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1. Introduction

The considerable recent progress in computing non-perturbative superpotentials (and other

holomorphic quantities) in N = 1 string vacua, has left behind several open questions con-

cerning the general systematics of open topological strings [1]. The list includes, on the

technical side, the proper inclusion of boundary changing sectors, associated with world-

sheets spanning between different branes. On the conceptual side, it remains an outstand-

ing question how to find, in general, proper ”special coordinates” of mirror symmetry

on the combined open-closed string parameter space. This latter problem is severe not

only if boundary changing sectors are included, but even more so when deformations are

obstructed and the notion of flatness becomes an off-shell or merely infinitesimal question.

Recently, a promising approach for describing topological D-branes in the B-model

has been developped which is based on boundary Landau-Ginzburg theory [2 – 11], build-

ing on previous work [12 – 16] and [17, 18]. It seems to capture all the relevant information

about the category of topological D-branes of B-type, and has been successfully applied

in particular to the topological minimal models, for which the complete effective super-

potential on the disk has been determined [9]. This was achieved by solving the open

string version [19] of the WDVV equations, which include the A∞ relations. Moreover, the

formulas for topological correlators given in [4, 10], as well as the concrete study of the

problem’s deformation theory [8, 7], have given valuable pieces of information about the

above questions also in more geometrical settings.

In the present paper, we study these problems for the simplest model that has a

compact geometric interpretation, namely the cubic elliptic curve. The representation of

its B-type branes in terms of matrix factorizations in the Landau-Ginzburg model has

recently been discussed in [8]. It is based on the superpotential

W (x, a) =
1

3
x1

3 +
1

3
x2

3 +
1

3
x3

3 − ax1x2x3 , (1.1)
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together with an obvious Z3 orbifold action. This model corresponds to the point ρ =

exp 2πi/3 in Kähler moduli space, and the complex structure parameter varies as a certain

function τ = τ(a). On the physics side, this model is exactly solvable at the CFT level.

On the mathematical side, the elliptic curve has been studied extensively from the point of

view of categorical mirror symmetry in [20 – 24, 1], so that most of the questions we might

want to ask should have known answers. Our goal here is to learn how to derive some of

these results from the boundary Landau-Ginzburg realization, with the expectation that

the lessons we learn will be useful in more complicated situations.

Specifically, we will focus on the computation of the effective “Yukawa” couplings

associated with pairwise intersections of three branes. When expressed in flat coordinates,

which we determine intrinsically in the B-model, these Yukawa couplings become the A-

model generating functions for triangle-shaped world-sheet instantons that span between

the three D-branes. From the point of view of categorical mirror symmetry, our results

amount to determining the associative Fukaya products m2 from their Landau-Ginzburg

B-model counterparts. The computation of the higher, non-associative products mk will

be addressed elsewhere.

2. D-branes, matrix factorizations and Q-cohomology

As discussed in [8], the B-type D-branes of this model can be obtained from all possible

matrix factorizations of (1.1). For a = 0, those factorizations have been put in exact

correspondence [25] with vector bundles on the elliptic curve W = 0 ⊂ P
2, which were

classified by Atiyah. Simplest are the Z3-equivariant 3 × 3 factorizations involving the

boundary BRST operators [8]

Qi =

(
0 Ji

Ei 0

)
, i = 1, 2, 3 , (2.1)

with

Ji =




αi
1x1 αi

2x3 αi
3x2

αi
3x3 αi

1x2 αi
2x1

αi
2x2 αi

3x1 αi
1x3




Ei =




1
αi

1
x1

2 −
αi

1

αi
2αi

3
x2x3

1
αi

3
x3

2 −
αi

3

αi
1αi

2
x1x2

1
αi

2
x2

2 −
αi

2

αi
1αi

3
x1x3

1
αi

2
x3

2 −
αi

2

αi
1αi

3
x1x2

1
αi

1
x2

2 −
αi

1

αi
2αi

3
x1x3

1
αi

3
x1

2 −
αi

3

αi
1αi

2
x2x3

1
αi

3
x2

2 −
αi

3

αi
1αi

2
x1x3

1
αi

2
x1

2 −
αi

2

αi
1αi

3
x2x3

1
αi

1
x3

2 −
αi

1

αi
2αi

3
x1x2


 .

