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Matrix elements of U(2n) generators in a multishell spin–orbit basis.
I. General formalism

P. J. Burton and M. D. Gould
Department of Mathematics, The University of Queensland, Brisbane Q. 4072, Australia

~Received 10 May 1995; accepted 20 December 1995!

This is the first in a series of papers which derives the matrix elements of the spin-dependent U(2n)

generators in a multishell spin–orbit basis, i.e., a spin adapted composite Gelfand–Paldus basis. The

advantages of such a multishell formalism are well known and well documented. The approach

taken exploits the properties of the U(n) adjoint tensor operator denoted by D j
i (1<i , j<n) as

defined by Gould and Paldus @J. Chem. Phys. 92, 7394 ~1990!#. D is a polynomial of degree two in

the U(n) matrix E5[E j
i ]. The unique properties of this operator allow the construction of adjoint

coupling coefficients for the zero-shift components of the U(2n) generators. The Racah

factorization lemma may then be applied to obtain the matrix elements of all the U(2n) generators.

In this paper we investigate the underlying formalism of the approach and discuss its advantages and

its relationship to the shift operator method of Gould and Battle @J. Chem. Phys. 99, 5961 ~1993!#.
The formalism is then applied, in the second paper of the series, to calculate the matrix elements of

the del operator in a two-shell spin–orbit basis. This immediately yields the zero-shift adjoint

coupling coefficients in such a basis. The del-operator matrix elements are required for the

calculation of spin densities in a two-shell basis. In the third paper of the series we derive the

remaining nonzero shift adjoint coupling coefficients all of which are required for the multishell

case. We then use these coupling coefficients to obtain formulas for the matrix elements of the

U(2n) generators in a two-shell spin–orbit basis. This result is then generalized, in the fourth paper,

to the case of the multishell spin–orbit basis. Finally, we demonstrate that in the Gefand–Tsetlin

limit the formula obtained is equivalent to that of Gould and Battle for a single-shell system.

© 1996 American Institute of Physics. @S0021-9606~96!00912-3#

I. INTRODUCTION

We present in this series of papers a derivation of the

matrix elements ~MEs! of the generators of the spin–orbital

unitary group U(2n) in a multishell spin–orbit basis. Our

works extends that of Gould and Paldus1 and Gould and

Battle2 who obtained U(2n) generator MEs for the single-

shell case. It is based entirely on the U(n) representation

theory developed for the many electron problem by Paldus3

and extended by Gould et al.4 –11

The unitary group approach ~UGA! to configuration in-

teraction ~CI! is motivated by the fact that the spin-

independent molecular electronic Hamiltonian is expressible

in terms of the U(n) generators, viz.

H05 (
i , j51

n

^iu ẑu j&E j
i
1

1

2 (
i , j ,k ,l51

n

~ i j ukl !~E j
iE l

k
2d j

kE l
i!.

~1!

Here, the coefficients ^iu ẑu j& and (i j ukl) are one-electron

and two-electron integrals, respectively,12 and E j
i denotes the

generator of the orbital unitary group U(n).

This fact gives rise to the need to calculate the MEs of

the U(n) generators. The appropriate basis is the Gelfand–

Paldus ~GP! basis which is the Gelfand–Tsetlin ~GT! basis

for the many-electron problem.3 This is a basis defined by

symmetry adaptation to the canonical chain of subgroups

U~n !.U~n21 !.•••.U~2 !.U~1 !. ~2!

The labeling information thus obtained together with the

Pauli exclusion principle, provides all the information neces-

sary to describe a spin-independent molecular state.

When spin-dependent effects are to be included in the

Hamiltonian extra terms involving the U(2n) generators

must be added. Now we have, for the case of one-body spin-

dependent interactions,

H5H01HS , ~3!

where

HS5 (
i , j51

n

(
m ,n50

1

^imuHSu jn&E jn
im . ~4!

As for the above, the coefficient ^imuHSu jn& is a one-

electron integral and E jn
im is the U(2n) generator.

Now, for the spin-dependent problem, a more appropri-

ate basis to work with is one which is symmetry adapted to

the subgroup chain

U~2n !.U~n !3U~2 !. ~5!

This is referred to as the spin–orbit ~SO! basis.1 The right-

hand side is the outer direct product of the orbital group

U(n) and the spin group U(2). We now need to calculate the

MEs of the U(2n) generators in this spin–orbit basis. The

effect of the U(2n) generators may be analyzed according as

to how they affect the total spin, S , of the state upon which

they act.
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Now, the U(2n) generators transform under commuta-

tion with the U(n)3U(2) generators as the representation

Adj[U(n)] ^Adj[U(2)]. Here, Adj[G] denotes the adjoint

representation of the group G . This means that the U(2n)

generators are adjoint tensor operators ~ATOs! of both U(n)

and U(2), and in particular it is true of any ATO of U(2)

that it may be resolved into spin shift components.1 Thus we

may write

E jn
im

5E~1 ! jn
im

1E~0 ! jn
im

1E~2 ! jn
im , ~6!

where E(6) jn
im, respectively, increases/decreases the spin S

by one unit and E(0) jn
im leaves the spin unaltered.

For the nonzero spin shift components, E(6) jn
im, the

MEs may be determined in a straightforward manner by ap-

plying the U(n)3U(2) Wigner–Eckart ~WE! theorem.1

However, for the zero-shift components, E(0) jn
im, this cannot

be done.

From the work of Louck and Biedenharn13 on the gen-

eral theory of ATOs, it is known that there exist several in-

dependent zero-shift adjoint tensors. These act as a basis set

for the general ATO which can be expressed as a linear com-

bination of them. Due to the multiplicity involved, in the

general case ~that is, for an arbitrary representation! there is

no unique set of coupling coefficients. Thus the WE theorem

cannot be applied in its usual form.

As we will demonstrate below, for the many electron

problem it is in fact possible to define a set of zero-shift

adjoint coupling coefficients. This is accomplished via the

U(n) operator D which is a polynomial of degree two in the

U(n) matrix E5[E j
i ] (1<i , j<n). The del operator was in-

troduced by Gould and Paldus in Ref. 1. They obtained ME

formulas in terms of it for both the zero and nonzero shift

components of the U(2n) generators. The del operator is

defined by

D j
i
5E~E1N/22n22 ! j

i . ~7!

The MEs of this operator are important not just for spin-

dependent CI but, as was shown by Gould, Paldus, and

Chandler, they are also required for obtaining molecular

electronic spin densities.14

The del operator possesses unique properties which, for

the many electron problems, make possible the construction

of appropriate zero-shift adjoint coupling coefficients. We

discuss the del operator in Sec. IV. These coupling coeffi-

cients are essentially the MEs of the normalized del opera-

tors. That is, we define ~for the single shell case!

K p

P8
Ue i ^ ē j ;

p

P L 5

21

2S~S11 !
K p

P8
UD j

iUp

P L . ~8!

Here and throughout it is understood that the lhs vanishes if

S50 ~which is consistent with the fact that D j
i
50 in such a

case14!. The nonzero shift adjoint coupling coefficients

~ACCs! are, of course, uniquely defined.

By means of the above definition we may now adopt a

unified approach to the evaluation of the U(2n) generator

matrix elements. By the application of the Racah factoriza-

tion lemma, we express the MEs of both the zero and non-

zero shift components in terms of adjoint coupling coeffi-

cients and reduced Wigner coefficients ~RWCs!.
This adjoint coupling coefficient approach is consider-

ably simpler than the shift component method ~SCM! of

Gould and Battle in Ref. 2. We demonstrate later in this

paper that it yields the same formulae for the del-operator

matrix elements. The aim of this first paper in the series is to

develop the formalism of the adjoint coupling coefficient ap-

proach and to demonstrate its equivalence to the shift com-

ponent method for the one-shell case. In the remaining pa-

pers of the series we show that the method can be extended

to the multishell case and we obtain formulas for the U(2n)

generator MEs first in a two-shell spin–orbit basis and then

in the general multishell spin–orbit basis.

The need for a multishell formalism arises from the fact

that the electrons of a molecular system can sometimes be

separated into well defined groups or shells.8 This is due to

the localization of the molecular orbitals around constituent

atoms, the effect of symmetry constraints, or energy effects.

The quantum chemistry model needs to be extended to sys-

tems where, in addition, spin effects are also important. In

the spin-dependent shell model, where we have shell j with

N j electrons possessing a definite spin S j , the spins of the

separate shells couple to a total spin S and the set of shells

together form a configuration

~S1N1 ,S2N2 , . . . ,SrNr!, S (
i51

r

N i5N D . ~9!

For such a system we choose a basis which is symmetry

adapted to the subgroup chain

U~2n !.U~2n1!3U~2n2!3•••3U~2nr!

.••• ~10!

.U~n1!3U~n2!3•••3U~nr!3U~2 !

and refer to this as the multishell spin–orbit basis. Our aim

in this series is to obtain the U(2n) generator MEs in this

basis.

This, the first paper of the series is set up as follows. The

basic notation and terminology, together with a review of

frequently used standard theory ~such as the Wigner–Eckart

theorem!, are outlined in Secs. II and III. Section IV reviews

the work of Gould and Paldus1 and Gould and Battle.2 This

introduces the del operator and summarizes the shift compo-

nent method leading to the basic segmentation level formulas

for the level shifts. The Gould–Battle formula for the ME of

the del operator is also reviewed. Section V establishes the

Racah factorization lemma for the zero shift ACCS. In Sec.

VI we demonstrate that the ACC approach yields exactly the

same results as the SCM. This is done first for the basic

segmentation level formula and then for the full del-operator

MEs. This establishes the complete equivalence of the two

approaches and also illustrates the simpler working of the

adjoint coupling coefficient approach.

II. BASIC NOTATION AND TERMINOLOGY

In the second quantization approach to molecular orbital

theory ~i.e., the occupation number representation!, we start

5113P. J. Burton and M. D. Gould: Matrix elements of U(2n) generators. I
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with a set of 2n orthonormal atomic or molecular spin orbit-

als f ia ~i51,.. . ,n; a50,1!.1 These span a finite dimensional

~f.d.! one-electron space, V .

These one-electron spin–orbitals are constructed by act-

ing upon the vacuum state u0& with the fermion creation op-

erator X†im, viz.

f im
5X†imu0&. ~11!

The corresponding annihilation operator is X im . The creation

and annihilation operators satisfy the anticommutation rela-

tions given by

$X†im,X† jn%5$X im ,X jn%50,

~12!
$X im ,X† jn%5d i

jdm
n .

The U(2n) generators are formed from them according to

E jn
im

5X†imX jn . ~13!

