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Abstract

The Khatri-Rao and Tracy-Singh products for partitioned matrices are viewed as
generalized Hadamard and generalized Kronecker products, respectively. We
define the Khatri-Rao and Tracy-Singh sums for partitioned matrices as gen-
eralized Hadamard and generalized Kronecker sums and derive some results
including matrix equalities and inequalities involving the two sums. Based on
the connection between the Khatri-Rao and Tracy-Singh products (sums) and
use mainly Liu’s, Mond and Pečarić’s methods to establish new inequalities in-
volving the Khatri-Rao product (sum). The results lead to inequalities involving
Hadamard and Kronecker products (sums), as a special case.

2000 Mathematics Subject Classification: 15A45; 15A69.
Key words: Kronecker product (sum), Hadamard product (sum), Khatri-Rao product

(sum), Tracy-Singh product (sum), Positive (semi)definite matrix, Unitar-
ily invariant norm, Spectral norm, P-norm, Moore-Penrose inverse.
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1. Introduction
The Hadamard and Kronecker products are studied and applied widely in matrix
theory, statistics, econometrics and many other subjects. Partitioned matrices
are often encountered in statistical applications.

For partitioned matrices, The Khatri-Rao product viewed as a generalized
Hadamard product, is discussed and used in [7, 6, 14] and the Tracy-Singh prod-
uct, as a generalized Kronecker product, is discussed and applied in [7, 5, 12].
Most results provided are equalities associated with the products. Rao, Kleffe
and Liu in [13, 8] presented several matrix inequalities involving the Khatri-Rao
product, which seem to be most existing results. In [7], Liu established the con-
nection between Khatri-Rao and Tracy-Singh products based on two selection
matricesZ1 andZ2. This connection play an important role to give inequali-
ties involving the two products with statistical applications. In [10], Mond and
Pěcaríc presented matrix versions, with matrix weights. In [2, (2004)], Hiai and
Zhan proved the following inequalities:

‖AB‖
‖A‖ · ‖B‖

≤ ‖A + B‖
‖A‖+ ‖B‖

,(*)

‖A ◦B‖
‖A‖ · ‖B‖

≤ ‖A + B‖
‖A‖+ ‖B‖

for any invariant norm with‖diag(1, 0, . . . , 0)‖ ≥ 1 and A, B are nonzero
positive definite matrices.

In the present paper, we make a further study of the Khatri-Rao and Tracy-
Singh products. We define the Khatri-Rao and Tracy-Singh sums for partitioned
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matrices and use mainly Liu’s, Mond and Pečaríc’s methods to obtain new in-
equalities involving these products (sums).We collect several known inequali-
ties which are derived as a special cases of some results obtained. We generalize
the inequalities in Eq (*) involving the Hadamard product (sum) and the Kro-
necker product (sum).
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2. Basic Definitions and Results

2.1. Basic Definitions on Matrix Products

We introduce the definitions of five known matrix products for non-partitioned
and partitioned matrices. These matrix products are defined as follows:

Definition 2.1. Consider matricesA = (aij) andC = (cij) of orderm×n and
B = (bkl) of orderp × q. The Kronecker and Hadamard products are defined
as follows:

1. Kronecker product:

(2.1) A⊗B = (aijB)ij ,

whereaijB is the ijth submatrix of orderp×q andA⊗B of ordermp×nq.

2. Hadamard product:

(2.2) A ◦ C = (aijcij)ij ,

whereaijcij is the ijth scalar element andA ◦ C is of orderm× n.

Definition 2.2. Consider matricesA = (aij) andB = (bkl) of orderm × m
andn× n respectively. The Kronecker sum is defined as follows:

(2.3) A⊕B = A⊗ In + Im ⊗B,

whereIn andIm are identity matrices of ordern × n andm ×m respectively,
andA⊕B of ordermn×mn.
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Definition 2.3. Consider matricesA andC of orderm×n, andB of orderp×q.
LetA = (Aij) be partitioned withAij of ordermi×nj as the ijth submatrix,C =
(Cij) be partitioned withCij of ordermi × nj as the ijth submatrix, andB =
(Bkl) be partitioned withBkl of orderpk × ql as the klth submatrix, where,m =∑r

i=1 mi, n =
∑s

j=1 nj, p =
∑t

k=1 pk, q =
∑h

l=1 ql are partitions of positive
integersm, n, p, andq. The Tracy-Singh and Khatri-Rao products are defined
as follows:

1. Tracy-Singh product:

(2.4) AΠB = (AijΠB)ij =
(
(Aij ⊗Bkl)kl

)
ij

,

whereAij is the ijth submatrix of ordermi × nj, Bkl is the klth submatrix
of orderpk× ql, AijΠB is the ijth submatrix of ordermip×njq, Aij ⊗Bkl

is the klth submatrix of ordermipk × njql andAΠB of ordermp× nq.

Note that

(i) For a non partitioned matrixA, their AΠB is A ⊗ B, i.e., forA =
(aij), whereaij is scalar, we have,

AΠB = (aijΠB)ij

=
(
(aij ⊗Bkl)kl

)
ij

=
(
(aijBkl)kl

)
ij

= (aijB)ij = A⊗B.

(ii) For column wise partitionedA andB, their AΠB is A⊗B.
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2. Khatri-Rao product:

(2.5) A ∗B = (Aij ⊗Bij)ij ,

whereAij is the ijth submatrix of ordermi × nj, Bij is the ijth submatrix
of orderpi × qj, Aij ⊗ Bij is the ijth submatrix of ordermipi × njqj and

A ∗B of orderM ×N
(
M =

∑r
i=1 mipi, N =

∑s
j=1 njqj

)
.