(2.2)

The αi
` are parameters that are constrained by the matrix factorization condition Q2

i (x, αi
`)

= W (x, a)1, which translates to [8]:

1

3
(αi

1)
3 +

1

3
(αi

2)
3 +

1

3
(αi

3)
3 − aαi

1α
i
2α

i
3 = 0 . (2.3)

Thus, the moduli space spanned by the αi
` is isomorphic to the Jacobian of the torus itself,

and this is expected to hold for any matrix factorization of (1.1). As explained in [8],

– 2 –



J
H
E
P
1
1
(
2
0
0
6
)
0
0
6

L1 " (2, 1)

L2 " (−1, 1)

L3 " (−1,−2)

S1 " (1, 0)

S2 " (0, 1)

S3 " (−1,−1)

Figure 1: Shown are the long and short diagonals on the covering space of the torus; note that

they correspond to roots and weights of the SU(3) lattice, resp. The long diagonals Li correspond,

via mirror symmetry, to the 3 × 3 matrix factorizarions (2.2) we discuss in this paper, while the

short diagonals Si correspond to 2 × 2 factorizations.

the three particular matrix factorizations based on (2.1), (2.2) describe one-parameter

deformations of the rational D-branes, for any given value of the bulk modulus, a(τ).

These branes, which we shall denote by L1, L2, L3, are known [25] to correspond, in

the geometric B-model category, to bundles with ranks and degres given by (r, c1) =

(2, 1), (−1, 1), (−1,−2), respectively.1 In physics terms, these labels correspond to D2-

and D0-brane charges, respectively (the one-parameter deformations correspond to the

locations of the D0-branes on top of the D2-branes, which by themselves wrap the cubic

curve). Since r + c1 = 0 mod 3 for all three branes, the Li do not provide an integral basis

of the complete K-charge lattice, which is a familiar feature in this context [26]. In the

appendix, we exhibit a set of 2× 2 matrix factorizations of the cubic that does correspond

to such an integral basis.

In the mirror description, in which (the roles of) ρ and τ are exchanged, quasiho-

mogeneous matrix factorizations correspond to branes wrapped along special Lagrangian

submanifolds of the torus C/(Z+ρZ), with wrapping numbers (n1, n2) = (r, c1). In partic-

ular, the A-model mirrors of the three branes Li described by (2.2) can be pictured as the

three long diagonals of the SU(3) torus, see figure 1. In A-model language, the boundary

moduli correspond to position and flat gauge fields on the lines, and we will describe further

below the mirror map between them and the B-model moduli a, αi
`.

We now turn to discussing the boundary changing operators, that is, cohomology

representatives of the open string spectrum between pairs of the Li. We have summarized

the open string spectrum in the quiver diagram of figure 2. As indicated, in the boundary

changing sector between Lj and Li (with i = j+1 mod 3) there are three bosonic and three

fermionic elements, Φ
(a)
ji resp. Ψ

(a)
ij (a = 1, 2, 3). These correspond to the three intersection

points each pair of branes has, when translated to a fundamental domain. Moreover,

Ωi denote boundary preserving operators of top degree (R-charge) 1, which generate the

1Their anti-branes are described by the equivalent factorizations obtained by swapping Ei ↔ Ji. Note

also that we will often denote branes and bundles by the same symbols Li in the following.

– 3 –
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L1

L2 L3

Ψ
(a)
21

Φ
(a)
12

Ψ
(a)
32

Φ
(a)
23

Ψ
(a)
13

Φ
(a)
31

Ω1

Ω2

Ω3

Figure 2: Quiver representation of the open string spectrum between the three D-branes Li under

consideration. One of our objectives is to find suitable Landau-Ginzburg representatives of all the

pictured quantities that continuously depend on the bulk/boundary moduli.

marginal deformations of the branes. The Ωi will be discussed at length in the next section.

In order to construct LG representatives, it is useful to first determine the degrees

(charges) of the open string operators. Note that (2.2) is quasihomogeneous with R-charge

assignement

eiλR =

(
eiλ/6 13 0

0 e−iλ/6 13

)
(2.4)

and equivariant with respect to the following orbifold action

e2πji/3

(
13 0

0 −e−iπ/3 13

)
(j = 1, 2, 3) (2.5)

on the Chan-Paton spaces. Therefore, in order to survive the orbifolding, Φ
(a)
ij and Ψ

(a)
ij

must have R-charge qΦ = 2/3 and qΨ = 1/3, respectively. [Note, however, that this

is subject to change once we move the Kähler modulus away from ρ = exp 2πi/3. The

important invariant statement is qΦ + qΨ = 1 by charge conjugation (Serre duality), and

0 < qΦ < 1 so that Φ and Ψ are always tachyonic; there are no lines of marginal stability

on the torus.]

We start with finding representative of the fermionic operators Ψ
(a)
ij mapping from

Lj to Li. We will explicitly take i = 2 and j = 1, but everything works analogously for

i = j + 1 mod 3. Writing

Ψ21 =

(
0 F21

G21 0

)
, (2.6)

Q-closedness requires that F and G satisfy

J2G21 + F21E1 = 0

E2F21 + G21J1 = 0
(2.7)
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The above degree considerations in the orbifold dictate that F be constant (i.e., indepen-

dent of x`) and G be linear in x`. One may also note that the image of the Qi’s at this

degree is zero (there are no bosonic operators in degree −2/3, as this would require negative

powers of x`), so that all solutions to (2.7) will be cohomologically non-trivial.