The one-electron state ~11! corresponds to an electron in

orbital i with spin m. The N-electron space or Fock space,

VN , is obtained by taking the antisymmetric component of

the Nth rank tensor product of V ,3 i.e., VN5V ^ N. In terms of

the occupation number representation a typical state would

be denoted by

c5X†imX† jn•••X†lau0&. ~14!

We see that the anticommutation relations ~12! imply that

X† jnX†im•••X†lau0&52X†imX† jn•••X†lau0&52c .
~15!

That is, interchanging coordinates reverses the sign of the

wave function. In fact, the state ~14! corresponds to the

Slater determinant wave function in the coordinate represen-

tation and the anticommutation relations incorporate the

Pauli exclusion principle.12

The space VN of N-particle states gives rise to, that is

acts as a carrier space for, an irreducible representation ~ir-
rep! of U(2n) with highest weight

~1N,02n2N!5~1,1,.. . ,1,0,.. . ,0!, ~16!

i.e., N ones and 2n2N zeros.

As is well known, the Slater determinants are not in

general an eigenfunction of spin. Excited states modeled by a

single determinant ~as in the Hartree–Fock approximation!
are characterized by a number of spin states, an effect which

is called spin contamination.12 In addition, a single determi-

nant wave function does not predict the correct dissociation

energy for the molecule. Furthermore, because it does not

take into account the mutual correlation in the electronic

motions, there is a positive energy difference with respect to

the exact molecular energy called the correlation energy.

To overcome these defects configuration interaction is

employed. In this scheme the wave function is expressed as a

sum of configuration state functions ~CSFs!, viz.

C5C0c01C1c11•••1CNcN . ~17!

Each CSF (c i) is a linear combination of Slater determinants

and is a spin eigenstate. A CSF represents a definite configu-

ration where each electron occupies only one spin–orbital.

CI takes into account the problem of electron correlation.

The UGA approach to CI affords a highly efficient method of

constructing and labeling CSFs.3

The appropriate basis to use for spin-independent CI is

the Gelfand–Paldus basis. As Paldus first observed in Ref. 3,

for the many-electron problem, representations of U(n) have

highest weights of the form

~2a,1b,0c!5~2,2,.. . ,2,1,.. . ,1,0,.. . ,0!. ~18!

We will denote these representations, which correspond to a

two column Young tableau, by V(a ,b ,c) or V(p) so that

p5(a ,b ,c). Here, the orbital number, n , is given by n5a

1b1c , the electron number, N , by N52a1b , and the total

spin, S , by S5b/2.

The Gelfand–Paldus basis for this representation is

specified by a labeling scheme obtained from the canonical

subgroup chain ~2!, that is,

U~n !.U~n21 !.U~n22 !.•••.U~2 !.U~1 !.

Symmetry adaptation to this subgroup chain means that each

basis vector is an eigenstate of the Casimir invariants of each

subgroup and as a consequence will carry the labels of each

subgroup irrep. Since the subgroup chain is canonical, that

is, there are no intermediate subgroups, this labeling is com-

plete and specifies the state fully.

A GP basis vector is denoted by

uP&5U an bn cn

an21 bn21 cn21

•••

a2 b2 c2

a1 b1 c1

L 5U pn

pn21

•••

p2

p1

L . ~19!

Here, P denotes the entire array of Paldus lables, p i (i

51,.. . ,n), and is called the Paldus array. Note that p5pn .

Now, by virtue of Weyl’s subgroup branching laws, the

irrep V(pm11) of U(m11) constitutes a reducible represen-

tation of U(m) decomposing into at most four irreps V(pm)

of U(m).3 The Paldus labels pm11 and pm are related by one

of four fundamental shifts D i .4 That is, pm115pm1D i (i

51,.. . ,4), where D i is one of

D05~0,0,1!; D15~0,1,0!;

~20!
D25~1,21,1!; D35~1,0,0!.

Each GP basis state is a CSF with well-defined spin and

occupation number. The number of electrons in the kth or-

bital of the GP state ~19! is given by the eigenvalue of the

generator Ekk , i.e.,

nk5(
i51

k

p i
~k !

2 (
i51

k21

p i
~k21 !

52ak1bk2~2ak211bk21!.

~21!

The total number operator N̂ is given by

N̂5 (
m50

1

Em
m

5(
i51

n

E i
i ~22!
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and has eigenvalue

N5 (
k51

n

nk . ~23!

The orbital U(n) generators, E j
i (i , j51,.. . ,n), are ob-

tained from the U(2n) spin–orbital generators by taking a

‘‘spin average’’

E j
i
5 (

m50

1

E jn
im . ~24!

And similarly the spin U(2) generators, En
m ~m,n50,1!, are

given by

En
m

5(
i51

n

E jn
im . ~25!

The orbital U(n) generators satisfy the commutation rela-

tions

@E j
i ,E l

k#5d j
kE l

i
2d l

iE j
k ~26!

and also the Hermiticity requirement

E j
i†

5E i
j . ~27!

We denote the irrep of U(2) with highest weight (a

1b ,a) by V(a1b ,a).4 –6 The numbers a and b have the

same interpretation as for the Paldus label p5(a ,b ,c) of the

irrep V(p). Young diagrams for the irreps V(a ,b ,c) and V(a

1b ,a) are conjugate. By analogy with Eq. ~19!, we will

denote the Gelfand–Tsetlin basis state for the irrep V(a

1b ,a) of U(2) by

Ua1b a

d
L . ~28!

In the above, d is an integer which takes the values a<d<a

1b .

For spin-dependent problems it is necessary to obtain the

MEs of the U(2n) generators in a basis for the irrep VN of

U(2n) which is symmetry adapted to the spin–orbit sub-

group U(n)3U(2). The resulting spin–orbit basis may be

written as

U ~a ,b ,c !

P8 d
L [U p

P8
L ^Ua1b a

d
L , ~29!

where P8 is the Paldus array for the subgroup U(n21).

However, since the usual basis of SU(2) denoted by

uSM s&, where M s is the azimuthal spin quantum number, is

also an eigenstate of the number operator N̂—and hence are

also U(2) states6—we shall adopt the following notation for

the spin–orbit basis states:

U p

Pn21
L

M s

5U p

Pn21
L ^ uSM s&. ~30!

Note that the Paldus label p contains all the total spin infor-

mation required since S52a1b . We will refer to the above

as the one-shell spin–orbit basis.

The aim of this series of papers is to find the MEs of the

U(2n) generators in a multishell spin–orbit basis. That is, a

basis which is symmetry adapted to the subgroup chain ~10!.
Gould et al.8,9 has obtained the MEs of the U(n) generators

in a composite Gelfand–Paldus ~CGP! basis. The CGP basis

is symmetry adapted to the ~spin-independent! subgroup

chain

U~n !5U~n11n21•••1nr!

.U~n11n21•••1nr21!3U~nr!

.U~n11n21•••1nr22!3U~nr21!3U~nr! ~31!

.•••

.U~n1!3U~n2!3•••3U~nr!.

The CGP states are denoted by

U p1 p2 pr

•••

P18 P28 Pr8

L
P

5U p1

P18
L ^U p2

P28
L ^ ••• ^U pr

Pr8
L

P

.

~32!

In the above, pr is the Paldus label for the subgroup

U(nr) and Pr8 is the Paldus array for U(nr21). The addi-

tional Paldus tableau

p5F pr

pr21

•••

p1

G ~33!

tabulates the intermediate coupling labels pi , where pi is the

Paldus label of the intermediate subgroup U(n11•••1n i).

Note that pr5p , is the Paldus label of the U(n) irrep V(p)

and p15p1 . This intermediate tableau contains all the infor-

mation needed to describe the intermediate coupling scheme

suggested by the subgroup chain ~31!. The subgroup reduc-

tion

U~n11•••1n i!↓U~n11•••1n i21!3U~n i!, ~ i51,.. . ,r !,
~34!

is multiplicity free for the two-columned irreps of the many-

electron problem.

For the spin-dependent multishell problem we adapt the

above CGP approach and choose a basis which is symmetry

adapted to the ~spin-dependent! subgroup chain

U~2n !5U~2n112n21•••12nr!

.U~2n112n21•••12nr21!3U~2nr!

.•••

~35!
.U~2n1!3U~2n2!3•••3U~2nr!

.U~n1!3U~n2!3•••3U~nr!3U~2 !3•••3U~2 !

.U~n1!3•••3U~nr!3U~2 !.

This corresponds to

~i! The separation into spin–orbitals of types 1,2,.. . ,r .

~ii! The separation of spin and orbit.
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~iii! The diagonal imbedding U(2)3•••3U(2).U(2) of

angular momentum theory.

The branching rules ~BRs! for the reduction of the

irrep VN of U(2n) into irreps of U(2n1)3•••3U(2nr) are

given by

VN5 %

N i>0

N11•••1Nr5N

VN1
^ VN2

^ ••• ^ VNr
, ~36!

where VN i
(i 5 1,.. . ,r) denotes the anti-symmetric tensor rep-

resentation of U(2n i) of rank N i .

In practice, to construct a basis which is symmetry

adapted to the subgroup chain ~35!, we progressively couple

the spin–orbit basis states of each shell beginning with shells

one and two. As a basis for the spaces VN1
^ VN2

we adapt

the product spin–orbit basis states

U p1

P18
L

M1

^U p2

P28
L

M2

. ~37!

That is, the product state having N1 ~respectively, N2! elec-

trons in shell 1 ~respectively, shell 2! with total spin

S15b1/2 ~respectively, S25b2/2! and where M 1 ~respec-

tively, M 2! is the corresponding spin azimuthal quantum

number.

By coupling the spin components of these states we ob-

tain the two-shell spin–orbit states8

(
M1 ,M2

^S1M 1 ,S2M 2uS 2M2&U p1

P18
L

M1

^U p2

P28
L

M2

5U p1 p2

P18 P28
L

p2

^ uS 2M2& ~38!

which we denote by

U p1 p2

P18 P28
;p2L

M2

. ~39!

Here, p25(a12,b12,c12)
11 is the intermediate Paldus label for

the subgroup U(n11n2), S 25b12/2 is the intermediate total

spin for shells one and two combined, and M2 is the inter-

mediate total azimuthal spin quantum number,

M25M 11M 2. This corresponds to the two-shell spin–orbit

state

U p1 p2

P18 P28
L

p2

^Ua121b12 a12

d12
L , ~40!

where a125
1
2(N11N2)2S , c125(n11n2)2a122b12,

d125M1
1
2N2 .