Note that

(i) For a non partitioned matrixA, their A ∗ B is A ⊗ B, i.e., forA =
(aij),whereaij is scalar, we have,

A ∗B = (aij ⊗Bij)ij = (aijB)ij = A⊗B.

(ii) For non partitioned matricesA andB, their A ∗ B is A ◦ B, i.e., for
A = (aij) andB = (bij), whereaij andbij are scalars, we have,

A ∗B = (aij ⊗ bij)ij = (aijbij)ij = A ◦B.

2.2. Basic Connections and Results on Matrix Products

We introduce the connection between the Katri-Rao and Tracy-Singh products
and the connection between the Kronecker and Hadamard products, as a spe-
cial case, which are important in creating inequalities involving these products.
We write A ≥ B in the Löwner ordering sense thatA − B ≥ 0 is positive
semi-definite, for symmetric matricesA andB of the same order andA+ and
A∗ indicate the Moore-Penrose inverse and the conjugate of the matrixA, re-
spectively.
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Lemma 2.1. Let A = (aij) and B = (bij) be two scalar matrices of order
m× n. Then (see [15])

(2.6) A ◦B = K ′
1(A⊗B)K2

whereK1 and K2 are two selection matrices of ordern2 × n and m2 × m,
respectively, such thatK ′

1K1 = Im andK ′
2K2 = In.

In particular, for m = n, we haveK1 = K2 = K and

(2.7) A ◦B = K ′(A⊗B)K

Lemma 2.2. LetA andB be compatibly partitioned. Then (see [8, p. 177-178]
and [7, p. 272])

(2.8) A ∗B = Z ′
1 (AΠB) Z2,

whereZ1 andZ2 are two selection matrices of zeros and ones such thatZ ′
1Z1 =

I1 andZ ′
2Z2 = I2, whereI1 andI2 are identity matrices.

In particular, whenA andB are square compatibly partitioned matrices, then
we haveZ1 = Z2 = Z such thatZ ′Z = I and

(2.9) A ∗B = Z ′ (AΠB) Z.

Note that, for non-partitioned matricesA, B, Z1 andZ2, Lemma2.2 leads to
Lemma2.1, as a special case.
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Lemma 2.3. LetA, B, C,D andF be compatibly partitioned matrices. Then

(AΠB)(CΠD) = (AC)Π(BD)(2.10)

(AΠB)+ = A+ΠB+(2.11)

(A + C)Π(B + D) = AΠB + AΠD + CΠB + CΠD(2.12)

(AΠB)∗ = A∗ΠB∗(2.13)

AΠB 6= BΠA in general(2.14)

A ∗B 6= B ∗ A in general(2.15)

B ∗ F = F ∗B where F = (fij) and fij is a scalar(2.16)

(A ∗B)∗ = A∗ ∗B∗(2.17)

(A + C) ∗ (B + D) = A ∗B + A ∗D + C ∗B + C ∗D(2.18)

(A ∗B)Π(C ∗D) = (AΠC) ∗ (BΠD)(2.19)

Proof. Straightforward.

Lemma 2.4. LetA andB be compatibly partitioned matrices. Then

(2.20) (AΠB)r = ArΠBr,

for any positive integerr.

Proof. The proof is by induction onr and using Eq. (2.10).

Theorem 2.5.LetA ≥ 0 andB ≥ 0 be compatibly partitioned matrices. Then

(2.21) (AΠB)α = AαΠBα

for any positive realα.
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Proof. By using Eq (2.20), we haveAΠB = (A1/nΠB1/n)n, for any positive
integern. So it follows that(AΠB)1/n = A1/nΠB1/n. Now (AΠB)m/n =
Am/nΠBm/n, for any positive integersn,m. The Eq (2.21) now follows by a
continuity argument.

Corollary 2.6. LetA andB be compatibly partitioned matrices. Then

(2.22) |AΠB| = |A|Π |B| , where |A| = (A∗A)1/2

Proof. Applying Eq (2.10) and Eq (2.21), we get the result.

Theorem 2.7. Let A = (Aij) andB = (Bkl) be partitioned matrices of order
m×m, andn× n respectively, wherem =

∑r
i=1 mi, n =

∑t
k=1 nk .Then

(a) tr(AΠB) = tr(A) · tr(B)(2.23)

(b) ‖AΠB‖p = ‖A‖p ‖B‖p , where‖A‖p = [tr |A|p]1/p
,(2.24)

for all 1 ≤ p < ∞.

Proof. (a) Straightforward.
(b) Applying Eq (2.22) and Eq (2.23), we get the result.

Theorem 2.8.LetA, B andI be compatibly partitioned matrices. Then

(2.25) (AΠI)(IΠB) = (IΠB)(AΠI) = AΠB.

If f(A) is an analytic function on a region containing the eigenvalues ofA, then

(2.26) f(IΠA) = IΠf(A) and f(AΠI) = f(A)ΠI
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Proof. The proof of Equation (2.25) is straightforward on applying Eq (2.10).
Equation (2.26) can be proved as follows:
Sincef(A)is an analytic function, thenf(A) =

∑∞
k=0 αkA

k. Applying Eq
(2.10) we get:

f(IΠA) =
∞∑

k=0

αk(IΠA)k =
∞∑

k=0

αk(IΠAk) = IΠ
∞∑

k=0

αkA
k = IΠf(A).

Corollary 2.9. LetA, B andI be compatibly partitioned matrices. Then

(2.27) eAΠI = eAΠI and eIΠA = IΠeA.