All-in-all, one indeed finds three linearly independent solutions of (2.7), which are

precisely the Ψ
(a)
21 we are looking for. The first one reads

F
(1)
21 =




ζ1 0 0

0 0 ζ2

0 ζ3 0


 G

(1)
21 = −




ζ1
α1

1α2
1
x1

ζ3
α1

1α2
2
x2

ζ2
α1

1α2
3
x3

ζ2
α2

1α1
3
x2

ζ1
α2

2α1
3
x3

ζ3
α1

3α2
3
x1

ζ3
α2

1α1
2
x3

ζ2
α1

2α2
2
x1

ζ1
α1

2α2
3
x2


 . (2.8)

Inserting this ansatz into (2.7) results in 18 equations, out of which only two are indepen-

dent if (2.3) is used, e.g.,

ζ1α
2
1

α2
2α

2
3

+
ζ2α

1
2

α1
1α

2
3

+
ζ3α

1
3

α1
1α

2
2

= 0

ζ1α
1
2

α1
1α

2
1

+
ζ2α

1
3

α1
1α

2
3

+
ζ3α

2
2

α2
1α

2
3

= 0 .

(2.9)

ζ1 = (α2
2)

2α1
1α

1
2 − α2

1α
2
3(α

1
3)

2

ζ2 = (α2
3)

2α1
2α

1
3 − α2

1α
2
2(α

1
1)

2

ζ3 = (α2
1)

2α1
1α

1
3 − α2

2α
2
3(α

1
2)

2 .

(2.10)

One may note that the ζ` also satisfy the cubic equation

1

3
ζ1

3 +
1

3
ζ2

3 +
1

3
ζ3

3 − a ζ1ζ2ζ3 = 0 (2.11)

which identifies (ζ1, ζ2, ζ3) as a point on the (Jacobian of the) torus; this also follows upon

inserting the ansatz into (2.7) and taking determinants.

The second and third solutions take the form:

F
(2)
21 =




0 0 ζ3

0 ζ1 0

ζ2 0 0


 G

(2)
21 = −




ζ1
α1

2α2
3
x3

ζ3
α2

1α1
2
x1

ζ2
α1

2α2
2
x2

ζ2
α1

1α2
3
x1

ζ1
α1

1α2
1
x2

ζ3
α1

1α2
2
x3

ζ3
α1

3α2
3
x2

ζ2
α2

1α1
3
x3

ζ1
α2

2α1
3
x1




F
(3)
21 =




0 ζ2 0

ζ3 0 0

0 0 ζ1


 G

(3)
21 = −




ζ1
α2

2α1
3
x2

ζ3
α1

3α2
3
x3

ζ2
α2

1α1
3
x1

ζ2
α1

2α2
2
x3

ζ1
α1

2α2
3
x1

ζ3
α2

1α1
2
x2

ζ3
α1

1α2
2
x1

ζ2
α1

1α2
3
x2

ζ1
α1

1α2
1
x3


 ,

(2.12)

respectively, with the same values of ζ` as above. These three solutions correspond precisely

to the threefold arrows in the quiver diagram figure 2 that can be associated with the

ambient space geometry.

The arrows pointing in the opposite direction also come triply degenerate, and corre-

spond to bosonic boundary ring elements Φ
(a)
ji , a = 1, 2, 3 (with i = j + 1 mod 3). Their

– 5 –
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matrix representations are block diagonal with both blocks linear in the x`, and depend on

a choice of gauge because the image of Qi’s at degree 2/3 is non-trivial. Of course, as for

the fermions, we have in mind a basis with a definite “triality”, i.e., we require that Ψ
(a)
21

and Φ
(a)
12 are Serre dual to each other. These considerations lead to the ansatz

Φ
(1)
12 =

(
H(1) 0

0 K(1)

)
(2.13)

with

H(1) =




h11x h12y h13z

h21z h22x h23y

h31y h32z h33x


 K(1) =




k11x k12z k13y

k21y k22x k23z

k31z k23y k33x


 (2.14)

Solving

J1K
(1) − H(1)J2 = 0 ; E1H

(1) − K(1)E2 = 0 (2.15)

modulo

δH(1) = J1L ; δK(1) = LJ2 (2.16)

where L is an arbitrary scalar matrix, yields the following solution, in the simplest gauge

we could find:

H(1) =




0
α1

3 α2
3 x2 ζ3
α2

1

α1
2 α2

2 x3 ζ̄3
α2

1
α1

2 α1
3 α2

3 x3 ζ̄3
α1

1 α2
1

0 α1
2 x2 ζ3

α1
2 α2

2 α1
3 x2 ζ3

α1
1 α2

1
α1

3 x3 ζ̄3 0


 , (2.17)

K(1) =




0
α1

2 α2
2 α2

3 x3 ζ̄3
α1

1 α2
1

α2
2 α1

3 α2
3 x2 ζ3

α1
1 α2

1
α1

2 α2
2 x2 ζ3
α1

1
0 α2

2 x3 ζ̄3

α1
3 α2

3 x3 ζ̄3
α1

1
α2

3 x2 ζ3 0


 ,

where ζ̄3 is like ζ3 in (2.10), except that α1
i and α2

i are exchanged. The other bosonic

operators Φ
(a)
ij with a = 2, 3 can be similarly dealt with, and we refrain from presenting

them here.