By progressively coupling the spin–orbit states of shells

1 to r beginning with state ~39!, we obtain the multishell

spin–orbit basis

U p1 p2 pr

•••

P18 P28 Pr8

;prL
Mr

5U p1 p2 pr

•••

P18 P28 Pr8

L
P

^ uSM s&. ~41!

As in Eq. ~32!, P is the intermediate Paldus array and Mr is

now the total azimuthal component of total spin S . The spin

coupling scheme

@•••@@@S1 ^ S2#S 2 ^ S3#S 3 ^ ••• ^ Sr21#S r21 ^ Sr#
S r5S

~42!

corresponds to the usual L – S coupling scheme of atomic

calculations.

We now review the basic theory of tensor operators and

the Wigner–Eckart theorem. This enables us to introduce

frequently used terms ~and the corresponding notation! in the

context in which they are developed. They are an essential

ingredient in what follows.

III. TENSOR OPERATORS AND THE
WIGNER–ECKART THEOREM

A tensor operator under some group, G say, is a set of

linearly independent operators indexed like the basis vectors

of the carrier space of a representation of G . Under the op-

erations of G the operator set transforms in the same way as

the basis set.

More formally, for group G let V with basis v1 , . . . ,vk so

that dim V5k , be a carrier space for a representation p of G .

That is, if xPL the Lie algebra of G , we have

p(x)PEnd(V). The collection of operators $T i%k51
k is called

a tensor operator of G if the components T i transform ac-

cording to

@x ,T i#5(
j51

n

p~x ! i
jT j . ~43!

Here, p(x) i
j is the matrix representing xPL in the basis

$v i% i51
k .

We shall follow Gould and Chandler5 and refer to

$T i% i51
k as a tensor operator of rank p. For example, if V(l)

is an irrep of U(n) we say that T is an irreducible tensor

operator of rank l.

The concept of a vector operator is a particular case of

the general definition ~43!. The indexed set $c i% i51
n is a vec-

tor operator of U(n) if,4

@E j
i ,ck#5dk jc i . ~44!

This follows from the fact that if V is the fundamental vector

representation of U(n) with basis $e i% i51
n and highest weight

of the form (1,0̇), then the action of the U(n) generators is

given by

E j
iek5dk je i . ~45!

Similarly, if V* is the contragredient vector representa-

tion of U(n) with basis $ ē i% i51
n and highest weight (0̇,21!,

then the action of the U(n) generators is given by

5116 P. J. Burton and M. D. Gould: Matrix elements of U(2n) generators. I

J. Chem. Phys., Vol. 104, No. 13, 1 April 1996
 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.102.82.2 On: Tue, 18 Oct 2016

06:37:27



E j
i ēk52dk jē i . ~46!

This yields the transformation law for a contragredient vec-

tor operator, fk say,

@E j
i ,fk#52d ikf j . ~47!

Note that the Hermitian conjugate of a U(n) vector operator

c i
†

5 (c i)
† is a U(n) contragredient vector operator.

The action of the U(n) generators E j
i (i , j51,.. . ,n) on a

GP basis state uP
p & may be determined by examining their

properties as a vector operator. If U(m11) and U(m) are

two subgroups occurring in the canonical chain ~2! then the

U(m11) generators E i ,m11 ~respectively, Em11,i! (i , j

51,.. . ,m) constitute a vector ~respectively, contragredient

vector! operator of U(m).4

From Gould and Chandler,4 the action of a U(n) vector

operator c i : H→H on an irrep V(p) of U(n) contained in

a Hilbert space H, is equivalent to investigating the action

of an intertwining operator c defined by the mapping

c:V ^ H→H. ~48!

Here, we assume also that the Hilbert space H is the multi-

plicity free direct sum of all the two-column irreps of U(n)

pertinent to the many-electron problem. It is also explicitly

understood that H is restricted to the subspace V(p). An

intertwining operator is one which commutes with the action

of the generators, viz.

E j
ic5c@p~E j

i ! ^ 111^ pp~E i j!# . ~49!

p(E i j) and pp(E i j) are the operators representing the gen-

erator E i j on the spaces V and V(p), respectively, and E i j is

understood to act on H.

In terms of components

c iv5c~e i ^ v !, vPV~p !#H. ~50!

The product space decomposes into irreps of U(n) via

V ^ V~p !5 %

a51

3

V~pa8 !, ~51!

where the Paldus label pa8 corresponds to one of the highest

weights

p18[~2a,1b,1,0c21!,

p28[~2a,2,1b21,0c!, ~52!

p38[~3,2a21,1b,0c!.

The third is nonlexical for the two-column irreps of the

many-electron problem and does not contribute.

Now, the effect of a vector operator on a GP basis state is

to shift the entries of the Paldus labels in some of the levels

of the array. The vector operator may be decomposed into a

sum of independent shift components which are found by the

use of projection operators.4

We will denote the projection operator of V ^ V(p) onto

the space V(pa8 ) by P̄[a]. This can then be used to project

out the shift components of a vector operator c i , viz.

c i5 (
a51

3

c@a# i . ~53!

Since c is an intertwining operator

cV~pa8 !#V~pa8 ! ~54!

from which it follows that the operator

c@a#5c P̄@a# ~55!

is an intertwining operator from V ^ V(p) onto V(pa8 ) < H.

In component form

c@a# i5c jP̄@a# j i ~56!

so that

c@a# iv5c P̄@a#~e i ^ v !PV~pa8 !. ~57!

That is, the shift component c[a] i changes the represen-

tation labels of U(n) from p to p18 or p28 . We can write these

shifts as

p185p1d1 , p285p1d2 , ~58!

The increments

d15~0,1,21 ! and d25~1,21,0! ~59!

are called the fundamental vector shifts.

The WE theorem enables the ME of a vector or tensor

operator to be expressed as the product of a scalar, depending

only on the irrep label, and a coupling coefficient ~or as a

sum of such products!.
From Eqs. ~53! and ~57! we see that the only nonzero

MEs of c i are given by

K pa8

P8
Uc iUpp L 5 K pa8

P8
Uc@a# iUp

P L . ~60!

u
P8

pa8 & and uP
p & are GP states belonging to V(pa8 ), V(p)#H,

respectively. Now, using the fact that c[a]5c P̄[a] @Eq.

~56!# we may write

K pa8

P8
Uc iUp

P L 5 K pa8

P8
Uc P̄@a#Ue i ^

p

P L
5(

P9

K pa8

P8
UcUpa8

P9
L K pa8

P9
Ue i ;

p

P L , ~61!

where the sum is over all Paldus tableau for the subspace

V(pa8 )#V ^ V(p) and where also, we have used the fact that

P@a#5(
P9

Upa8

P9
L K pa8

P9
U.

On the subspace V ^ V(p) we may define an intertwining

operator c̃ by

c̃:V~pa8 !→V~pa8 !

such that

Upa8

P9
L °(

P8

Upa8

P8
L K pa8

P8
UcUpa8

P9
L . ~62!

This result follows from the intertwining property of c.
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Now, if we apply Schur’s lemma15,16 we see that this

map must reduce to a scalar multiple, Ra , of the identity on

V(pa8 )#V ^ V(p). That is,

K pa8

P8
UcUpa8

P9
L 5Ra•dP9P8

. ~63!

Thus Eq. ~61! becomes

K pa8

P8
Uc iUp

P L 5Ra• K pa8

P8
Ue i ;

p

P L . ~64!

This is the Wigner–Eckart theorem for U(n) vector op-

erators. It expresses the matrix element of the vector operator

as the product of a reduced matrix element ~RME!, Ra ,

which depends only on the U(n) irrep labels p , pa and a

vector coupling coefficient ~VCC! or Wigner coefficient

^
P8

paue i ;P
p &. The RME is also written

Ra5^paicip&. ~65!

Similarly, for the contragredient vector operator c i
† we

may equate its action to that of an intertwining operator c†

by the mapping

c†:V* ^ H→H, ~66!

and the component definition

c i
†
v5c†~ ē i ^ v !, vPV~p !. ~67!

The product space V* ^ V(p) has a similar expansion

V* ^ V~p !5 %

a51

3

V~pa8 !, ~68!

where pa8 is now one of

p185~2a,1b21,0,0c!,

p285~2a21,1,1b,0c!, ~69!

p385~2a,2b,0c21,21 !.

Again p38 is nonlexical. By an exactly similar development to

that of the above, the shift components of c† are given by

c i
†
5 (

a51

3

c†@a# i ~70!

and with the use of the projector P[a], which projects

V* ^ V(p) onto V(pa8 ), they are given by

c†@a# i5c j
†P@a# j i . ~71!

Schurs’ lemma now yields the WE theorem for contra-

gredient vector operators.

K pb8

P9
Uc i

†U p

P8
L 5R̄b• K pb8

P9
U ē i ;

p

P8
L . ~72!

By projecting out the shift components of the U(n) gen-

erators and applying the WE theorem, Gould and Chandler4

were able to write down formulas for the U(n) generator

matrix elements. The MEs of the elementary generators are

denoted by

Nm
r

5K pm11

pm1dr

Pm21

UEm11
m U pm11

pm

Pm21

L ~73!

and

N̄m
r

5K pm11

pm2dr

Pm21

UEm
m11U pm11

pm

Pm21

L . ~74!

The formulas for Nm
r and N̄m

r may be found in Refs. 4 and 7.

Here ~and in what follows!, the Paldus labels from pn to the

top label in Eqs. ~73! and ~74! have been suppressed for ease

of presentation since they are unshifted. Pm21 is an allowed

Paldus tableau for the subgroup U(m21).

The nonelementary generator MEs are similarly denoted

by

NS m1p21 m

•••

im1p21 im

D
5K pm1p

pm1p211d im1p21

A
pm1d im

Pm21

UEm1p
m U pm1p

pm1p21

A
pm

Pm21

L ~75!

and

N̄S m1p21 m

•••

im1p21 im

D
5K pm1p

pm1p212d im1p21

A
pm2d im

Pm21

UEm
m1pU pm1p

pm1p21

A
pm

Pm21

L . ~76!

Explicit formulas for them are also given in Refs. 4 and 7.

Also, following the notation of Gould and Chandler in

the above, we shall denote the general form of the VCC by

VS n m

•••

in im

D 5K pn1d in

A
pm1d im

Pm21

U em ;

pn

A
pm

Pm21

L ~77!

and that of the CVCC by

V̄S n m

•••

in im

D 5K pn2d in

A
pm2d im

Pm21

U ēm ;

pn

A
pm

Pm21

L . ~78!

