the MT -dimensional
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significant impact on the BER.

transmit signal, n the MR-dimensional Gaussian noise vector,

and y the MR-dimensional receive signal. Beamforming is

simulated by computing the fixed-point SVD of the channel

matrix H and by transmitting s = Vs̃. The receiver converts

the input-output relation into MT single-input single-output

channels

ỹi = σis̃i + ñi for i = 1, 2, . . . ,MT

where ỹ = UHy, σi is the ith singular value, and the

noise vector ñ has equal statistics as n. Finally, a soft-output

demapper produces reliability information for the subsequent

soft-input channel decoder.

Fixed-Point Implementation: To convert the floating-point

model in a fixed-point implementation, the floating-point SVD

has been simulated to determine the threshold parameter ε

and the required maximum number of diagonalization steps.

Simulations have shown that setting ε = 7 and Kmax = 7 does

not result in a significant BER performance loss. Note that

reducing ε or increasing Kmax only increases the computa-

tional complexity of the SVD and does not improve the error

rate performance. Further simulations have shown that a near-

optimal BER is achieved by using 16 fractional bits within

the CORDIC. Finally, the required number of micro-rotations

in the CORDIC has been evaluated. Figure Fig. 5 shows

the impact of micro-rotations to the BER of a beamformed

MIMO-OFDM simuation2. At least 12 micro-rotations are

required to acheive a BER less than 10−6. Reducing the

number of micro-rotations results in a BER floor, which is

not suitable for the scenario under consideration.

Precision/Throughput Trade-off: The number of micro ro-

tations in the CORDIC directly influences the arithmetic

precision of the MDU (see Fig. 5) and has also a significant

impact on the throughput. A lower number of micro-rotations

2We consider a convolutionally encoded (rate 1/2, generator polynomials
[133o 171o], constraint length 7, random interleaving) MIMO-OFDM system
with beamforming [10], four transmit and receive antennas, 16-QAM (using
Gray mapping), 64 tones, and soft-input Viterbi decoding. One codeblock
corresponds to 1024 bits, a TGn type C [11] channel model is used, and
perfect channel state information at the transmitter and receiver is assumed.
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requires less clock cycles, which results in lowered computa-

tional complexity. We emphasize that the arithmetic precision

requirements of a QRD for MIMO detection are usually lower

than the precision for the SVD in the scenario considered

above. As noted in [12], nine micro-rotations have found to

be sufficient for a QRD and thus, it is beneficial to lower the

precision in order to increase the decomposition speed. To this

end, we propose a tunable arithmetic unit (denoted by AU II),

where the number of micro-rotations is programmable, which

allows to adjust the precision/throughput trade-off at run time.

The maximum number of micro-rotations has been set to 12

to support sufficient precision for computing the SVD. An

unroll factor of two has been chosen which allows to chose the

number of micro-rotations from 12, 10, 8, and 6, depending

on the application and precision requirements. Note that all

BERs achievable by AU II are shown in Fig. 5.

B. Area/Delay Trade-off

Replication of a low-area unit can be used to achieve a given

throughput. Lower area implies that the target throughput can

be obtained more accurately. Hence, additional reduction in

terms of area per decomposition unit, without a significant

throughput decrease is highly desirable. To this end, iterative

decomposition has been applied to the CORDIC unit to

determine the optimum choice of the unroll factor. Since

only the area of the AU is affected, the area/delay trade-off

associated with the maximum number of micro-rotations and

the CORDIC unroll factor is shown in Fig. 6. Two different

MDUs have been designed: MDU I uses of the faster but

less-flexible AU I (using 12 micro rotations and an unroll

factor of six), whereas MDU II employs the slightly slower

but configurable AU II (using an unroll factor of two with

12, 10, 8, and 6 micro rotations), which allows to control the

precision/throughput trade-off at run time. Note that the critical

path is not only determined by the CORDIC, but also by the

MAC unit. Thus, to align the critical paths of both units, one

pipelining register has been inserted in the multiplier if the

CORDIC unroll factor is less than four.



Fig. 7. MDU ASIC in 0.18 µm (1P/6M) CMOS technology. The top left
corresponds to MDU I and the top right corresponds to MDU II. The matrix
memories and instruction RAMs are denoted by M and C, respectively.

V. IMPLEMENTATION RESULTS

The fabricated ASIC in 0.18 µm technology is depicted

in Fig. 7 and contains both MDUs and an unrelated design.

1) SVD: The VLSI implementation results for the SVD

for each MDU are given in Tbl. I. Note that for highest

precision (i.e., 12 micro-rotations), the first unit achieves a

slightly higher throughput than the MDU II and only requires

0.04 mm2 more area. However, the second unit is able to

achieve 55% higher efficiency (in terms of SVDs per second

per mm2) than MDU I by reducing the arithmetic precision

down to six micro-rotations per CORDIC (see Fig. 5). At

highest precision (i.e., using 12 micro rotations), MDU I and

MDU II consume 160 mW and 106 mW, respectively.

2) QRD: The implementation results for a complex-valued

QRD executed on each MDU are given in Tbl. II. At maximum

precision (i.e., 12 micro-rotations which, however, is only

desirable for the SVD computation), MDU I achieves the

higher throughput than MDU II. Note that approximately

six time more QRDs per second per mm2 than SVDs are

achievable. Reducing the precision of MDU II to six micro-

rotations per CORDIC, allows to achieve 1.92 MQRDs/s/mm2,

which is 51% more efficient than the less-flexible MDU I.

Hence, tuning the precision/throughput trade-off at run time

can improve the overall efficiency of MDU II. Note that the

power consumption increases by reducing the precision.

TABLE II

IMPLEMENTATION RESULTS OF A COMPLEX-VALUED 4 × 4 QRD

MDU I II

CORDIC rots. 12 12 10 8 6

QRD time [µs] 1.92 2.82 2.35 1.88 1.41

QRDs/s/mm2 1.27 M 0.96 M 1.15 M 1.44 M 1.92 M

Powera [mW] 155 105 112 118 128

VI. CONCLUSION

We described design and implementation trade-offs of two

programmable matrix decomposition units (MDUs), able to

compute the SVD and the QRD. Low area is achieved through

extensive use of time sharing of a single CORDIC unit. The

low-area MDUs have been shown to be suitable for MIMO-

OFDM systems, since they can be easily adapted to individual

throughput requirements by the use of replication. One unit has

been optimized for throughput, where the throughput of the

second unit is tunable by reducing the arithmetic precision

at run time. The programability of both units allow to use

the same architecture for different systems, which avoids the

design of dedicated architectures for individual requirements.
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