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Let us begin with an example:

I Suppose that we have an undirected random graph G on n
vertices.

I Model: There is a real symmetric matrix P = (pij) such that

Prob({i , j} is an edge of G ) = pij ,

and edges pop up independently of each other.

I A statistical question: Given a single realization of the random
graph G , under what conditions can we accurately estimate
all the pij ’s?

I The question is motivated by the study of the structure of
real-world networks.
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Example continued

I Of course, in the absence of any structural assumption about
the matrix P, it is impossible to estimate the pij ’s. They may
be completely arbitrary.

I The strongest structural assumption that one can make is
that the pij ’s are all equal to a single value p. This is the
Erdős–Rényi model of random graphs. In this case p may be
easily estimated by the estimator

p̂ =
# edges of G(n

2

) .

I Then E(p̂ − p)2 → 0 as n→∞, i.e., p̂ is a consistent
estimator of p.
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The stochastic block model

I The stochastic block model assumes a little less structure
than ‘all pij ’s equal’.

I The vertices are divided into k blocks (unknown to the
statistician). For any two blocks A and B, pij is the same for
all i ∈ A and j ∈ B.

I Originated in the study of social networks. Studied by many
authors over the last thirty years.

I A side remark: By the famous regularity lemma of Szemerédi,
all dense graphs ‘look like’ as if they originated from a
stochastic blockmodel.
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Stochastic block model continued

I The question of estimating the pij ’s in the stochastic block
model is a difficult question because the block membership is
unknown.

I Condon and Karp (2001) were the first to give a consistent
estimator when the number of blocks k is fixed, all blocks are
of equal size, and n→∞.

I Quite recently, Bickel and Chen (2009) solved the problem
when the block sizes are allowed to be unequal.

I The work of Bickel and Chen was extended to allow k →∞
slowly as n→∞ by various authors.

I One cannot expect to solve the problem if k is allowed to be
of the same size as n, i.e. the number of blocks is comparable
to the number of vertices.

I What if k grows like o(n)? We will see later that indeed,
consistent estimation is possible. This will solve the estimation
problem of the stochastic block model in its entirety.
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Latent space models

I Here, one assumes that to each vertex i is attached a hidden
or latent variable βi , and that

pij = f (βi , βj)

for some fixed function f .

I Various authors have attempted to estimate the βi ’s from a
single realization of the graph, but in all cases, f is assumed
to be some known function.

I For example, in a recent paper with Persi Diaconis and Allan
Sly, we showed that all the βi ’s may be simultaneously
estimated from a single realization of the graph if
f (x , y) = ex+y/(1 + ex+y ).

I What if f is unknown? We will see later that the problem is
solvable even if the statistician has absolutely no knowledge
about f , as long as f has some amount of smoothness.
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Low rank matrices

I A third approach to imposing structure is through the
assumption that P has low rank.

I This has been investigated widely in recent years, beginning
with the works of Candès and Recht (2009), Candès and Tao
(2010) and Candès and Plan (2010).

I Usually, the authors assume that a large part of the data is
missing. This imposes an additional difficulty in detecting the
structure.

I Suppose that only a random fraction q of the edges are
‘visible’ to the statistician, and that the matrix P is of rank r .
What is a necessary and sufficient condition, in terms of r , n
and q, under which the problem of estimating P is solvable?

I The theory that I am going to present shows that r � nq is
necessary and sufficient.
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Back to the original model

I Recall: We have an undirected random graph G on n vertices,
and there is a real symmetric matrix P = (pij) such that

Prob({i , j} is an edge of G ) = pij ,

and edges occur independently of each other.

I Given a single realization of the random graph G , under what
conditions can we accurately estimate all the pij ’s?

I Instead of the graph G , we can visualize our data as the
adjacency matrix X = (xij) of G .