With this notation we may apply the WE theorem to

obtain the MEs of the U(n) generators Em1p
m , viz.
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NS m1p21 m

•••

im1p21 im

D
5@R

m1p21

im1p21 #1/2
•VS m1p21 m

•••

im1p21 im

D ~79!

which is shorthand for

K pm1p

pm1p211d im1p21

A
pm1d im

Pm21

UEm1p
m U pm1p

pm1p21

A
pm

Pm21

L
5K pm1p

pm1p211d im1p21

IE I pm1p

pm1p21
L

3K pm1p211d im1p21

A
pm1d im

Pm21

U em ;

pm1p21

A
pm

Pm21

L . ~80!

Formulas for the squares of the RMEs, denoted by R
n

in, are

given in Refs. 4 and 7 and formulas for the VCCs and

CVCCs are found in Refs. 5 and 7. The MEs of the raising

generators Em
m1p are obtained similarly, viz.

N̄S m1p21 m

•••

im1p21 im

D
5@ R̄

m1p21

im1p21 #1/2
•V̄S m1p21

•••

im1p21 im

D . ~81!

To determine the MEs of the U(2n) generators, E jn
im, we

set out ~initially! to follow a similar development to that of

the above. Here, the aim is to calculate the MEs with respect

to the SO basis ~30!. The basic motivation is that the U(2n)

generators transform as the representation

Adj[U(n)] ^Adj[U(2)].5 That is, they transform as an ad-

joint tensor operator of both U(n) and U(2).

Following Gould and Paldus,1 we note that it is a general

property of U(2) ATOs that they may be resolved into spin-

shift components

E jn
im

5E~2 ! jn
im

1E~0 ! in
im

1E~1 ! jn
im . ~82!

The components E(6) jn
im increase ~respectively, decrease!

the total spin S of the state ~30! by one unit. The zero-shift

component E(0) jn
im has no effect on the spin.

Using the method of polynomial identities ~Bracken and

Green17 and Gould18! to construct U(2) projection operators

P[1]n
m and P[2]n

m ~m,n50,1!, we can write the shift compo-

nents of Eq. ~82! as

E~1 ! jn
im

5P@1#t
mE js

it P@2#n
s ,

E~2 ! jn
im

5P@2#t
mE js

it P@1#n
s , ~83!

E~0 ! jn
im

5P@1#t
mE js

it P@1#n
s
1P@2#t

mE js
it P@2#n

s .

These shift components alter the Paldus labels p5(a ,b ,c) of

the group U(n) according to5

E~6 !:p°p1e6 ,

~84!
E~0 !:p°p1e0 ,

where ea ~a50,6! denotes the adjoint shifts

e15d12d25~21,12,21 !51e ,

e25d22d15~11,22,11 !52e , ~85!

e05~0,0,0!.

To obtain the MEs of the nonzero spin-shift operators we

apply the U(n)3U(2) WE theorem to obtain

M
s8
K p6e

P8
UE~6 ! jn

imUp

P L
M s

5^p6eiEip&• K p6e

P
Ue i ^ ē j ;

p

P L
3^SM s8uem ^ ēn ;SM s& . ~86!

The first term in Eq. ~86! is the U(2n):U(n)3U(2) RME

and the second and third terms are a U(n) and an SU(2)

adjoint coupling coefficient, respectively. We recall that $e i%
~respectively, $ ē i%! denotes the usual basis for the fundamen-

tal vector ~respectively, contragredient vector! representa-

tion, of U(n). $e i ^ ē j% is the GT basis for the adjoint

representation.5 The ME ~86! vanishes unless

M s85M s1n2m and S85S61, ~87!

a result which follows from the form of the adjoint shifts

~84!.
However, the WE theorem ~in its usual form! cannot be

applied to the zero-shift components E(0) jn
im.1 This follows

because of the multiplicities implied by the fact that there is

more than one zero-shift ATO for U(n) or U(2).

Now, from Louck and Biedenharm,19 we know that the

set of all tensor operators on an irrep V(l), say, is itself a

vector space with the same dimensionality, D[l], as the ir-

rep. So that each tensor operator has D[l] independent com-

ponents. That is, we can find a basis for the operator space.

The operator space can be partitioned into classes ac-

cording to the nature of the shift action of the tensor opera-

tor. The number of independent operators of a particular shift

type is called the multiplicity. In order to apply the WE in its

usual form the multiplicity must be one, as is the case for the

nonzero shift components E(6) jn
im.

For U(n) there are three independent zero-shift opera-

tors, viz. d j
i , E j

i , and (E2) j
i and correspondingly there are two

independent zero-shift U(2) ATOs, namely, dn
m and En

m. For

the MEs of the zero-shift components, E(0) jn
im, Gould and

Chandler6,7 have shown that the WE theorem can be applied

5119P. J. Burton and M. D. Gould: Matrix elements of U(2n) generators. I

J. Chem. Phys., Vol. 104, No. 13, 1 April 1996
 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.102.82.2 On: Tue, 18 Oct 2016

06:37:27



in a special form. However, this approach leads to complex

formulas and a formalism that is difficult to implement on

the computer.

We will now review the del operator formalism of Gould

and Paldus.1 The results obtained in their work constitute the

starting point for our alternative derivation of the U(2n)

generator MEs via the use of adjoint coupling coefficients

and the Racah factorization lemma.

IV. THE DEL OPERATOR

The del operator, defined in Eq. ~7! by

D~n ! j
i
5E~E1N/22n22 ! j

i
5E~E1g ! j

i ~88!

was introduced by Gould and Paldus1 in the context of de-

termining the MEs of the zero-shift components of the

U(2n) generators. D(n) j
i is an ATO of U(n) and as such

does not shift the representation labels of U(n).

Of central importance in this work is the unusual van-

ishing property of this operator. If uv&5uP
p & is a U(n) GP

state with level i doubly occupied or level j unoccupied, then

the action of D(n) j
i on this state is given by

D~n ! j
i uv&50. ~89!

Indeed, for given n , D(n) j
i is the unique, up to a multiple,

ATO with this property. A lemma proving this is given in

Appendix B. Moreover14 D(n) j
i vanishes on any irrep on

U(n) with total spin S5
1
2b50.

Gould and Paldus have shown in Ref. 1 that the MEs of

the zero-shift components of the U(2n) generators in the SO

basis may be expressed in terms of the del operator. They are

given by

M
s8

50K p

P8
UE~0 ! jn

imUp

P L
M s50

5

1

2
dn

mK p

P8
UE j

iUp

P L , S50,

and

M
s8
K p

P8
UE~0 ! jn

imUp

P L
M s

5

1

2
dn

mdM
s8

,M s
K p

P8
UE j

iUp

P L
1

21

2S~S11 !
K p

P8
UD j

iUp

P L
3^SM s8uẼn

muSM s&, SÞ0. ~90!

In the above Ẽn
m denotes the SU(2) generators which are

given by

Ẽn
m

5En
m

2N/2dn
m . ~91!

The MEs of the nonzero shift components may be evalu-

ated by direct application of the WE theorem, as indicated by

Eq. ~86!. However, Gould and Paldus in Ref. 1 have shown

that these also may be expressed in terms of the del operator.

By the use of the identity

D~n11 ! j
i[D̂j

i
5En11

i E j
n11

1D~n ! j
i

1~ 1
2En11

n11
21 !E j

i , 1<i , j<n , ~92!

the RMEs of Eq. ~86! may be evaluated and the adjoint cou-

pling coefficients may be related to the MEs of the del op-

erator. We refer to Eq. ~92! later in this paper and a proof of

it is given in Appendix B.

The MEs of the nonzero shift components of the U(2n)

generators are then given by

M
s8
K p1e

P8
UE~1 ! jn

imUp

P L
M s

5~21 !bS b12

b13
D 1/2

3K p1~0,1,0!

p1e

P8

U D̂j
iUp1~010!

p

P
L

3^S11,M s8uem ^ ēn ;SM s&

and

M
s8
K p2e

P8
UE~2 ! jn

imUp

P L
M s

5~21 !bS b

b21
D 1/2

3K p1~1,21,1!

p2e

P8

U D̂j
iUp1~1,21,1!

p

P
L

3^S21,M s8uem ^ ēn ;SM s&. ~93!

The formulas of Eqs. ~90! and ~93! now permit a unified

approach to the determination of the MEs of the U(2n) gen-

erators. It is computationally more convenient to use the del-

operator formulas for the nonzero shift components as they

are also required for the zero-shift case.

The MEs of the U(n) generators, E j
i , were obtained in

Refs. 4 and 7 and formulas for the adjoint coupling coeffi-

cients are given in Refs. 5 and 7. It remains then to obtain the

MEs of the del operator. Gould and Battle2 have derived

formulas for the del-operator MEs in a GP basis. The method

used by them is analogous to the shift component method of

Gould and Chandler,4,7 which was used previously to evalu-

ate the MEs of the U(n) generators. In the outline that fol-

lows we have summarized the results of Gould and Battle.2

Later in this paper we will reproduce these same formulas by

the use of an alternative method which relies on adjoint cou-

pling coefficients.

The U(n11) ATO D(n11) j
i may be decomposed into

U(n) shift components

D~n11 ! i j5(
an

DS n

an
D

i j

, ~94!

where for notational convenience we have written E i j[E j
i

and where also

DS n

an
D

i j

:pn→pn1ean
, ~an51 ,0,2 !, ~95!

is the U(n) adjoint shift component of D(n11) i j .

By exploiting the unique vanishings property of the del

operator, it is found that
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DS n

0 D
i j

5

11bn111Dbn11

11bn11

•D~n ! i j

5~an11 !•D~n ! i j , ~96!

which defines

an5

Dbn11

11bn11

, Dbn115bn112bn . ~97!

Note that used as a subscript, an51 ,0,2 .

Similarly the U(n21) zero-shift component is found to

be

DS n n21

6 0
D

i j

5DS n

6
D

nn

•

2

bn21~bn2112 !
•D~n21 ! i j .

~98!

Equations ~96! and ~98!, are used to obtain recursive

formulas for the basic shift components of the diagonal del

operators. For the operator D(n11)n21,n21 we have the de-

composition

D~n11 !n21,n215(
an

(
an21

DS n n21

an an21
D

n21,n21

.

~99!

Noting that the shift components D(
1

n
2

n21) and D(
2

n
1

n21)

are nonlexical, we see that there are at most nine ~9! final

states.2 The allowed shift components are given by

DS n n21

0 0
D

n21,n21

5~11an!~11an21!D~n21 !n21,n21 ,

~100a!

DS n n21

6 0
D

n21,n21

5

2

bn21~21bn21!
•DS n

6
D

nn

•D~n21 !n21,n21 , ~100b!

DS n n21

0 6
D

n21,n21

5~11an!•DS n21

6
D

n21,n21

, ~100c!