3. Flat coordinates of brane-bulk moduli space

A crucial piece of mirror symmetry is the map between the algebraic coordinates the B-

model and the flat “geometric” coordinates, which are natural in the A-model. Due to the

simplicity of the torus, we know the answer beforehand: the flat coordinates are given by

the complex structure parameter τ of the curve (which under mirror symmetry becomes

identified with the Kähler parameter ρ̃ of the dual torus), and the brane locations ui, living

on the jacobian which is isomorphic to the torus itself (in the A-model picture, the ui are

complex variables that combine shift and Wilson line moduli).

In fact it is known since a long time [27] what the functions a and α` are in terms

of τ and u. Specifically, the algebraic modulus a is related to the flat complex structure

– 6 –
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modulus τ as a modular function for Γ[3], defined via the following relationship to the

modular invariant J(τ): (
J(τ)

1728

)1/3

= −
1

4

a(a3 + 8)

1 − a3
. (3.1)

Moreover, the α` are given by certain Weierstrass σ-functions, which coincide (up to a

common prefactor) with Jacobi Θ-functions evaluated at third-points. The underlying

mathematical reason is that the Θ-functions (q ≡ e2πiτ ):

Θ
[c1

c2

∣∣∣ n u, nτ
]

=
∑

m

qn(m+c1)2/2e2πi(n u+c2)(m+c1) , (3.2)

for c2 = 0, c1 = k/n (k = 0, . . . , n − 1), form a basis of global sections of degree n line

bundles L(n, u) ∼= L⊗(n−1)L(u), and provide a projective embedding of the elliptic curve.

From the cubic representation of the curve it follows that we need to take n = 3. Moreover,

what we are after are sections of the sheaf O(ui) of holomorphic functions whose zeros are at

the values of the boundary moduli ui. Since O(u) ' L(u−u0) where u0 = 1+τ
2 mod Z×τZ,

we shift the characteristics of the Θ-functions by −1/2.

Apart from normalization, there is a further ambiguity in identifying the α` with these

Θ-functions, and this reflects the action of the monodromy group which is given by the

tetrahedral group, T = Γ/Γ[3]. Like a(τ), the α` transform under the action of T (as

has been discussed in [28], the LG fields x` transform as well, and presumably also the

Chan-Paton matrices). We fix the ambiguity such that α1 → 0 if we approach the Gepner

point a = 0, which are the conventions used in [8]. We thus identify, up to a common

normalization:

αi
` ≡ αi

`(τ, ui) = i ε` Θ
[(1 − `)/3 − 1/2

−1/2

∣∣∣ 3ui, 3τ
]
, ` = 1, 2, 3, (3.3)

where ε = e2πi/3. As we have mentioned, the index labels lattice conjugacy classes, and

thus (`− 1) can be viewed as a Z3-valued “charge” that is preserved under multiplication.

Using (3.1), it is easy to check that the αi
`(ui, τ) indeed satisfy the cubic relation (2.3).2

We now like to identify a flat basis of the bulk/boundary cohomology representatives

corresponding to τ and u directly from LG considerations. By definition, marginal defor-

mations come from derivatives of the LG potentials. In the bulk sector we will take as

usual φ(x, τ) = −∂τW (x, τ), while on the boundary we are lead to consider:

Ω(x, τ, u) =
∂

∂u
Q(x, α`(τ, u)) . (3.4)

This is BRST invariant due to 1
2{Ω, Q} = ∂u{Q,Q} = ∂uW = 0. The ansatz (3.4) can

be justified by either one of the following two interrelated chains of arguments. We just

outline the first one (which is based on the variation of Hodge structures), because the

second one (based on constancy of the topological metric) is much easier to spell out in

the present situation.

2We have to choose the proper branch of a(J(τ )) that matches our choice of α`’s, and we find that the

correct choice is given by the branch that goes like q−1/3.