I The problem may be generalized beyond graphs by
considering any random symmetric matrix X whose entries on
and above the diagonal are independent and E(xij) = pij .
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A generalized notion of structure

I The estimation problem can be solved only if we assume that
the matrix P has some ‘structure’.

I We have seen three kinds of structural assumption: the
stochastic block models, the latent space models, and the low
rank assumption. There are various other kinds of
assumptions that people make.

I Questions: Can all these structural assumptions arise as
special cases of a single assumption? That is, can there be a
‘universal’ notion of structure? And if so, does there exist a
‘universal’ algorithm that solves the estimation problem
whenever structure is present (and in particular, solves all of
the previously stated problems)?

I Answer: Yes.
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Structure in a symmetric matrix

I Let λ1, . . . , λn be the eigenvalues of P. Recall that elements
of P are in [0, 1].

I Define the randomness coefficient of P as the number

R(P) :=

∑n
i=1 |λi |
n3/2

.

I Incidentally,
∑
|λi | is commonly known as the ‘nuclear norm’

or ‘trace norm’ of P and denoted by ‖P‖∗.
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The randomness coefficient

I Claim: 0 ≤ R(P) ≤ 1 for any P.
I Proof: Simple consequence of the Cauchy-Schwarz inequality:

n3/2R(P) =
n∑

i=1

|λi | ≤
(
n

n∑
i=1

λ2
i

)1/2
=
(
n Tr(P2))1/2 =

(
n

n∑
i ,j=1

p2
ij

)1/2 ≤ n3/2.

I When R(P) is close to zero, we will interpret it as saying that
P has some amount of structure.

I Suppose that n is large. When is R(P) not close to zero?
I The only construction of a large matrix P with R(P) away

from zero that I could come up with is a matrix with
independent random entries.

I For example, one can show that such a construction is not
possible with pij = f (i/n, j/n) for some a.e. continuous f .
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Examples of matrices with structure (i.e. low randomness)

I Latent space models.
I Suppose that β1, . . . , βn are values in [0, 1] and

f : [0, 1]2 → [0, 1] is a Lipschitz function with Lipschitz
constant L.

I Suppose that pij = f (βi , βj).
I Then R(P) ≤ C (L)n−1/3, where C (L) depends only on L.

I Stochastic block models.
I Suppose that P is described by a stochastic block model with

k blocks, possibly of unequal sizes.
I Then R(P) ≤

√
k/n.

I Low rank matrices.
I Suppose that P has rank r .
I Then R(P) ≤

√
r/n.

I Distance matrices.
I Suppose that (K , d) is a compact metric space and

pij = d(xi , xj), where x1, . . . , xn are arbitrary points in K .
I Then R(P) ≤ C (K , d , n), where C (K , d , n) is a number

depending only on K , d and n that tends to zero as n→∞.
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Examples, continued

I Positive definite matrices.
I Suppose that P is positive definite with all entries in [−1, 1].
I Then R(P) ≤ 1/

√
n.

I Graphons.
I Suppose that f : [0, 1]2 → [0, 1] is a measurable function.
I Let U1, . . . ,Un be i.i.d. Uniform[0, 1] random variables.
I Let pij = f (Ui ,Uj) and generate a random graph with these

pij ’s. Such graphs arise in the theory of graph limits recently
developed by Lovász and coauthors.

I In this case R(P)→ 0 as n→∞. The rate of convergence
depends on f .

I Monotone matrices.
I Suppose that there is a permutation π of the vertices such

that if π(i) ≤ π(i ′), then pπ(i)π(j) ≤ pπ(i ′)π(j) for all j .
I Arises in certain statistical models, such as the Bradley–Terry

model of pairwise comparison.
I In this case, R(P) ≤ Cn−1/3, where C is a universal constant.

I Basically, anything reasonable you can think of.
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The USVT algorithm

I Suppose we have a random symmetric matrix X = (xij) of
order n, all of whose entries are in [0, 1] and are independent
of each other on and above the diagonal. (Think of X as the
adjacency matrix of a random graph with independent edges.)