DS n n21

6 6
D

n21,n21

5XS n n21

6 6
D

n21,n21

. ~100d!

X i j is the two-body operator E in11En11 j.
2,5

When the MEs of these basic shift components are

evaluated, it is found that the resulting expressions may be

factorized into a product of distinct segments.2 These are

analogous to the segment level form of the MEs of the U(n)

generators which were obtained by Shavitt.20

They are

K pn11

pn

pn21

Pn22

UDS n n21

0 0
D

n21,n21
U pn11

pn

pn21

Pn22

L 5Tn11~0 !•Tn~0,0!•Tn21~0 !,

K pn11

pn6e

pn21

Pn22

UDS n n21

6 0
D

n21,n21
U pn11

pn

pn21

Pn22

L 5Tn11~6 !•Tn~6 ,0!•Tn21~0 !,

~101!

K pn11

pn

pn216e

Pn22

UDS n n21

0 6
D

n21,n21
U pn11

pn

pn21

Pn22

L 5Tn11~0 !•Tn~0,6 !•Tn21~6 !,

K pn11

pn6e

pn216e

Pn22

UDS n n21

6 6
D

n21,n21
U pn11

pn

pn21

Pn22

L 5Tn11~6 !•Tn~6 ,6 !•Tn21~6 !.

The segments Tn11(an), Tn(an ,an21) and Tn(an) are listed in Appendix C.

The MEs of the general diagonal operator D(n11)mm are obtained by continuing this recursive reduction. They are given

by
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K pn11

pn1ean

pn211ean21

A
pm1eam

Pm21

UD~n11 !mmU pn11

pn

pn21

A
pm

Pm21

L 5Tn11~an!• )
r5m11

n

Tr~ar ,ar21!•Tm~am!5D*S n m11

•••

an am11

D •Tm~am!,

~102!

where it is convenient to define

D*S n m11

•••

an am11

D 5Tn11~am!• )
r5m11

n

Tr~ar ,ar21!. ~103!

The diagonal del-operator MEs are the key to obtaining the off-diagonal MEs which are obtained via the use of the

commutation relation

Dm1p
m

5@Em1p
m ,Dm1p

m1p# . ~104!

The nonzero MEs of the off-diagonal operator D(n)m1p
m are given by

7
pn

pn211ean21

A
pm1p1eam1p

pm1p211d im1p21

A
pm1d im

Pm21

UD~n !m1p
m U pn

pn21

A
pm1p

pm1p21

A
pm

Pm21

8 5D*S n21 m1p21

•••

an21 am1p21

D •V~am1p ,im1p21!•NS m1p21 m

•••

im1p21 im

D .

~105!

In the above, D* is as defined in Eq. ~103! and

NS m1p21 m

•••

im1p21 im

D
is the ME of the U(n) generator Em1p

m @see Eq. ~75!#.
The terms V(am1p ,im1p21) are referred to as adjoint-vector coupling coefficients ~AVCCs! and the lexically permitted

possibilities are

V~2 ,2!5~21 !Dam1pS bm1p12Dbm1p21

bm1p21
D 1/2

•@~bm1p11 !~bm1p21 !#1/2,

V~0,im1p!5
1
2•~21 ! im1p21~bm1p12Dbm1p12im1p2122 !, ~106!

V~1 ,1!5~21 !D̄cm1pS 31bm1p12Dbm1p

bm1p13
D 1/2

•@~bm1p11 !~bm1p13 !#1/2.

In Eq. ~106! we use the notation D̄cm512Dcm

512(cm2cm21).

The MEs of D(n11)m
m1p may be obtained by using the

hermiticity requirement. They are stated explicitly by Gould

and Paldus in Ref. 2.

As stated previously, rather than use the above shift

component formalism for the multishell case, we will use the

simpler approach based on coupling coefficients and the Ra-

cah factorization lemma. As an illustration of this method we

will rederive the del operator ME of Eq. ~105! using the

ACC approach.

First, we show that zero-shift adjoint coupling coeffi-

cients may be defined via the del operator. That this is pos-

sible, follows from the unique vanishings property, Eq. ~89!,

of this operator.
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V. ZERO-SHIFT ADJOINT COUPLING COEFFICIENTS

We want to define zero-shift adjoint coupling coeffi-

cients ~ACCs!, that is those of the form

K p

P8
Ue i ^ ē j ;

p

P L , ~107!

where uP
p & denotes a U(n) GP basis state and e i ^ ē jPV ^ V*

is a GT basis state for the adjoint representation. The adjoint

irrep V ^ V*, which has a highest weight of the form l5(1,

0̇,21!, will be denoted by V~l!5V(1,0̇,21!.
Now by a generalization of the discussion in Sec. III, the

del operator D i j , an adjoint tensor operator, is equivalent to

an intertwining operator, D say, such that

D:V~1,0̇,21 ! ^ H→H, ~108!

where H is the Hilbert space of states

H5 %

p5~a ,b ,c !
a1b1c5n

V~p !. ~109!

The LHS of Eq. ~108! contains subspaces of the form

V(1,0̇,21!^V~p! which admit the Clebsch–Gordon decom-

position ~with only the lexically permitted subspaces shown!

V~1,0̇,21 ! ^ V~p !5V~p1e ! % 2V~p ! % V~p2e !. ~110!

From Eq. ~110! it is clear that there are multiple copies of the

zero-shifted subspace.

From the decomposition of Eq. ~110!, we see that unique

nonzero shift ACCs may be defined. But this is not true for

the zero-shift case as here there is a multiplicity label. How-

ever, it is known that the RHS of Eq. ~108!, the Hilbert space

H, is multiplicity free and this fact makes the definition of

zero-shift ACCs possible. We rewrite Eq. ~108! to make this

idea explicit

D:V~1,0̇,21 ! ^ V~p !→V~p1e ! % V~p ! % V~p2e !

#H. ~111!

In fact, the MEs of any zero-shift ATO may be used to

define generalized coupling coefficients for the zero shift

case. However, coupling coefficients so defined will not nec-

essarily satisfy the Racah factorization lemma. As we will

now show, the unique properties of the del operator make it

the correct choice for the many electron problem.

From Gould and Battle2 we know that the uniqueness of

the vanishings property, Eq. ~89!, implies that the zero-shift

component D(0
n21) i j of D(n) i j is proportional to D(n21) i j ,

DS n21

0 D
i j

5~an2111 !•D~n21 ! i j , 1<i , j<n21.

~112!

This fact implies that a unique factorization property for the

del-operator MEs exists, namely,

K pn

Pn218
UD~n ! i jU pn

Pn21
L

5~an2111 !• K pn21

Pn228
UD~n21 ! i jUpn21

Pn22
L ,

1<i , j<n21. ~113!

This factorization may be continued provided the indices

i and j are less than or equal to the index of the leading

Paldus label

K pn

pn21

pn22

Pn238

UD~n ! i jU pn

pn21

pn22

Pn23

L
5~an2111 !~an2211 !K pn22

Pn238
UD~n22 ! i jUpn22

Pn23
L ,

1<i , j<n22. ~114!

We now define the normalized del operator to be the

zero-shift adjoint coupling coefficient, that is,

K pn

Pn218
Ue i ^ ē j ;

pn

Pn21
L [

1

S~n !
K pn

Pn218
UD~n ! i jU pn

Pn21
L ,

~115!
1<i , j<n .

In the above S(n)522Sn(Sn11), where Sn5bn/2 is the

total spin. Note that tr[D(n)]5S(n). This choice of normal-

ization is required to ensure that ~when SÞ0)

(
i , j ,P9

K p

P8
Ue i ^ ē j ;

p

P9
L K p

P9
Ue i ^ ē j ;

p

P L 5dPP8
. ~116!

Now, if we use the zero-shift ACC definition of Eq.

~115! in the factorization of Eq. ~114! we get

S~n !• K pn

Pn218
Ue i ^ ē j ;

pn

Pn21
L

~117!
5~an2111 !~an2211 !•S~n22 !

3 K pn22

Pn238
Ue i ^ ē j ;

pn22

Pn23
L .

Rearranging and gathering terms we find that

K pn

Pn218
Ue i ^ ē j ;

pn

Pn21
L

5F ~an2111 !
S~n21 !

S~n !
G•F ~an2211 !

S~n22 !

S~n21 !
G

3 K pn22

Pn228
Ue i ^ ē j ;

pn22

Pn22
L

or

K pn

Pn218
Ue i ^ ē j ;

pn

Pn21
L

5 K pn

pn21
UU pn

pn21
L K pn21

pn22
UUpn21

pn22
L K pn22

Pn238
Ue i ^ ē j ;

pn22

Pn23
L .

~118!
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Coefficients of the form

K pr

pr21
UU pr

pr21
L

are examples of zero-shift adjoint reduced Wigner coeffi-

cients ~RWCs!. They depend only on the Paldus labels pr

and pr21 of the subgroups U(r) and U(r21). Equations

~118! constitutes the Racah factorization lemma for the zero-

shift case.

We now need to demonstrate the factorization property

for the case where one of the shifts ~at level r or r21! is

zero and the shift at the other level is nonzero. The factor-

ization property for those of the form where both levels are

shifted ~viz. pr85pr6e and pr218 5pr216e! follows imme-

diately from the uniqueness of the nonzero adjoint coupling

coefficients.

For convenience we work in an irrep of U(n11).

Case 1

When pn118 5pn11 and pn8 5 pn 6 e .

From the definition of the zero-shift adjoint coupling co-

efficients we have

K pn11

pn6e

Pn218
U D̂i jU pn11

pn

Pn21

L 5S~n11 !•K pn11

pn6e

Pn218
Ue i ^ ē j ;

pn11

pn

Pn21

L .

~119!

Now, from Gould and Paldus,1 the application of the U(n)

WE theorem to the lhs of Eq. ~119! yields

K pn11

pn6e

Pn218
U D̂i jU pn11

pn

Pn21

L 5^pn6eiD̂ipn&• K
3

pn6e

Pn218
Ue i ^ ē j ;

pn

Pn21
L . ~120!

In both of the above equations we have 1<i , j<n . Equating

Eqs. ~119! and ~120! and collecting terms we have

K pn11

pn6e

Pn218
Ue i ^ ē j ;

pn11

pn

Pn21

L
5

^pn6eiD̂ipn&

S~n11 !
• K pn6e

Pn218
Ue i ^ ē j ;

pn

Pn21
L

~121!

5 K pn11

pn6eUUpn11

pn
L • K pn6e

Pn218
Ue i ^ ē j ;

pn

Pn21
L .

Case 2

When pn8 5 pn and pn118 5 pn11 6 e .