– 7 –
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First, one may derive differential equations for an appropriate generalized period inte-

gral involving Ω, the solutions of which will determine the flat coordinates in a systematric

way. A natural integral over fermionic variables is given by str[Q · ]W−1, and we thus may

consider variations of3

Πα
0 =

∫

γα

λ , λ =

∫

γW

str[QΩ]

W (x, a)2
ω , (3.5)

where ω =
∑3

`=1(−1)`x` dx1∧· · ·∧d̂x`∧. . .∧dx3 is a volume element, and γW is a small loop

around the locus W = 0 in P
2. Similar as explained in [29], a flat basis is characterized

by the vanishing of double derivatives of Πα
0 . This can be achieved by requiring that the

supertrace maps λ to the holomorphic 1-form η =
∫

ω/W on the curve, which maps the

problem to an already solved one. Indeed, Ω in (3.4) has the key property that

str[QΩ](x)
∣∣
∂`W (x)=0

= 0 , (3.6)

so that all contributions to the period integral come from “contact” terms that are pro-

portional to derivatives of W (x). Upon integrating by parts and choosing an appropriate

normalization factor, the Πα
0 for α = 0, 1 can then be made to coincide with the ordinary

periods associated with the torus, if we choose for γ0,1, the usual symplectic homology

basis of 1-cycles on the elliptic curve.

Moreover, we also introduce a 1-chain γ2 in the relative homology, one boundary of

which sits at a point p of the elliptic curve (p can be interpreted as the location of a

D0-brane on the T 2; this is analogous to the considerations of ref. [30], where 3-chains on

Calabi-Yau threefolds where considered whose boundaries are the locations of D2-branes).

The line integral over the chain γ2 will give an extra, functionally independent semi-period,

associated with the open string modulus.

Following the arguments of [30], we know that the Πα
0 must satisfy a system of differ-

ential equations that will determine the flat cordinates. However, these turn out to be very

complicated to write down and solve in terms of a general matrix ansatz for Ω and the LG

variables α` and a. On the other hand, since we know the flat coordinates τ, u anyway, we

can express Ω as given in (3.4) in terms of them and compute the differential equations and

their solutions directly in the flat coordinates. Concretely, after some lengthy calculations,

this yields the following simple linear system:

 ∂

∂τ
−




0 1 0

0 0 0

0 0 0





 · Π(τ, u) = 0 ,


 ∂

∂u
−




0 0 1

0 0 0

0 0 0





 · Π(τ, u) = 0 , (3.7)

which is trivially satisfied by the relative period matrix:

Πα
β(τ, u) =




q(τ)
∫
γα

η
∂
∂τ q(τ)

∫
γα

η
∂
∂uq(τ)

∫
γα

η


 =




1 τ u

0 1 0

0 0 1


 . (3.8)

3Equivalently, we also could consider Π̃ =
R

d3x str[Ωe−Q]e−W .
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Here,

q(τ) =

(
1 − a3

3a′(τ)

) 1
2

, (3.9)

is a “flattening” normalization factor [29] that is needed in order to get rid of all the

connection terms in the matrix differential equations. This factor can be understood as a

particular change of normalization4 of the bulk potential: W → q(τ)−1W (or equivalently,

of the holomorphic one-form).

A much more direct way to show that u is a flat coordinate and Ω as given in (3.4)

is a good flat cohomology representative, is given by computing the topological metric in

the boundary sector, and verifying it to be constant. For this, it is important to note

that the factorization condition Q2 = W constrains the relative normalization of Q and

W . In particular, the flattening factor for Q must be q(τ)−1/2 and this cannot depend on

the boundary parameters. Therefore, flatness of u should be equivalent to constancy of

the boundary topological metric, i.e., of the disk correlator 〈Ω〉disk when using the correct

normalization of W . Indeed, by plugging (3.4) into the generalized residue formula for

topological correlators of [4, 10], we find by direct computation

〈Ω 〉disk,normalized ≡ q(τ)

∫
str[ 1

3!(dQ)∧3∂uQ]

∂1W∂2W∂3W (x)

=

∫
f(τ, u)H(x)

∂1W∂2W∂3W (x)
= f(τ, u) ,

(3.10)

with

f(τ, u) = q(τ)
1

2πi∂uα2
1(τ, u)

α2(τ, u)2 − a(τ)α2
1(τ, u)

. (3.11)

In (3.10), H(x) = det∂i∂jW (x, a) is the hessian of the superpotential whose residue integral

equals unity.

Imposing 〈Ω〉disk,normalized = 1 is equivalent to the statement that u is a coordinate of

the jacobian, which is what is expressed in (3.3). Indeed, the holomorphic one-form on the

cubic curve described by (2.3) looks in the local patch α3 = 1 as

η = q(τ)
dα1

∂α2W (α1, α2, 1)
= q(τ)

dα1

α2
2 − aα1

. (3.12)

Therefore f(τ, u) = 1 is solved by

u =

∫ p(u)

p0

η , (3.13)

where p(u) = α1(u) and p0 is some reference point which we take to be ∞. This identifies

u, defined via 〈Ω〉 ≡ 〈∂uQ〉 = 1, as a flat coordinate on the jacobian, as expected.