Lemma 2.10. Let H ≥ 0 be an × n matrix with nonzero eigenvaluesλ1 ≥
· · · ≥ λk (k ≤ n) and X be am × m matrix such thatX = H0X, where
H0 = HH+. Then (see [6, Section 2.3])

(2.28) (X ′HX)+ ≤ X+H+X
′+ ≤ (λ1 + λk)

2

(4λ1λk)
(X ′HX)+.

Theorem 2.11.LetA ≥ 0 andB ≥ 0 be compatibly partitioned matrices such
thatA0 = AA+ andB0 = BB+. Then (see [8, Section 3])

(2.29) (A∗B0+A0∗B)(A∗B)+(A∗B0+A0∗B) ≤ A∗B++A+∗B+2A0∗B0

Theorem 2.12.LetA > 0 andB > 0 ben×n compatibly partitioned matrices
with eigenvalues contained in the interval betweenm andM (M ≥ m). Let I
be a compatible identity matrix. Then (see [8, Section 3]).

(2.30) A ∗B−1 + A−1 ∗B ≤ m2 + M2

mM
I and A ∗ A−1 ≤ m2 + M2

2mM
I
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3. Main Results

3.1. On the Tracy-Singh Sum

Definition 3.1. Consider matricesA and B of order m × m and n × n re-
spectively. LetA = (Aij) be partitioned withAij of ordermi × mi as the ijth

submatrix, and letB = (Bij) be partitioned withBij of ordernk × nk as the
ij th submatrix

(
m =

∑r
i=1 mi, n =

∑t
k=1 nk

)
.

The Tracy-Singh sum is defined as follows:

(3.1) A∇B = AΠIn + ImΠB,

whereIn = In1+n2+···+nt = blockdiag(In1 , In2 , . . . , Int) is an n × n identity
matrix,Im = Im1+m2+···+mr = blockdiag(Im1 , Im2 , . . . , Imr) is anm×m iden-
tity matrix,Ink

is annk × nk identity matrix(k = 1, . . . , t), Imi
is anmi ×mi

identity matrix(i = 1, . . . , r) andA∇B is of ordermn×mn.

Note that for non-partitioned matricesA andB, theirA∇B is A⊕B.

Theorem 3.1.LetA ≥ 0, B ≥ 0, C ≥ 0 andD ≥ 0 be compatibly partitioned
matrices. Then

(3.2) (A∇B)(C∇D) ≥ AC∇BD.

Proof. Applying Eq (3.1) and Eq (2.10), we have

(A∇B)(C∇D)

= (AΠI + IΠB)(CΠI + IΠD)

= (AΠI)(CΠI) + (AΠI)(IΠD) + (IΠB)(CΠI) + (IΠB)(IΠD)

http://jipam.vu.edu.au/
mailto:
mailto:zeyad1968@yahoo.com
mailto:
mailto:
mailto:akilic@fsas.upm.edu.my
http://jipam.vu.edu.au/


Matrix Equalities and
Inequalities Involving

Khatri-Rao and Tracy-Singh
Sums

Zeyad Al Zhour and
Adem Kilicman

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 13 of 37

J. Ineq. Pure and Appl. Math. 7(1) Art. 34, 2006

http://jipam.vu.edu.au

= ACΠI + AΠD + CΠB + IΠBD

= AC∇BD + AΠD + CΠB ≥ AC∇BD.

In special cases of Eq (3.2), if C = A∗, D = B∗, we have

(3.3) (A∇B)(A∇B)∗ ≥ AA∗∇BB∗

and ifC = A, D = B, we have

(3.4) (A∇B)2 ≥ A2∇B2.

More generally, it is easy by induction onw we can show that ifA ≥ 0 and
B ≥ 0 are compatibly partitioned matrices. Then

(3.5) (A∇B)w = Aw∇Bw +
w−1∑
k=1

(
w

k

)
(Aw−kΠBk);

(3.6) (A∇B)w ≥ Aw∇Bw

for any positive integerw.

Theorem 3.2.LetA andB be partitioned matrices of orderm×m andn× n,
respectively,

(
m =

∑r
i=1 mi, n =

∑t
k=1 nk

)
. Then

(3.7) tr(A∇B) = n · tr(A) + m · tr(B),

(3.8) ‖A∇B‖p ≤
p
√

n ‖A‖p + p
√

m ‖B‖p ,
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where‖A‖p = [tr |A|p]1/p, 1 ≤ p < ∞, and

(3.9) eA∇B = eAΠeB.

Proof. For the first part, on applying Eq (2.23), we obtain

tr(A∇B) = tr [(AΠIn) + (ImΠB)]

= tr(AΠIn) + tr(ImΠB)

= tr(A) tr(In) + tr(Im) tr(B)

= n · tr(A) + m · tr(B).

To prove (3.8), we apply Eq (2.24), to get

‖A∇B‖p = ‖(AΠIn) + (ImΠB)‖p

≤ ‖AΠIn‖p + ‖ImΠB‖p

= ‖A‖p ‖In‖p + ‖Im‖p ‖B‖p

= p
√

n ‖A‖p + p
√

m ‖B‖p .