The factorization property of the del operator enables us

to say that

K pn116e

pn

Pn218
U D̂i jU pn11

pn

Pn21

L 5gn11• K pn

Pn218
UD i jU pn

Pn21
L ,

~122!

where the proportionality constant gn11 is a U(n) invariant.

Now, by definition

K pn

Pn218
UD i jU pn

Pn21
L 5S~n !• K pn

Pn218
Ue i ^ ē j ;

pn

Pn21
L . ~123!

And from the U(n11) WE theorem

K pn116e

pn

Pn218
U D̂i jU pn11

pn

Pn21

L
5^pn116eiD̂ipn11&•K pn116e

pn

Pn218
Ue i ^ ē j ;

pn11

pn

Pn21

L .

~124!

Equations ~122!, ~123!, and ~124! yield

K pn116e

pn

Pn218
Ue i ^ ē j ;

pn11

pn

Pn21

L
~125!

5

g•S~n !

^pn116eiD̂ipn11&
• K pn

Pn218
Ue i ^ ē j ;

pn

Pn21
L

5 K pn116e

pn
UUpn11

pn
L K pn

Pn218
Ue i ^ ē j ;

pn

Pn21
L .

To summarize, we have the basic factorization property

K pr1ear

pr211ear21

Pr228

Ue i ^ ē j ;

pr

pr21

Pr22

L
5K pr1ear

pr211ear21

UU pr

pr21
L •K pr211ear21

Pr228
Ue i ^ ē j ;

pr21

Pr22
L ,

~126!

where ear
5 1e , 0, 2e and 1<i , j<n . Equation ~126! is the

Racah factorization lemma for both zero and nonzero shift

ACCs.

With this definition of the zero-shift ACCs, Eq. ~115!,
we may now adopt a unified approach to the evaluation of

the MEs of the del operator. Since the U(m) del operator

D(m) i j affects a zero shift at the top Paldus label pm , we

may write

K pm

Pm218
UD~m ! i jUpm

Pm
L 5S~m !K pm

Pm218
Ue i ^ ē j ;

pm

Pm21
L
~127!

for all types of del operator and then apply the Racah factor-

ization lemma to express the del-operator MEs entirely in

terms of reduced Wigner coefficients and Wigner coeffi-

cients. Furthermore, as we will show in the next section, this

factorization is directly equivalent to the segmentation level

formulas obtained by Gould and Battle.2
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VI. THE DEL-OPERATOR MATRIX ELEMENTS

In this section we derive the MEs of the del operators of

the form D(n)m ,m1p using the Racah factorization lemma.

Our development parallels that of Gould and Battle2 to allow

a direct comparison with the shift operator method. Thus our

presentation has three key steps:

~i! Demonstrate that the Racah factorization yields the

basic segmentation level formulae of Eqs. ~101!.
~ii! Extend the reduction to obtain the MEs of the diago-

nal del-operators D(n)mm , Eq. ~102!.
~iii! Evaluate the general off-diagonal del-operator MEs of

the form D(n)m ,m1p , Eq. ~105!.

A. The basic segmentation level formulas

For the work in this section we need the adjoint reduced

Wigner coefficients. These are of the form

K pn1ean

pn211ean21

I pn

pn21
L . ~128!

We note that the shifts (ean
,ean21

) 5 ( 1 , 2 ) or ~2,1! are

nonlexical and thus do not occur. Using the methods of

Gould et al.,4–9 these coefficients are derived in the second

and third papers of this series. The lexically permitted adjoint

RWCs are tabulated in Appendix D. Our purpose in this sec-

tion is to take these coefficients as given and use them to

rederive the del-operator matrix elements via the ACC ap-

proach.

To parallel the work of Gould and Battle,2 we first work

in an irrep of U(n11). Now, recalling that the del operator

is an ATO and effects a zero shift on the U(n11) label

pn11, the first step in the calculation of the ME is always to

equate it to the corresponding adjoint Wigner coefficient.

The application of the Racah factorization lemma, and the

simplification of the resulting expression by use of the cor-

responding level shifts, yields the required segment level for-

mula.

We will illustrate with some sample calculations.

~i!

K pn11

pn

pn21

Pn22

UDS n n21

0 0
D

n21,n21
U pn11

pn

pn21

Pn22

L
5S~n11 !•K pn11

pn

pn21

Pn22

U en21 ^ ēn21 ;

pn11

pn

pn21

Pn22

L 5S~n11 !K pn11

pn
UUpn11

pn
L K pn

pn21
UU pn

Pn21
L K pn21

Pn22
Uen21 ^ ēn21 ;

pn21

Pn22
L

5S~n11 !•F S~n !

S~n11 !
•~an11 !G•FS~n21 !

S~n !
•~an2111 !G• D~n21 !n21,n21

S~n21 !

5~an11 !•~an2111 !•D~n21 !n21,n215Tn11~0 !•Tn~0,0!•Tn21~0 !. ~129!

~ii!

K pn11

pn1e2

pn21

Pn22

UDS n n21

2 0
D

n21,n21
U pn11

pn

pn21

Pn22

L
5S~n11 !•K pn11

pn

pn21

Pn22

U en21 ^ ēn21 ;

pn11

pn

pn21

Pn22

L 5S~n11 !• K pn11

pn1e2

UUpn11

pn
L • K pn1e2

pn21
UU pn

pn21
L • K pn21

Pn22
Uen21 ^ ēn21 ;

pn21

Pn22
L

5S~n11 !•F 1

S~n11 !
•H ~an11 !~bn11 !~cn11 !

bn
J 1/2GF ~21 !H bn21

~an2111 !~bn2111 !~cn2111 ! J
1/2G• D~n21 !n21,n21

S~n21 !
.

Using the shifts pn115pn1(1,21,1) and pn5pn211(0,1,0) this becomes

5

1

11bn11

•2@~11bn!~11bn22 !#21/2
•D~n21 !n21,n215Tn11~2 !•Tn~2 ,0!•Tn21~0 !. ~130!
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~iii!

K pn11

pn

pn211e1

Pn22

UDS n n21

0 1
D

n21,n21
U pn11

pn

pn21

Pn22

L
5S~n11 !•K pn11

pn

pn21

Pn22

U en21 ^ ēn21 ;

pn11

pn

pn21

Pn22

L 5S~n11 !• K pn11

pn
UUpn11

pn
L • K pn

pn211e1

UU pn

pn21
L • K pn21

Pn22
Uen21 ^ ēn21 ;

pn21

Pn22
L .

~131!

Now, the full adjoint WC on the RHS of Eq. ~131! is equal ~up to a phase! to the corresponding RWC, see Gould and Paldus.9

That is,

K pn211e1

Pn22
Uen21 ^ ēn21 ;

pn21

Pn22
L 5~21 !K pn211e1

pn22
UUpn21

pn22
L . ~132!

In Eq. ~132! pn22 is the leading Paldus label of the Paldus array Pn22. The phase change is required to ensure that the

maximal WCs have a positive real phase.

After substitution we get for Eq. ~131!

K pn11

pn

pn211e1

Pn22

UDS n n21

0 1
D

n21,n21
U pn11

pn

pn21

Pn22

L
5S~n11 !•F S~n !

S~n11 !
•~an11 !GF 1

S~n !
•H ~n21122cn21!~bn2111 !~n21122an21!

~21bn21! J 1/2G
3F H ~bn2212 !

~bn2211 !~n22122cn22!~n22122an22!
J 1/2G .

Application of the shifts pn5pn211(0,1,0) and pn215pn221(1,21,1) and rearrangement reduces this to

5~an11 !•
1

11bn

•@~11bn21!•~11bn2112 !#1/2
5Tn11~0 !•Tn~0,1 !•Tn21~1 !. ~133!

The adjoint RWCs

K pn1e1

pn211e1

UU pn

pn21
L and K pn1e2

pn211e2

UU pn

pn21
L

are shift dependent and the corresponding ME formulas must be obtained on a case by case basis. For the ~1,1! shifts we have

~iv!

K pn11

pn1e1

pn211e1

Pn22

UDS n n21

1 1
D

n21,n21
U pn11

pn

pn21

Pn22

L
5S~n11 !•K pn11

pn1e1

pn211e1

Pn22

U en21 ^ ēn21 ;

pn11

pn

pn21

Pn22

L
5S~n11 !• K pn11

pn1e1

UUpn11

pn
L • K pn1e1

pn211e1

UU pn

pn21
L • K pn1e1

Pn22
Uen21 ^ ēn21 ;

pn21

Pn22
L
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5S~n11 !•F 1

S~n11 !
•H ~n122cn!~bn11 !~n122an!

~21bn! J 1/2G • K pn1e1

pn211e1

UU pn

pn21
L

3F ~bn2212 !

~bn2211 !~n22122cn22!~n22122an21!
G . ~134!

The four subcases of the RWC ^pn211e
1

pn1e
1 uu

pn21

pn & are listed in Appendix D. Substitution, on a case by case basis, together

with the use of the level shifts pn115pn1(0,1,0) and pn215pn221(1,21,1) gives

K pn11

pn1e1

pn211e1

Pn22

UDS n n21

1 1
D

n21,n21
U pn11

pn

pn21

Pn22

L
55

1

11bn11

•~11 !•@~11bn21!~11bn2112 !#1/2, Dbn50,

1

11bn11

•~21 !•S bn13

bn11
D 1/2

@~11bn21!~11bn2112 !#1/2, Dbn51,

1

11bn11

•~21 !•S bn11

bn13
D 1/2

@~11bn21!~11bn2112 !#1/2, Dbn521.

~135!

We will not reproduce the full working, but a similar case by case evaluation of the corresponding segment level formula

of Gould and Battle2 shows that the two formulas are identically equal

K pn11

pn1e1

pn211e1

Pn22

UDS n n21

1 1
D

n21,n21
U pn11

pn

pn21

Pn22

L 5Tn11~1 !•Tn~1 ,1 !•Tn21~1 !. ~136!

Similar results hold for all of the remaining MEs and the

segmentation level formulas of Eqs. ~101! are reproduced

exactly in all cases by the use of the Racah factorization

lemma.

B. The diagonal matrix elements

We want to determine the MEs of the diagonal del op-

erators of the form D(n11)mm . To do so we may extend the

above procedure which is essentially a recursive reduction.

As before

K pn11

pn1ean

A
pm1eam

Pm21

UD~n11 !mmU pn11

pn

•••

pm

Pm21

L
5S~n11 !•K pn11

pn1ean

A
pm1eam

Pm21

U em ^ ēm ;

pn11

pn

•••

pm

Pm21

L . ~137!