4On a Calabi-Yau threefold, one would refer to this as a canonical choice of Kähler gauge. It amounts

to dividing out the periods by the unique period that behaves as a power series at large τ .
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4. Boundary changing correlators and disk instantons

We now turn to determining correlation functions. We just have seen that in the sector of

a single D-brane, the disk correlator 〈Ω 〉 is non-zero. However, this does not imply that

there is a non-zero effective superpotential. This topological correlator corresponds to a

boundary 3-point function 〈 1 1Ω 〉, but the insertions of the boundary identity operator

do not correspond to taking derivatives of an effective potential with respect to moduli.5

That there is no effective superpotential generated in the boundary preserving sector of a

single D-brane reflects, of course, that the deformations parametrized by τ and u are not

obstructed.

In order to obtain a non-trivial superpotential, we thus need to resort to correlators

of boundary changing operators, and we will specifically consider 3-point functions of the

form:

〈Ψ
(a)
13 Ψ

(b)
32 Ψ

(c)
21 〉 = 〈CabcΩ1 〉 = Cabc(τ, u1, u2, u3) , (4.1)

which correspond to going around once in the quiver diagram of figure 2. Here Ψ
(a)
ij denotes

the fermionic ring elements of section 2, which correspond to open strings streching between

the D-branes Lj and Li. Their proper normalization still needs to be determined.

Let us parametrize the normalization of the boundary ring elements by a priori un-

known functions g = g(τ, u), and write the full BRST operator in the following way:

Q =




Q1(τ, u1)
∑

t
(a)
12 g

(a)
12 Φ

(a)
12

∑
t
(a)
13 g

(a)
13 Ψ

(a)
13∑

t
(a)
21 g

(a)
21 Ψ

(a)
21 Q2(τ, u2)

∑
t
(a)
23 g

(a)
23 Φ

(a)
23∑

t
(a)
31 g

(a)
31 Φ

(a)
31

∑
t
(a)
32 g

(a)
32 Ψ

(a)
32 Q3(τ, u3)


 , (4.2)

where t
(a)
ij , a = 1, 2, 3 are the triplets of tachyon fields between the branes Lj and Li that are

defined by ∂

∂t
(a)
ij

Q = g
(a)
ij Ψ

(a)
ij . When they take generic values, the matrix factorization Q ·

Q = W1 is spoiled, and this reflects that deformations along these directions are generically

obstructed. In other words, there will be a non-vanishing effective superpotential Weff of

the form6

Weff(t, τ, ui) =
∑

j>k>imod 3

Cabc(τ, ui)t
(a)
ij t

(b)
jk t

(c)
ki . + O(t4) (4.3)

As indicated, there are higher order corrections in the tachyons, and specifically another

term allowed by charge conservation is t
(a)
12 t

(b)
23 t

(c)
31 t

(d)
12 t

(e)
21 . Presumably it can be determined

by making use of the generalized consistency conditions (which include the A∞ relations)

derived in ref. [19]. However, our purpose in this paper is to just determine the 3-point

functions Cabc(τ, ui) in terms of the unobstructed deformation parameters.

5Rather, these operators correspond to formal fermionic deformation parameters, which cancel out in

the effective potential [19]). One may also view 〈Ω 〉 as a 2-point function, but again the identity operator

does not correspond to a modulus in the effective action.
6Note that the ordering of the t’s is important here, and one may prefer to treat them as non-commuting

quantities.
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For obtaining the proper normalization, one might at first want to require the con-

stancy of the topological 2-point functions (which reflect Serre duality). However, the

trace structure of disk correlators implies that it is only the product of both fermionic and

bosonic normalization functions that is constrained in this way,

g
(a)
ij (τ, u)g

(b)
ji (τ, u) 〈Ψ

(a)
ij Φ

(b)
ji 〉

!
= δab , (4.4)

and this does not help us determining the absolute normalization of the fermionic 3-point

functions (4.1).

To proceed, let us first simplify the expressions for the Ψ
(a)
ij given in section 2. Recall

that the functions ζ` also satisfy the cubic equation, cf., (2.11), and thus also should be

given by Θ-functions. It turns out, as a consequence of the quartic addition formulas [31]

that the Θ-functions obey, that

ζ`(ui, uj) = cij α`(−ui − uj) , (4.5)

where cij = η2α3(uj − ui) is independent of `. Thus, by a change of overall normalization,

we will take as a new ring basis the matrices Ψ
(a)
ij as described before, but now with the

substitutions ζ` → α`(−ui − uj). We will see later in section 5 that this way of writing

the Ψ’s is more natural from the mathematical point of view. Moreover, as we will see

momentarily, the normalization of the three-point correlators will be already very close to

the correct result.

The result depends on which of the three kinds of the open string intermediate states

are considered. One can associate a Z3-valued charge associated with the label (a), and

there is a selection rule which requires that the total Z3 charge of any correlator must vanish.