For the last part, applying Eq (2.25), Eq (2.27) and Eq (2.10), we have

eA∇B = e(AΠIn)+(ImΠB)

= e(AΠIn)e(ImΠB)

= (eAΠIn)(ImΠeB) = eAΠeB.
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Theorem 3.3.LetA andBbe non singular partitioned matrices of orderm×m
andn× n respectively, (m =

∑r
i=1 mi, n =

∑t
k=1 nk).Then

(i) (A∇B)−1 = (A−1∇B−1)−1(A−1ΠB−1)(3.10)

(ii) (A∇B)−1 = (A−1ΠIn)(A−1∇B−1)−1(ImΠB−1)(3.11)

(iii) (A∇B)−1 = (ImΠB−1)(A−1∇B−1)−1(A−1ΠIn)(3.12)

Proof. (i) Applying Eq (2.10), we have

(A∇B)−1 = [ImΠB + AΠIn]−1

= [(ImΠB)(ImΠIn) + (ImΠB)(AΠB−1)]−1

= [(ImΠB)(ImΠIn + AΠB−1)]−1

= [(ImΠIn + AΠB−1)]−1[ImΠB]−1

= [(AΠIn)(A−1ΠIn) + (AΠIn)(ImΠB−1)]−1[ImΠB−1]

= [(AΠIn){A−1ΠIn + ImΠB−1}]−1[ImΠB−1]

= [(AΠIn)(A−1∇B−1)]−1[ImΠB−1]

= (A−1∇B−1)−1(A−1ΠIn)(ImΠB−1)

= (A−1∇B−1)−1(A−1ΠB−1).

Similarly, we obtain(ii) and(iii).

Theorem 3.4. Let A ≥ 0 and I be compatibly partitioned matrices such that
A+ΠI = IΠA+. Then

(3.13) A∇A+ ≥ 2AA+ΠI.
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Proof. We know thatA∇I = AΠI + IΠI > AΠI. DenoteH = MΠI ≥ 0.
By virtue ofH + H+ ≥ 2HH+ and Eq (2.10), we have

AΠI + (AΠI)+ ≥ 2(AΠI)(AΠI)+ = 2AA+ΠI

Since,A+ΠI = IΠA+, we get the result.

3.2. On the Khatri-Rao Sum

Definition 3.2. Let A, B, In and Im be partitioned as in Definition3.1. Then
the Khatri-Rao sum is defined as follows:

(3.14) A∞B = A ∗ In + Im ∗B

Note that, for non-partitioned matricesA and B, their A∞B is A ⊕ B, and
for non-partitioned matricesA, B, In andIm, their A∞B is A •B (Hadamard
sum, see Definition4.1, Eq(4.1), Section4).

Theorem 3.5.LetA andB be compatibly partitioned matrices. Then

(3.15) A∞B = Z ′(A∇B)Z,

whereZ is a selection matrix as in Lemma2.2.

Proof. Applying Eq (2.9), we haveA ∗ I = Z ′(AΠI)Z, I ∗ B = Z ′(IΠB)Z
and

A∞B = A ∗ I + I ∗B = Z ′ (AΠI) Z + Z ′ (IΠB) Z = Z ′(A∇B)Z.
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Corollary 3.6. Let A ≥ 0 andI be compatibly partitioned matrices such that
A+ΠI = IΠA+. Then

(3.16) A∞A+ ≥ 2AA+ ∗ I

Proof. Applying Eq(3.13) and Eq (3.15), we get the result.

Corollary 3.7. LetA > 0 be compatibly partitioned with eigenvalues contained
in the interval betweenm and M (M ≥ m). Let I be a compatible identity
matrix such thatA−1∞I = I∞A−1. Then

(3.17) A∞A−1 ≤ m2 + M2

mM
I.

Proof. Applying Eq (2.30) and takingB = I, we get the result.

Corollary 3.8. Let A ≥ 0 andI be compatibly partitioned, whereA0 = AA+

such thatA0 ∗ I = I ∗ A0. Then

(3.18) (A∞A0)(A ∗ I)+(A∞A0) ≤ A ∗ I + A+ ∗ I + 2A0 ∗ I

and ifA+ ∗ I = I ∗ A+, we have

(3.19) (A∞A0)(A ∗ I)+(A∞A0) ≤ A∞A+ + 2A0 ∗ I.

Proof. Applying Eq (2.29) and takingB = I, we get the results.

Mond and Pěcaríc (see [10]) proved the following result:
If Xj (j = 1, 2, . . . , k) are positive definite Hermitian matrices of order

n×n with eigenvalues in the interval[m, M ] andUj (j = 1, 2, . . ., k) arer×n

matrices such that
∑k

j=1 UjU
∗
j = I. Then
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(a) Forp < 0 or p > 1, we have

(3.20)
k∑

j=1

UjX
p
j U∗

j ≤ λ

(
k∑

j=1

UjXjU
∗
j

)p

where,

(3.21) λ =
γp − γ

(p− 1)(γ − 1)

{
p(γ − γp)

(1− p)(γp − 1)

}−p

, γ =
M

m
.

While, for 0 < p < 1, we have the reverse inequality in Eq (3.20).

(b) Forp < 0 or p > 1, we have

(3.22)

(
k∑

j=1

UjX
p
j U∗

j

)
−

(
k∑

j=1

UjXjU
∗
j

)p

≤ αI,

where,

(3.23) α = mp −
{

Mp −mp

p(M −m)

} p
p−1

+
Mp −mp

(M −m)

[{
Mp −mp

p(M −m)

} 1
p−1

−m

]
.

While, for 0 < p < 1, we have the reverse inequality in Eq (3.22).

We have an application to the Khatri-Rao product and Khatri-Rao sum.
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Theorem 3.9. Let A and B be positive definite Hermitian compatibly parti-
tioned matrices and letm andM be, respectively, the smallest and the largest
eigenvalues ofAΠB. Then

(a) For p a nonzero integer, we have

(3.24) Ap ∗Bp ≤ λ(A ∗B)p

where,λ is given by Eq (3.21).