Application of the Racah factorization lemma down to

the mth level yields

5S~n11 !•K pn11

pn1ean

I pn11

pn
L

3 )
r5m11

n K pr1ear

pr211ear21

U3U pr

pr21
L

3K pm1eam

Pm21
Uem ^ ēm ;

pm

Pm21
L . ~138!

At this stage, to simplify the working, we need a more

explicit relationship between the individual adjoint RWCs

and the corresponding segment level formulas. From an

analysis of Eqs. ~129! to ~136! ~and the other cases not

shown! we may infer the general relationship

K pr1ear

pr211ear21

I pr

pr21
L

5

1

Par
~r !

•Tr~ar ,ar21!•Par21
~r21 ! ~139!

and

K pm1eam

Pm21
Uem ^ ēm ;

pm

Pm21
L 5K pm1eam

pm21
I pm

pm21
L
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5

1

Pam
~m !

•Tm~am!. ~140!

The expressions Pan
(n) are given by

P1~n !5@~bn11 !~bn12 !~n122an!~n122cn!#1/2,

P2~n !5@bn~an11 !~bn11 !~cn11 !#1/2, ~141!

P0~n !5S~n !522Sn~Sn11 !.

Equations ~139! to ~141! express the equivalence of the

factorization approach to the shift operator approach much

more directly. Noting that Tn11(0)5Tn11(0,0) and

Tn11(6)5Tn11(0,6), substitution of Eqs. ~139! and ~140!
into Eq. ~138! gives

K pn11

pn1ean

A
pm1eam

Pm21

UD~n11 !mmU pn11

pn

A
pm

Pm21

L
5S~n11 !• )

r5m11

n11 K pr1ear

pr211ear21

I pr

pr21
L

3K pm1eam

pm21
I pm

pm21
L

5 )
r5m11

n11

Tr~ar ,ar21!Pam
~m !•

1

Pam
~m !

Tm~am!

5Tn11~an!• )
r5m11

n

Tr~ar ,ar21!•Tm~am!

5D*S n m11

•••

an am11

D •Tm~am!. ~142!

This defines D* @as for Eq. ~103!# by

D*S n m11

•••

an am11

D
5Tn11~am!• )

r5m11

n

Tr~ar ,ar21!. ~143!

Equation ~142! agrees identically with the formula of Gould

and Battle.2 The replacement n11°n will give the ME of

D(n)mm .

C. The matrix elements of D(n)m,m1p

The nonvanishing MEs of the operator D(n)m ,m1p are

found to be,2,5

7
pn

pn211ean21

A
pm1p1eam1p

pm1p211d im1p21

A
pm1d im

Pm21

UD~n !m ,m1pU pn

pn21

A
pm1p

pm1p21

A
pm

Pm21

8
5S~n !•7

pn

pn211ean21

A
pm1p1eam1p

pm1p211d im1p21

A
pm1d im

Pm21

U em ^ ēm1p ;

pn

pn21

A
pm1p

pm1p21

A
pm

Pm21

8
~144!

and after application of the Racah factorization lemma this

becomes

5S~n !•K pn

pn211ean21

I pn

pn21
L )

r5m1p

n22 K pr111ear11

pr1ear

I pr11

pr
L

3K pm1p1eam1p

pm1p211d im1p21

I pm1p

pm1p21
L

3K pm1p211d im1p21

A
pm1d im

Pm21

U em;

pm1p21

A
pm

Pm21

L . ~145!

The coefficient

K pm1p1eam1p

pm1p211d im1p21

I pm1p

pm1p21
L ~146!

is referred to as an adjoint-vector RWC. The lexically per-

mitted adjoint-vector RWCs are tabulated in Appendix E.

They are obtained by the same methods as used for the ad-

joint RWCs.

The last term in Eq. ~145! is a VCC which is given by

K pm1p211d im1p21

A
pm1d im

Pm21

U em ;

pm1p21

A
pm

Pm21

L
5VS im1p21 im

•••

mp21 m
D

5@R
m1p21

im1p21 #21/2
•NS im1p21 im

•••

m1p21 m
D , ~147!
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where in the last step we have applied the U(n) WE theorem

of Eq. ~79!.
From the previous section we have that

S~n !•K pn

pn211ean

I pn

pn21
L • )

r5m1p

n22 K pr111ear11

pr1ear

I pr11

pr
L

5D*S n21 m1p21

•••

an21 am1p21

D •Pam1p
~m1p !. ~148!

Finally, the substitution of Eqs. ~147! and ~148! into Eq.

~145! yields

7
pn

pn211ean21

A
pm1p1eam1p

pm1p211d im1p21

A
pm1d im

Pm21

UD~n !m ,m1pU pn

pn21

A
pm1p

pm1p21

A
pm

Pm21

8
5D*S n21 m1p11

•••

an21 am1p11

D •Pam1p
~m1p !

3@R
m1p21

im1p21 #21/2K pm1p1eam1p

pm1p211d im1p21

I pm1p

pm1p21
L

3NS m1p21 m

•••

im1p21 im

D . ~149!

For the formula of Eq. ~149! to be identical to that ob-

tained by Gould and Battle, Eq. ~105!, we must show that

Pam1p
~m1p !•K pm1p1eam1p

pm1p211d im1p21

I pm1p

pm1p21
L

•@R
m1p21

im1p21 #21/2
5V~am1p ,im1p21!. ~150!

On the LHS the factor Pam1p
(m 1 p) is given by Eqs. ~141!,

the lexical adjoint-vector RWCs are listed in Appendix E as

are the only two lexical RMEs. Note that these are shift

dependent.

Proof of the above identity must be done on a case by

case basis using lexicality considerations to match appropri-

ate shifts and then to reduce the resulting expressions with

the fundamental vector shifts.

If we rewrite Eq. ~150! in the simplified form

L~am1p ,im1p21!5V~am1p ,im1p21! ~151!

then we find that identity holds in all cases, viz.

L~1 ,1!5bm1p11 5V~1 ,1!, Dp5~1,21,1!,

L~1 ,1!5~21 !•@~bm1p11 !~bm1p13 !#1/2
5V~1 ,1!, Dp5~1,0,0!,

L~0,1!5~21 !• 1
2~bm1p12 ! 5V~0,1!, Dp5~0,1,0!,

L~0,1!5~21 !• 1
2bm1p 5V~0,1!, Dp5~1,0,0!,

L~0,2!5
1
2bm1p 5V~0,2!, Dp5~1,21,1!,

L~0,2!5
1
2~bm1p12 ! 5V~0,2!, Dp5~1,0,0!,

L~2 ,2!5bm1p11 5V~2 ,2!, Dp5~0,1,0!,

L~2 ,2!5~21 !•@~bm1p11 !~bm1p21 !#1/2
5V~2 ,2!, Dp5~1,0,0!.

~152!

This establishes the complete equivalence of our del-

operator ME formula with that of Gould and Battle.

VII. AN ALTERNATIVE APPROACH

In conclusion, we observe that there is yet another way

to calculate the MEs of the del operator. Gould and

Chandler5 observed that there is a close relationship between

this problem and the evaluation of the MEs of the two-body

operator X j
i
5En11

i E j
n11.

The starting point is the identity referred to in Sec. IV,

Eq. ~92!. For convenience we reproduce it

D̂j
i
5D~n11 ! j

i
5En11

i E j
n11

1D~n ! j
i
1~ 1

2En11
n11

21 !E j
i .

~153!

We first note that the nonzero shift component of D̂ j
i is

simply

DS n

6
D

j

i

[En11
i E i

n11
5X j

i . ~154!

This is due to the fact that D j
i and E j

i are both zero shift in

effect on the U(n) Paldus label. Thus
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^AuDS n

6
D

j

i

uB&5^AuX j
i uB&, ~155!

where uA& and uB& are GP basis states.

For the zero-shift component, we recall that

DS n

0 D
j

i

5~an11 !•D j
i . ~156!

Now, the zero-shift component of Eq. ~153! is given by

DS n

0 D
j

i

5XS n

0 D
j

i

1D j
i
1~ 1

2En11
n11

21 !E j
i . ~157!

On substituting for D j
i from Eq. ~156! we obtain

S an

an11
DDS n

0 D
j

i

5XS n

0 D
j

i

1~ 1
2En11

n11
21 !E j

i . ~158!

Thus

S an

an11
D •^PuDS n

0 D
j

i

uQ&

5^PuXS n

0 D
j

i

uQ&1^Pu~ 1
2En11

n11
21 !E j

i uQ&, ~159!

where uP& and uQ& are once again GP basis states. In the

above, the MEs of X j
i and the U(n) generators are known,

Gould et al.4,5,7

VIII. CONCLUSION

In the above we have given an alternative derivation of

the Gould–Battle formulas for the del-operator MEs based

on ACCs and the Racah factorization lemma. This approach

has the advantage that it extends to the general multishell

case which we investigate in the forthcoming papers in this

series.

The main purpose of this series of papers is to generalize

the method outlined in Sec. VI above to obtain formulas for

the MEs of the U(2n) generators in a multishell spin–orbit

basis. For this we require the two-shell adjoint WCs and

adjoint-vector WCs and RWCs. These are evaluated in the

second and third papers of the series together with the

U(2n) generator MEs in a two-shell spin–orbit basis. We

also derive the adjoint reduced Wigner coefficients tabulated

in Appendices D and E.

Finally, in paper four we derive the U(2n) generator

MEs in a multishell spin–orbit basis and demonstrate that in

the GT limit they yield the correct one-shell formula as ob-

tained by Gould and Battle2 and rederived here.

APPENDIX A: ABBREVIATIONS

ACC Adjoint coupling coefficient

ATO Adjoint tensor operator

AVCC Adjoint vector coupling coefficient

BR Branching rules

CAS Complete active space

CASCI Complete active space configuration interaction

CGP Composite Gelfand–Paldus

CI Configuration interaction

CSF Configuration state function

CVCC Contragredient vector coupling coefficient

End~V! The set of structure preserving mappings of a

vector space V into itself, i.e., the set

of endomorphisms

f.d. Finite dimensional

GP Gelfand–Paldus

GT Gelfand–Tsetlin

irrep Irreducible representation

MBPT Many body perturbation theory

ME Matrix element

MRCI Multireference configuration interaction

RME Reduced matrix element

RWC Reduced Wigner coefficient

SCM Shift component method

SO Spin orbit

UGA Unitary group approach

VCC Vector coupling coefficient

WE Wigner–Eckart

APPENDIX B: MATHEMATICAL LEMMA

Lemma 1

D(n) j
i[D j

i is the unique—up to a multiple—adjoint ten-

sor operator with the vanishing property that

D j
i uf&50

if uf& is any U(n) weight state with level i doubly occupied or

level j unoccupied.