All-in-all there are only three independent kinds of non-vanishing correlators. Specifically,

we find after somewhat cumbersome calculations that the Θ-functions very nicely conspire

such that the complicated expressions for the correlators collapse to the following simple

ones (see the next section for a rationale):

C111(τ, ui) ∼
q(τ)

η(τ)
α1(τ, u1 + u2 + u3)

C123(τ, ui) ∼
q(τ)

η(τ)
α2(τ, u1 + u2 + u3) (4.6)

C132(τ, ui) ∼
q(τ)

η(τ)
α3(τ, u1 + u2 + u3) .

In order to fix the overall normalization, we now make use of the following operator product:

Ωi(x, τ, ui) · Ωi(x, τ, ui) = 12πi1φ(x, τ) mod. ∂`W (x, τ) , (4.7)

which can be verified by direct computation. Note that despite the marginal bulk oper-

ator φ(x, τ) does not belong to the boundary cohomology, integrated insertions of it in

correlators can still contribute at the boundary via contact terms. Because the operator

identity (4.7) involves the ring elements in a flat basis, it imposes the following simple
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L1

L1

L2 L3

L3

∆111

L2

∆222

∆333

∆123

∆132
Ψ

(2)
31

Figure 3: Shown is the fundamental region of the cubic torus at ρ = e2πi/3, with the three special

lagrangian D-branes Li on top. The triangular world-sheets ∆abc shown give the leading instanton

corrections to the Yukawa couplings Cabc. Note that we have slightly shifted L2 by setting u2 6= 0,

so that each of the three triple intersections gets resolved into three pairwise intersections, and the

∆aaa get a non-vanishing area. The boundary changing open string operators Ψ
(a)
ij are localized at

the corresponding intersection points of the branes Lj and Li (an example of which is indicated).

derivative, “Ward-identity” on correlators:

(
∂2

∂ui
2
− 12πi

∂

∂τ

)
Cabc(τ, ui) = 0. (4.8)

This is nothing but the one-dimensional heat equation which is known to be satisfied by

Θ-functions [31]; in fact, it is satisfied precisely by the Θ-functions that define the sections

α` in (3.3). In other words, the correct normalization of the correlators is given (up to a

constant) just by the expressions (4.6) with the common prefactors dropped.

Now recall that our parametrization of the jacobian in (3.3) was such that we had

switched on certain Wilson lines and position shifts. Undoing these translations (the choice

of origin on the jacobian is of course immaterial), we finally obtain for the 3-point functions:

C111(τ, ξ) = e6πiξ1ξ2q3ξ2
2/2

∑

m

q3m2/2e6πimξ

C123(τ, ξ) = e6πiξ1ξ2q3ξ2
2/2

∑

m

q3(m+1/3)2/2e6πi(m+1/3)ξ (4.9)

C132(τ, ξ) = e6πiξ1ξ2q3ξ2
2/2

∑

m

q3(m−1/3)2/2e6πi(m−1/3)ξ ,

where ξ ≡ ξ1+τξ2 = u1+u2+u3. In A-model language where τ → ρ, the interpretation [32,

20] of these Θ-functions is that they count the areas of the disk instantons that are bounded

by the three intersecting D-branes Li (q = e2πiρ ∼ e−2π Area). This is visualized in figure 3.

The ξ-dependence takes position shifts and Wilson lines on the A-branes into account. The

expressions (4.9) coincide with the Yukawa couplings given in [33], which were obtained by

a direct evaluation of the areas of the triangles and summing them up.
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5. Fukaya products and Θ-identities

One may wonder what the underlying mathematical reason is why the triple matrix product

of the Ψ’s yields the correct disk partition functions (4.9). We have already mentioned

that the result arises due to non-trival addition formulae of Θ-functions on which the Ψ’s

depend. On the other hand we know from [20 – 24] that certain such formulae represent

Fukaya products of the derived category on the elliptic curve. It is thus desirable to exhibit

this connection more explicitly, by identifying the kind of Θ-function identities that underly

our results.

Specifically, for general vector bundles on the elliptic curve, the first non-zero, associa-

tive Fukaya product m2 : Hom[Li,Lj ]⊗Hom[Lj ,Lk] →Hom[Li,Lk] can be written in the

following form [20 – 23]:7

m2([eij(0, a), [ejk(0, b)]) =
∑

n∈Iλj
/Iλiλjλk

ΘIλiλjλk
;n(pρ̃) [eik(n,−λjn + a + b)] , (5.1)

where [eij(m,k)] denote basis elements of Hom[Li,Lj ], and the arguments denote certain

lattice shifts further explained in [21 – 23]. Moreover, λ = c1/r denotes the slopes of

the branes, and Iλi
= {n ∈ Z : nλi ∈ Z}, Iλiλjλk

= Iλj
∩ λk−λi

λk−λj
λi. Furthermore, p =

(λk−λj)(λj−λi)
λk−λi

and ΘI;n denotes a Θ-function of the form (3.2), but for which the sum runs

over m ∈ I + n.