While, for0 < p < 1, we have the reverse inequality in Eq (3.24).

(b) For p a nonzero integer, we have

(3.25) (Ap ∗Bp)− (A ∗B)p ≤ αI,

whereα is given by Eq (3.23).

While, for0 < p < 1, we have the reverse inequality in Eq (3.25).

Proof. In Eq (3.20) and Eq (3.22), takek = 1 and instead ofU∗, useZ, the
selection matrix which satisfy the following property:

A ∗B = Z ′(AΠB)Z, Z ′Z = I.

Making use of the fact in Eq (2.21) that for any realn (positive or negative), we
have

(AΠB)n = AnΠBn,

http://jipam.vu.edu.au/
mailto:
mailto:zeyad1968@yahoo.com
mailto:
mailto:
mailto:akilic@fsas.upm.edu.my
http://jipam.vu.edu.au/


Matrix Equalities and
Inequalities Involving

Khatri-Rao and Tracy-Singh
Sums

Zeyad Al Zhour and
Adem Kilicman

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 20 of 37

J. Ineq. Pure and Appl. Math. 7(1) Art. 34, 2006

http://jipam.vu.edu.au

then, withZ ′, AΠB, Z substituted forU , X, U∗, we have from Eq (3.20)

Ap ∗Bp = Z ′(Ap ∗Bp)Z

= Z ′(A ∗B)pZ

≤ λ {Z ′(AΠB)Z}p
= λ(A ∗B)p,

where,λ is given by Eq (3.21)
Similarly, from Eq (3.22), we obtain for

(Ap ∗Bp)− (A ∗B)p ≤ αI

where,α is given by Eq (3.23).
Special cases include from Eq (3.24):
(2.1) Forp = 2, we have

(3.26) A2 ∗B2 ≤ (M + m)2

4Mm
{A ∗B}2

(2.2) Forp = −1, we have

(3.27) A−1 ∗B−1 ≤ (M + m)2

4Mm
{A ∗B}−1

Similarly, special cases include from Eq (3.25):
(2.1) Forp = 2, we have

(3.28) (A2 ∗B2)− (A ∗B)2 ≤ 1

4
(M −m)2I
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(2.2) Forp = −1, we have

(3.29) (A−1 ∗B−1)− (A ∗B)−1 ≤
√

M −
√

m

Mm
{I} ,

where results in Eq (3.26), Eq (3.27), and Eq (3.28) are given in [7].

Theorem 3.10.Let A andB be positive definite Hermitian compatibly parti-
tioned matrices. Letm1 andM1 be, respectively, the smallest and the largest
eigenvalues ofAΠI andm2 andM2, respectively, the smallest and the largest
eigenvalues ofIΠB. Then

(a) For p a nonzero integer, we have

(3.30) Ap∞Bp ≤ max {λ1, λ2} (A∞B)p

where,

(3.31) λ1 =
(γp

1 − γ1)

[(p− 1)(γ1 − 1)]

{
p(γ1 − γp

1)

[(1− p)(γp
1 − 1)]

}−p

, γ1 =
M1

m1

,

(3.32) λ2 =
(γp

2 − γ2)

[(p− 1)(γ2 − 1)]

{
p(γ2 − γp

2)

[(1− p)(γp
2 − 1)]

}−p

, γ2 =
M2

m2

.

While, for0 < p < 1, we have the reverse inequality in Eq (3.30).

(b) For p a nonzero integer, we have

(3.33) (Ap∞Bp)− (A∞B)p ≤ max {α1, α2} I
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where,

(3.34) α1 = mp
1 −

{
Mp

1 −mp
1

p(M1 −m1)

} p
p−1

+
Mp

1 −mp
1

M1 −m1

{{
Mp

1 −mp
1

p(M1 −m1)

} 1
p−1

−m1

}

(3.35) α2 = mp
2 −

{
Mp

2 −mp
2

p(M2 −m2)

} p
p−1

+
Mp

2 −mp
2

M2 −m2

{{
Mp

2 −mp
2

p(M2 −m2)

} 1
p−1

−m2

}
While, for0 < p < 1, we have the reverse inequality in Eq (3.33).

Proof. Applying Eq (3.24), we have

Ap ∗ I = Ap ∗ Ip ≤ λ1(A ∗ I)p

I ∗Bp = Ip ∗Bp ≤ λ2(I ∗B)p

Now,

Ap∞Bp = Ap ∗ I + I ∗Bp

≤ λ1(A ∗ I)p + λ2(I ∗B)p

≤ max {λ1, λ2} [A ∗ I + I ∗B]p = max {λ1, λ2} (A∞B)p
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where,λ1 andλ2 are given in Eq (3.31) and Eq (3.32).
Similarly, from Eq (3.25), we obtain for

(Ap∞Bp)− (A∞B)p ≤ max {α1, α2} I

where,α1 andα2 are given in Eq (3.34) and Eq (3.35).

Special cases include from Eq (3.30):
(2.1) Forp = 2, we have

(3.36) A2∞B2 ≤ max

{
(M1 + m1)

2

4M1m1

,
(M2 + m2)

2

4M2m2

}
{A∞B}2 .

(2.2) Forp = −1, we have

(3.37) A−1∞B−1 ≤ max

{
(M1 + m1)

2

4M1m1

,
(M2 + m2)

2

4M2m2

}
{A∞B}−1 .