Proof

Before outlining the proof of the lemma, we first recall

the definition of a weight vector. If V is finite dimensional

irrep of V then vPV is called a weight vector if v is an

eigenvector of the n commuting operators E i
i (i51,.. . ,n).

That is, if

E i
i
v5l iv i . ~B1!

The n-tuple ~l1 , l2 , . . . ,ln! is called the weight of the vector

v . The natural lexicographical ordering on n-tuples allows

the weights to be ordered.

In GP notation the irrep V(a ,b ,c)5V(p) of U(n) is

uniquely labeled by the highest weight vector v with weight

(2a,1b,0c), where a1b1c5n . For the

irrep V(2,2,1)[V(2,2,1,1,0) of V(5), where a52, b52,

c51 the state v defined by

v5U2 2 1 1 0

2 2 1 1

2 2 1

2 2

2

L ~B2!

is called a maximal weight state. Clearly the weight of v is

given by the 5-tuple ~2,2,1,1,0!, giving in this case the orbital

occupancy of each level.

We divide the proof of the lemma into two parts:
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~i! Proof of the vanishing property.

~ii! Proof of uniqueness.

Proof of the vanishing property

Let uf& be any weight state with orbital i doubly occu-

pied or level j unoccupied. First suppose i5 j . In this case

D i
iuf&5~E2! i

iuf&1~N/22n22 !E i
iuf&

5~E2! i
iuf&1~N22n24 !uf&. ~B3!

Now,

~E2! i
iuf&5 (

j

unocc.

E j
iE i

juf&1 (
j

sing.occ.

E j
iE i

juf&

1 (
j

doub.occ.

E j
iE i

juf&

5 (
j

unnocc.

~d j
jE i

i
2E j

j
1E i

jE j
i !uf&1 (

j

sing.occ.

~d j
jE i

i
2E j

j

1E i
jE j

i !uf&1~E i
i!2uf&

5F2 (
j

unocc.

12 (
j

sing.occ.

2 (
j

sing.occ.

~E j
j
14 !G uf&

5F2 (
j

unocc.

1 (
j

sing.occ.

14G uf&

5F2n22 (
j

doub.occ.

22 (
j

sing.occ.

1 (
j

sing.occ.

14G uf&

5F2n2(
i51

n

E i
i
14G uf&5~2n2N14 !uf&. ~B4!

Upon substitution of Eq. ~B4! into Eq. ~B3! we see that

D i
iuf&50, ~B5!

as required.

Similarly, if j is unoccupied we have

D j
i uf&5~E2! j

i uf&1~N/22n22 !E j
i uf&

5 (
k51

n

Ek
i E j

kuf&1~N/22n22 !E j
i uf&50, ~B6!

since E j
i uf&50 whenever orbital j is unoccupied. This es-

tablishes the first part of the lemma.

Proof of uniqueness

To show uniqueness we need only work with a maximal

state ~see above!.
Now suppose that

D j
i
5A~E2! j

i
1BE j

i
1Cd j

i ~B7!

is any U(n) ATO with the stated vanishing property. In Eq.

~B7! above A , B , and C are U(n) invariants. The form of D j
i

follows the general theory of ATOs,13 referred to in Sec. III,

which states that any zero-shift U(n) ATO can be expressed

as a combination of the three independent ~zero-shift! opera-

tors (E2) j
i , E j

i , and d j
i .

We now show that D j
i is a multiple of D j

i .

~i! Let uf& be a U(n) maximal state with orbital j unoc-

cupied and take the ME of D j
i in Eq. ~B7! with uf&, viz.

^fuD j
i uf&5A^fu~E2! j

i uf&1B^fuE j
i uf&1C^fud j

i uf&.

~B8!

We have immediately, by the initial assumption, that the LHS

of Eq. ~B8! vanishes. If we now look at the special case i5 j

and use the fact that1

~E2! j
juf&50 and E j

i uf&50 ~B9!

then we have that C50 so that Eq. ~B8! becomes

D j
i
5A~E2! j

i
1BE j

i . ~B10!

~ii! Now let uc& be a maximal U(n) state with level i

doubly occupied and, as before, take the ME of D j
i in Eq.

~B10! with uc&. We obtain

^cuD j
i uc&5^cu~E2! j

i uc&1B^cuE j
i uc& . ~B11!

Once again the LHS of Eq. ~B11! vanishes and using the

results1

~E2! i
iuc&522guc& and E i

iuc&52uc&, ~B12!

we see that

0522gA12B . ~B13!

That is B5gA so that Eq. ~B10! becomes

D j
i
5A•$~E1g !E j

i% ~B14!

or

D j
i
5A•D j

i . ~B15!

This establishes that any zero-shift ATO, D j
i , with the van-

ishing property is a multiple of D j
i , that is to say, the del

operator is unique.

This completes the proof of lemma 1.

Lemma 2

D̂j
i
5D~n11 ! j

i
5D~n ! j

i
1X~n ! j

i
1~ 1

2En11
n11

21 !E j
i , ~B16!

where X~n ! j
i
5En11

i E j
n11 and 1<i , j<n .

Proof

By definition

D~n11 ! j
i
5Ê~ Ê1gn11! j

i
5~ Ê2! j

i
1gn11Ê j

i , ~B17!

where Ê l
k
5E(n11) l

k, (1<k ,l<n11). Now from Gould

and Battle2 we have
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gn115N̂/22 n̂22

5
1
2 (

k51

n11

Ek
k
2~n11 !22

5~ 1
2En11

n11
21 !1

1
2 (

k51

n

Ek
k
2n22

5~ 1
2En11

n11
21 !1gn . ~B18!

We also use the fact that

Ê j
i[E j

i , 1<i , j<n , ~B19!

and

~ Ê2! j
i
5 (

k51

n11

Ek
i E j

k
5En11

i E j
n11

1 (
k51

n

Ek
i E j

k

5X~n ! j
i
1~E2! j

i . ~B20!

After substitution of the above into Eq. ~B17! we obtain the

final result

D̂j
i
5D~n ! j

i
1X~n ! j

i
1~ 1

2En11
n11

21 !E j
i . ~B21!

APPENDIX C: BASIC SEGMENTATION FORMULAS

Tr~2 ,2 !5~21 !DbrS br11

br21
D Dbr/2

,

Tr~0,0!5

11br1Dr

11br

5ar2111,

Tr~0,6 !5

1

11br

,

Tr~1 ,1 !5~21 !DbrS br13

br11
D Dbr/2

,

Tr~6 ,0!52@~11br!~11br62 !#21/2,

Tn11~6 !5

1

11bn11

,

Tn11~0 !5

11bn111Dbn11

11bn11

5an11,

Tm~6 !5@~11bm!~11bm62 !#1/2,

Tm~0 !52

Dbm

2
~11bm1Dbm!5D~m !mm .

APPENDIX D: TABLE OF ADJOINT REDUCED
WIGNER COEFFICIENTS

K pn11

pn
UUpn11

pn
L 5

S~n !

S~n11 !
•~an11 !,

K pn11

pn1e1

UUpn11

pn
L

5

1

S~n11 !
•F ~n122cn!~bn11 !~n122an!

~21bn
G1/2

,

K pn11

pn1e2

UUpn11

pn
L 5

1

S~n11 !
•F ~bn11 !~an11 !~cn11 !

bn
G1/2

,

K pn111e1

pn
UUpn11

pn
L52F ~bn12 !

~bn11 !~n122cn!~n122an!
G1/2

,

K pn111e2

pn
UUpn11

pn
L 52F bn

~bn11 !~11an!~11cn!
G1/2

,

K pn111e1

pn1e1

UUpn11

pn
L 5S n122an

n132an
D 1/2

, D05~0,0,1!,

5~21 !F ~bn11 !~bn14 !~n122cn!~n122an!

~bn12 !~bn13 !~n132an!~n132cn!
G1/2

,

D15~0,1,0!

5~21 !, D25~1,21,1!

5S n122cn

n132cn
D 1/2

, D35~1,0,0!

K pn111e2

pn1e2

UUpn11

pn
L 5S 11cn

21cn
D 1/2

, D05~0,0,1!

5~21 !, D15~1,0,0!,

5~21 !F ~bn22 !~11an!~bn11 !~11cn!

~bn21 !~an12 !~bn!~cn12 !
G1/2

,

D25~1,21,1!

5S 11an

21an
D 1/2

, D35~1,0,0!.

Note that

K pn111e1

pn1e2

UUpn11

pn
L and K pn111e2

pn1e1

UUpn11

pn
L

are both nonlexical. And also, S(n)522Sn(Sn11); where

Sn5bn/2 and that n5an1bn1cn . For the shift dependent

cases D i[Dpn115pn112pn (i50,1,2,3).

APPENDIX E: TABLE OF ADJOINT-VECTOR
REDUCED WIGNER COEFFICIENTS AND REDUCED
MATRIX ELEMENTS

K pn111e1

pn1d1
UUpn11

pn
L

5H ~n122an!21/2, D2

2F ~bn13 !~n122cn!

~bn12 !~n122an!~n132cn!
G1/2

, D3

K pn11

pn1d1
UUpn11

pn
L

5H ~bn13 !

2S~n11 !
F ~bn11 !~n122cn!

~bn12 !
G1/2

, D1

bn

22S~n11 !
~n122cn!1/2, D3
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K pn11

pn1d2
UUpn11

pn
L 5H ~bn21 !

2S~n11 !
F ~bn11 !~an11 !

bn
G1/2

, D2

~bn12 !

2S~n11 !
~an11 !1/2, D3

K pn111e2

pn1d2
UUpn11

pn
L 5H ~11cn!21/2, D1

2F ~bn21 !~11an!

bn~an12 !~cn11!
G1/2

, D3

K pn11

pn1d1
Ic I pn11

pn
L 5@Rn

1#1/2
5H ~n122cn!~11bn!

~21bn!
, D1

~n122cn!, D3

K pn11

pn1d2
Ic I pn11

pn
L 5@Rn

2#1/2
5H ~11an!~11bn!

bn

, D2

~an11 !, D3

where

D05~0,0,1!, D15~0,1,0!,

D25~1,21,1!, D35~1,0,0!.

In all of the above D i[Dpn115pn112pn , (i50,1,2,3).

The RMEs here were defined originally in Gould and

Chandler4 and formulas for them may be found in Gould and

Chandler.7

Note added in proof. It has been implicitly understood in

Appendixes D and E that if the total spin S5
1
2bn11 at level

n11 is zero then all U(n11) zero-shift RWCs are zero @cf.

remarks following Eqs. ~8! and ~89!#.
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