I Let P = (pij) where pij = E(xij). In the random graph model,
pij is the probability that {i , j} is an edge.

I Let X =
∑n

i=1 µiuiu
T
i be the spectral decomposition of X .

I Define the estimate P̂ = (p̂ij) as

P̂ :=
∑

i : |µi | ≥ 1.01
√

n

µiuiu
T
i .

I If p̂ij > 1 for some i , j , redefine p̂ij = 1. Similarly, if p̂ij < 0,
redefine p̂ij = 0.

I This is a singular value thresholding algorithm. Since the
threshold is universal, I call it Universal Singular Value
Thresholding (USVT).
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Remarks

I There exist other singular value thresholding algorithms in the
literature, for example a recent one by Keshavan, Montanari
and Oh (2010) or an old one by Achlioptas and McSherry
(2001). But all previous algorithms use specific information
about P.

I There is nothing special about the constant 1.01. Any
constant strictly bigger than 1 is okay.
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The main result

Theorem (C., 2012)

Let P̂ and P be as in the previous slide. Then

E
(

1

n2

n∑
i ,j=1

(p̂ij − pij)
2

)
≤ C R(P) +

C

n
,

where C is a universal constant and R(P) is the randomness
coefficient of P.
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Optimality

Theorem (C., 2012)

Fix n. Let P̃ = (p̃ij) be any estimator of P. Then for any δ ∈ [0, 1],
there exists P such that R(P) ≤ δ, and if this is the ‘true’ P, then

E
(

1

n2

n∑
i ,j=1

(p̃ij − pij)
2

)
≥ c δ +

c

n
,

where c is a positive universal constant.
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What if some entries are missing?

I Suppose that each element of X is observed with probability q
and unobserved with probability 1− q, independent of each
other.

I Let q̂ be the proportion of observed entries.

I Put 0 in place of all the missing entries and call the resulting
matrix Y .

I Let Y =
∑n

i=1 µiuiu
T
i be the spectral decomposition of Y .

I Define

P̂ =
1

q̂

∑
i : |µi | ≥ 1.01

√
nq̂

µiuiu
T
i .

I As before, if p̂ij > 1, redefine p̂ij = 1 and if p̂ij < 0 redefine
p̂ij = 0.

I This nice trick of replacing missing entries by zeros appeared
for the first time in Keshavan, Montanari and Oh (2010).
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Modified error bound and optimality

Theorem (C., 2012)

Suppose that q ≥ n−1+ε for some ε > 0. Then

E
(

1

n2

n∑
i ,j=1

(p̂ij − pij)
2

)
≤ C R(P)

√
q

+
C

nq
+ C (ε)e−nq,

where C is a universal constant and C (ε) depends only on ε.

Theorem (C., 2012)

If P̃ is any estimator, then for any δ ∈ [0, 1] there exists P such
that R(P) ≤ δ and if this is the ‘true’ P, then

E
(

1

n2

n∑
i ,j=1

(p̃ij − pij)
2

)
≥ c δ
√

q
+

c

nq
,

where c is a positive universal constant.
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Non-symmetric and rectangular matrices

I Suppose that P and X are m × n matrices, with no symmetry
assumption. Everything else as before.

I Let X =
∑k

i=1 µiuiv
T
i be the singular value decomposition of

X , where k = min{m, n} and µ1, . . . , µk are the singular
values of X .

I Then define

P̂ :=
∑

i :µi ≥ 1.01max{
√

m,
√

n}

µiuiv
T
i .

I The case of missing entries is dealt with exactly as before.

I The theorems remain just as they were, after modifying the
definition of R(P) as

R(P) =

∑k
i=1 µi√
mnk

.
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A numerical example

I Let n = 1000. Let β1, . . . , βn and α be drawn independently
and uniformly at random from [0, 1].

I Define

pij :=
1

1 + e−βi−βj−αβiβj
.