Similarly, special cases include from Eq (3.33):
(2.1) Forp = 2, we have

(3.38) (A2∞B2)− (A∞B)2 ≤ max

{
1

4
(M1 −m1)

2,
1

4
(M2 −m2)

2

}
I.

(2.2) Forp = −1, we have

(3.39) (A−1∞B−1)− (A∞B)−1 ≤ max

{√
M1 −

√
m1

4M1m1

,

√
M2 −

√
m2

4M2m2

}
I.
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Theorem 3.11.Let A andB be positive definite Hermitian compatibly parti-
tioned matrices. Letm and M be, respectively, the smallest and the largest
eigenvalues ofA∇B. Then

(a) For p a nonzero integer, we have

(3.40) Ap∞Bp ≤ λ(A∞B)p,

whereλ is given by Eq (3.21).

While, for0 < p < 1, we have the reverse inequality in Eq (3.40).

(b) For p a nonzero integer, we have

(3.41) (Ap∞Bp)− (A∞B)p ≤ αI

where,α is given by Eq (3.23).

While, for0 < p < 1, we have the reverse inequality in Eq (3.41).

Proof. In Eq (3.20) and Eq (3.22), takek = 1 and instead ofU∗, useZ, the
selection matrix which satisfy the following property:

A∞B = Z ′(A∇B)Z, Z ′Z = I

Then, withZ ′, A∇B, Z substituted forU , X, U∗, we have from Eq (3.20)

Ap∞Bp = Z ′(Ap∇Bp)Z

= Z ′(ApΠI + IΠBp)Z

≤ Z ′ {A∇B}p Z

≤ λ {Z ′(A∇B)Z}p
= λ(A∞B)p

where,λ is given by Eq (3.21).

http://jipam.vu.edu.au/
mailto:
mailto:zeyad1968@yahoo.com
mailto:
mailto:
mailto:akilic@fsas.upm.edu.my
http://jipam.vu.edu.au/


Matrix Equalities and
Inequalities Involving

Khatri-Rao and Tracy-Singh
Sums

Zeyad Al Zhour and
Adem Kilicman

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 25 of 37

J. Ineq. Pure and Appl. Math. 7(1) Art. 34, 2006

http://jipam.vu.edu.au

Similarly, from Eq (3.22), we obtain Eq (3.41)
Special cases include from Eq (3.40):

(2.1) Forp = 2, we have

(3.42) A2∞B2 ≤ (M + m)2

4Mm
{A∞B}2

(2.2) Forp = −1, we have

(3.43) A−1∞B−1 ≤ (M + m)2

4Mm
{A∞B}−1

Similarly, special cases include from Eq (3.41):
(2.1) Forp = 2, we have

(3.44) (A2∞B2)− (A∞B)2 ≤ 1

4
(M −m)2I

(2.2) Forp = −1, we have

(3.45) (A−1∞B−1)− (A∞B)−1 ≤
√

M −
√

m

Mm
{I}
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4. Special Results on Hadamard and Kronecker
Sums

The results obtained in Section3 are quite general. Now, we consider some
inequalities in a special case which involves non-partitioned matricesA, B and
I with the Hadamard product (sum) replacing the Khatri-Rao product (sum)
and the Kronecker product (sum) replacing the Tracy-Singh product (sum). As
these inequalities can be viewed as a corollary (some of) the proofs are straight-
forward and alternative to those for the existing inequalities.

Definition 4.1. LetA andB be square matrices of ordern× n.The Hadamard
sum is defined as follows:

(4.1) A •B = A ◦ In + In ◦B = A ◦ In + B ◦ In = (A + B) ◦ In.

Corollary 4.1. LetA > 0. Then

(4.2) A • A−1 ≥ 2I.

Corollary 4.2. LetA > 0 be a matrix of ordern×n with eigenvalues contained
in the interval betweenm andM (M ≥ m). Then

(4.3) A • A−1 ≤ (m2 + M2)

mM
{I} .

Corollary 4.3. LetA andB ben× n positive definite Hermitian matrices and
let m andM be, respectively, the smallest and the largest eigenvalues ofA⊗B.
Then
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(a) For p a nonzero integer, we have

(4.4) Ap ◦Bp ≤ λ(A ◦B)p

where,λ is given by Eq (3.21).

While, for0 < p < 1, we have the reverse inequality in Eq (4.4).

(b) For p is a nonzero integer, we have

(4.5) (Ap ◦Bp)− (A ◦B)p ≤ αI

where,α is given by Eq (3.23).

While, for0 < p < 1, we have the reverse inequality in Eq (4.5).

Special cases include from Eq (4.4):
(2.1) Forp = 2, we have

(4.6) A2 ◦B2 ≤ (M + m)2

4Mm
{A ◦B}2

(2.2) Forp = −1, we have

(4.7) A−1 ◦B−1 ≤ (M + m)2

4Mm
{A ◦B}−1 .

Similarly, special cases include from Eq (4.5):
(2.1) Forp = 2, we have

(4.8) (A2 ◦B2)− (A ◦B)2 ≤ 1

4
(M −m)2I
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(2.2) Forp = −1, we have

(4.9) (A−1 ◦B−1)− (A ◦B)−1 ≤
√

M −
√

m

Mm
{I} ,

where results in Eq (4.6), Eq (4.7), and Eq (4.8) are given in [11].
We note that the eigenvalues ofA ⊗ B are then2 products of the eigen-

values ofA by the eigenvalues ofB.Thus if the eigenvalues ofA andB are,
respectively, ordered by:

(4.10) δ1 ≥ δ2 ≥ · · · ≥ δn > 0, η1 ≥ η2 ≥ · · · ≥ ηn > 0,

then in all the previous results in this sectionM = δ1η1 andm = δnηn. Thus
Eq (4.6) to Eq (4.9) become:

(4.11) A2 ◦B2 ≤ (δ1η1 + δnηn)2

4δ1η1δnηn

{A ◦B}2

(4.12) A−1 ◦B−1 ≤ (δ1η1 + δnηn)2

4δ1η1δnηn

{A ◦B}−1

(4.13) (A2 ◦B2)− (A ◦B)2 ≤ 1

4
(δ1η1 − δnηn)2 {I}

(4.14)
(
A−1 ◦B−1

)
− (A ◦B)−1 ≤

(√
δ1η1 −

√
δnηn

)
δ1η1δnηn

{I} .
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Corollary 4.4. LetA andB be an×n positive definite Hermitian matrices. Let
m1 andM1 be, respectively, the smallest and the largest eigenvalues ofA ⊗ I
andm2 andM2, respectively, the smallest and the largest eigenvalues ofI ⊗B.
Then

(a) For p a nonzero integer, we have

(4.15) Ap •Bp ≤ max {λ1, λ2} (A •B)p,

whereλ1 andλ2 are given by Eq (3.31) and Eq (3.32).

While, for0 < p < 1, we have the reverse inequality in Eq (4.15).

(b) For p a nonzero integer, we have

(4.16) (Ap •Bp)− (A •B)p ≤ max {α1, α2} I,

whereα1 andα2are given by Eq (3.34) and Eq (3.35).

While, for0 < p < 1, we have the reverse inequality in Eq (4.16).

Note that, the eigenvalues ofA⊗I equal the eigenvalues ofA and the eigen-
values ofI ⊗B equal the eigenvalues ofB.

Corollary 4.5. LetA andB ben× n positive definite Hermitian matrices. Let
m andM be, respectively, the smallest and the largest eigenvalues ofA ⊕ B.
Then

(a) For p a nonzero integer, we have

(4.17) Ap •Bp ≤ λ(A •B)p,
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where,λ is given by Eq (3.21).

While, for0 < p < 1, we have the reverse inequality in Eq (4.17).

(b) For p a nonzero integer, we have

(4.18) (Ap •Bp)− (A •B)p ≤ αI,

where,α is given by Eq (3.23).

While, for0 < p < 1, we have the reverse inequality in Eq (4.18).

Special cases include from Eq (4.17):
(2.1) Forp = 2, we have

(4.19) A2 •B2 ≤ (M + m)2

4Mm
{A •B}2

(2.2) Forp = −1, we have

(4.20) A−1 •B−1 ≤ (M + m)2

4Mm
{A •B}−1

Similarly, special cases include from Eq (4.18):
(2.1) Forp = 2, we have

(4.21) (A2 •B2)− (A •B)2 ≤ 1

4
(M −m)2I

(2.2) Forp = −1, we have

(4.22) (A−1 •B−1)− (A •B)−1 ≤
√

M −
√

m

Mm
{I} .

http://jipam.vu.edu.au/
mailto:
mailto:zeyad1968@yahoo.com
mailto:
mailto:
mailto:akilic@fsas.upm.edu.my
http://jipam.vu.edu.au/


Matrix Equalities and
Inequalities Involving

Khatri-Rao and Tracy-Singh
Sums

Zeyad Al Zhour and
Adem Kilicman

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 31 of 37

J. Ineq. Pure and Appl. Math. 7(1) Art. 34, 2006

http://jipam.vu.edu.au

We note that the eigenvalues ofA⊕ B are then2 sums of the eigenvalues ofA
by the eigenvalues ofB. Thus if the eigenvalues ofA andB are, respectively,
ordered by:

δ1 ≥ δ2 ≥ · · · ≥ δn > 0, η1 ≥ η2 ≥ · · · ≥ ηn > 0,

then in all previous results of this sectionM = δ1 + η1 andm = δn + ηn. Thus
Eq(4.19) to Eq (4.22) become:

(4.23) A2 •B2 ≤ (δ1 + η1 + δn + ηn)2

4(δ1 + η1)(δn + ηn)
{A •B}2 ,

(4.24) A−1 •B−1 ≤ (δ1 + η1 + δn + ηn)2

4(δ1 + η1)(δn + ηn)
{A •B}−1 ,

(4.25) (A2 •B2)− (A •B)2 ≤ 1

4
((δ1 + η1)− (δn + ηn))2I,

(4.26) (A−1 •B−1)− (A •B)−1 ≤
√

δ1 + η1 −
√

δn + ηn

(δ1 + η1)(δn + ηn)
I.

Corollary 4.6. LetA ≥ 0 andB ≥ 0 be compatibly matrices. Then

(i) (A⊕B)(A⊕B)∗ ≥ AA∗ ⊕BB∗(4.27)

(ii) (A⊕B)w ≥ Aw ⊕Bw, for any positive integerw.(4.28)

http://jipam.vu.edu.au/
mailto:
mailto:zeyad1968@yahoo.com
mailto:
mailto:
mailto:akilic@fsas.upm.edu.my
http://jipam.vu.edu.au/


Matrix Equalities and
Inequalities Involving

Khatri-Rao and Tracy-Singh
Sums

Zeyad Al Zhour and
Adem Kilicman

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 32 of 37

J. Ineq. Pure and Appl. Math. 7(1) Art. 34, 2006

http://jipam.vu.edu.au

Corollary 4.7. LetA andB be matrices of orderm×m andn×n respectively.
Then

(a) tr(A⊕B) = n · tr(A) + m · tr(B)(4.29)

(b) ‖A⊕B‖p ≤
p
√

n ‖A‖p + p
√

m ‖B‖p ,(4.30)

where ‖A‖p = [tr |A|p]1/p, 1 ≤ p < ∞.