I This is a logistic model with interaction.
I Generate a random graph on n vertices by including the edge
{i , j} with probability pij , independently for all i , j .

I Apply the USVT algorithm to this random graph to compute
the estimates p̂ij . Note that the USVT algorithm knows
nothing about the specific formula used to define pij , nor the
values of β1, . . . , βn.

I To visually see how accurately p̂ij estimates pij , take a random
sample of 200 entries from the 1000× 1000 matrix P and plot
them against the corresponding entries from P̂.

I The results are shown in the next slide.
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Simulation result
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Figure: Plot of p̂ij versus pij for a random sample of 200 entries.
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Solutions of open problems

USVT gives:

I A complete solution to the estimation problem in stochastic
block models.

I A complete solution to the estimation problem in latent space
models.

I A necessary and sufficient condition for estimability of low
rank matrices with missing entries, and a simple and fast
method for carrying out the estimation. (Note, however, that
the methods of Candès and coauthors allow exact recovery
under stronger assumptions, while USVT gives approximate
recovery but under no additional assumptions.)

I A complete solution to the problem of distance matrix
estimation.

I Many other applications, worked out in the manuscript on
arXiv.
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Proof sketch in the symmetric case with no missing entries

I Key ingredients: Random matrix theory + concentration of
measure + matrix inequalities + lucky coincidence.

I P = (pij) is a symmetric matrix of order n, and X = (xij) is a
random matrix with independent entries on and above the
diagonal, such that xij ∈ [0, 1] and E(xij) = pij for all i , j .

I Let X =
∑n

i=1 µiuiu
T
i be the spectral decomposition of X .

I The USVT estimate of P is defined as

P̂ :=
∑

i : |µi | ≥ 1.01
√

n

µiuiu
T
i .

I For a symmetric matrix A of order n and eigenvalues
θ1, . . . , θn,

I the spectral norm of A is defined as ‖A‖ := maxi |θi |, and
I the Frobenius norm of A is defined as
‖A‖F := (

∑
i,j a2

ij)
1/2 = (

∑
i θ

2
i )1/2.

I Clearly, ‖A‖F ≤
√

rank(A) ‖A‖.
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Proof sketch continued

I From random matrix theory and concentration of measure it
follows that

‖X − P‖ ≤ 1.001
√

n

with probability tending to 1 as n→∞. Call this event E .

I Let P =
∑n

i=1 λiviv
T
i be the spectral decomposition of P.

I Let
P1 :=

∑
i : |λi | ≥ .009

√
n

λiviv
T
i .

I Let S := {i : |λi | ≥ .009
√

n}. Then

rank(P1) ≤ |S | ≤
∑n

i=1 |λi |
.009
√

n
≤ C n R(P),

where C is a universal constant.
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Proof sketch continued

I Suppose that λi ’s and µi ’s are arranged in decreasing order.
Then from matrix inequalities it follows that

max
i
|λi − µi | ≤ ‖X − P‖.

I Thus if the event E happens, then |µi | ≥ 1.01
√

n implies that
|λi | ≥ .009

√
n.

I In particular, if E happens then the rank of P̂ is also bounded
by CnR(P).

I Consequently, if E happens then

‖P̂ − P1‖F ≤ C
√

nR(P) ‖P̂ − P1‖

≤ C
√

nR(P) (‖P̂ − X‖+ ‖X − P‖+ ‖P − P1‖)

≤ Cn
√

R(P).
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Proof sketch continued

I Moreover,

‖P1 − P‖F =

( ∑
i : |λi |<.009

√
n

λ2
i

)1/2

≤
(
.009
√

n
n∑

i=1

|λi |
)1/2

≤ Cn
√

R(P).

I The last two inequalities give the same bound in terms of
R(P) (serendipity!). Combining, we see that if E happens,
then

‖P̂ − P‖F ≤ Cn
√

R(P).

I It is now easy to complete the proof because E happens with
high probability.
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