(c) eA⊕B = eA ⊗ eB(4.31)

Corollary 4.8. LetA andB be non singular matrices of orderm×m andn×n,
respectively. Then

(i) (A⊕B)−1 = (A−1 ⊕B−1)−1(A−1 ⊗B−1)(4.32)

(ii) (A⊕B)−1 = (A−1 ⊗ In)(A−1 ⊕B−1)−1(Im ⊗B−1)(4.33)

(iii) (A⊕B)−1 = (Im ⊗B−1)(A−1 ⊕B−1)−1(A−1 ⊗ In)(4.34)

In [1], Ando proved the following inequality;

(4.35) A ◦B ≤ (Ap ◦ I)
1
p (Bq ◦ I)

1
q ,

whereA andB are positive definite matrices andp, q ≥ 1with 1/p + 1/q = 1.
If ‖·‖ is a unitarily invariant norm and‖·‖∞ is the spectral norm, Horn and

Johnson in [3] proved the following three conditions are equivalent:

(4.36)
(i) ‖A‖∞ ≤ ‖A‖
(ii) ‖AB‖ ≤ ‖A‖ · ‖B‖
(iii) ‖A ◦B‖ ≤ ‖A‖ · ‖B‖
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for all matricesA andB.
In [2], Hiai and Zhan proved the following inequalities:

(4.37)
‖AB‖

‖A‖ · ‖B‖
≤ ‖A + B‖
‖A‖+ ‖B‖

and
‖A ◦B‖
‖A‖ · ‖B‖

≤ ‖A + B‖
‖A‖+ ‖B‖

for any invariant norm with‖diag(1, 0, . . ., 0)‖ ≥ 1 andA, B are nonzero posi-
tive definite matrices.

We have an application to generalize the inequalities in Eq (4.37) involving
the Hadamard product (sum) and the Kronecker product (sum).

Theorem 4.9.Let‖·‖ be a unitarily invariant norm with‖diag(1, 0, . . . , 0)‖ ≥
1 andA andB be nonzero positive definite matrices. Then

(4.38)
‖A ◦B‖
‖A‖ · ‖B‖

≤ ‖A •B‖
‖A‖+ ‖B‖

.

Proof. Let ‖·‖∞ be the spectral norm and applying Eq (4.35) to A/ ‖A‖∞ ≤ I,
B/ ‖B‖∞ ≤ I and using the Young inequality for scalars, we get

A

‖A‖∞
◦
(

B

‖B‖∞

)
≤
[(

A

‖A‖∞

)p

◦I
] 1

p
[(

B

‖B‖∞

)q

◦I
] 1

q

≤ 1

p

(
A

‖A‖∞

)p

◦ I +
1

q

(
B

‖B‖∞

)q

◦ I

≤ 1

p

(
A

‖A‖∞

)
◦ I +

1

q

(
B

‖B‖∞

)
◦ I

=

{
1

p

(
A

‖A‖∞

)
+

1

q

(
B

‖B‖∞

)}
◦ I

http://jipam.vu.edu.au/
mailto:
mailto:zeyad1968@yahoo.com
mailto:
mailto:
mailto:akilic@fsas.upm.edu.my
http://jipam.vu.edu.au/


Matrix Equalities and
Inequalities Involving

Khatri-Rao and Tracy-Singh
Sums

Zeyad Al Zhour and
Adem Kilicman

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 34 of 37

J. Ineq. Pure and Appl. Math. 7(1) Art. 34, 2006

http://jipam.vu.edu.au

We choose

1

p
=

‖A‖∞
[‖A‖∞ + ‖B‖∞]

and
1

q
=

‖B‖∞
[‖A‖∞ + ‖B‖∞]

.

Since‖A‖∞ ≤ ‖A‖ and‖B‖∞ ≤ ‖B‖ thanks to‖diag(1, 0, . . . , 0)‖ ≥ 1, we
obtain

A ◦B ≤
{
‖A‖∞ · ‖B‖∞
‖A‖∞ + ‖B‖∞

}
(A + B) ◦ I(4.39)

≤
{
‖A‖ · ‖B‖
‖A‖+ ‖B‖

}
(A •B)

Hence,

‖A ◦B‖ ≤ ‖A‖ · ‖B‖
‖A‖+ ‖B‖

‖A •B‖ or
‖A ◦B‖
‖A‖ · ‖B‖

≤ ‖A •B‖
‖A‖+ ‖B‖

Corollary 4.10. Let‖·‖ be a unitarily invariant norm with‖diag(1, 0, . . . , 0)‖ ≥
1 andA andB be nonzero positive definite matrices. Then

(4.40)
‖A⊗B‖
‖A‖ · ‖B‖

≤ ‖A⊕B‖
‖A‖+ ‖B‖

.

Proof. Applying Eq (2.7) and Eq (4.39), we have

K ′(A⊗B)K ≤ ‖A‖ · ‖B‖
‖A‖+ ‖B‖

K ′(A⊕B)K
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and

‖K ′(A⊗B)K‖ ≤ ‖A‖ · ‖B‖
‖A‖+ ‖B‖

‖K ′(A⊕B)K‖ .

Provided that‖·‖ is unitarily invariant norm, we get the result.
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