The product (5.1) takes the form of a Θ-function identity when the basis elements [eij ]

are represented by sections made out of Θ-functions. This is particularly simple for line

bundles, where r(Li) = 1, λi ∈ Z and for which the [eij ] are directly given by Θ-functions:

[eij(0, a)] ∼ Θ(λj−λi)Z,a(
ρ̃

λj−λi
). For more general vector bundles with r(Li) > 1 (which

applies to our example), one needs to employ isogenies (rescalings of ρ̃), and consider

r-tuples of sections; see [20 – 24] for details.

For the case at hand, we identify the labels as (i, j, k) = (2, 1, 3), and we have for

the slopes λ` = λ(L`) of the bundles: λ1 = 1/2, λ2 = −1, λ3 = 2 which yields p = 3/4.

Because of Iλ`
= 2Z = Iλ2λ1λ3 , the sum in (5.1) runs only over n = 0. The resulting

Θ-function on the r.h.s. of (5.1), given by Θ2Z,0(3/4ρ̃), precisely coincides with the Yukawa

couplings given in the previous section. Moreover, the [eij ] can be represented by sections

of Hom[Li,Lj] ∼= H0(L⊗3), which is three-dimensional and is generated by α`(−uj − ui).

To make contact with our Landau-Ginzburg computations, notice that the result (4.9)

for the correlators (4.1) can be expressed by the following operator product:

Ψ
(a)
21 (u2, u1) · Ψ

(b)
13 (u1, u3) =

∑
C c

ab (ρ̃, u1 + u2 + u3)Φ
(c)
23 (u2, u3) , (5.2)

(modulo Q-exact pieces). This is nothing but the B-model mirror Landau-Ginzburg repre-

sentation of the Fukaya product (5.1). The [eij ] are represented here by the matrix-valued,

Z3 equivariant sections Ψ
(a)
ji and Φ

(a)
ij as given in section 2, with the proper normalizations.

7In this section, we will denote the Kähler parameter on the A-model side by ρ̃ = τ , where τ is the

complex structure parameter in the B-model.
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Specifically, recalling that the Ψ’s were already rescaled by cij defined below (4.5), and

implementing the rescaling mentioned at the end of the previous section, it follows that

the normalization functions in Q for the fermionic ring elements can be chosen as follows:

g
(b)
i+1mod 3,i =

(q(ρ̃)

η(ρ̃)

)−1/3
= const.(a′)1/4(1 − a3)−5/24 , b = 1, 2, 3, (5.3)

where we have used η8 = 3
(2πi)2

(a′)2

a3−1
. The bosonic normalizations are then fixed by (4.4),

and in particular we find:

g
(1)
23 = const.(a′)1/4(1 − a3)−7/24

(
α2(u2)α2(u3)α3(u2)α3(u3)α3(−u2 − u3)

)−1
. (5.4)

Using these normalizations, and by repeatedly using the cubic equation (2.3), we find that,

for example, the product m2(Ψ
1
21Ψ

1
13) = α1(u1 + u2 + u3)Φ

1
23 boils down to the following

identity between Θ-functions:

1

η(ρ̃)α1(u1)

(
α2(−u3 − u1)α3(−u2 − u1)

α2(u2)α3(u3)
−

α2(−u2 − u1)α3(−u3 − u1)

α2(u3)α3(u2)

)
(5.5)

= α1(u1 + u2 + u3)
α1(u3 − u2)

α2(u2)α2(u3)α3(u2)α3(u3)
, (5.6)

whose left- and right-hand sides correspond to eq. (5.1); the other products lead to analo-

gous expressions, and we do not need to present them here. Noting that the denominator

on the r.h.s. stems from the normalization of Φ1
23, we see that the structure of the r.h.s.

is quite simple; this is a reflection of the fact that the involved bundles L2 ∼ O(−1),

L3 ∼ O(2) are line bundles, for which the morphisms are simple Θ-functions. On the other

hand, the l.h.s. ist structurally more complicated, and this reflects the involvement of L1

which is a rank two bundle.8

Summarizing, we have demonstrated that the boundary Landau-Ginzburg approach

reproduces non-trivial mathematical results about the category of D-branes on the elliptic

curve. We expect it to capture branes with higher K-charges and also the higher products

mk (though likely with considerably more effort), as well as generalizations to branes on

higher dimensional manifolds; this will be discussed elsewhere.
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A. LG description of the short diagonals

The 3×3 matrix factorizations discussed in the main part of the paper do not describe the

minimal branes, i.e., the generators of the full K-charge lattice on the torus. These have

slopes (r, c1) = (1, 0) and (0, 1), corresponding to pure D2 and D0 branes, and are the

B-model mirrors of the short diagonals S1, S2, S3 of the SU(3) torus, as shown in figure 1.

The minimal branes do not arise as pull-backs from the ambient P
2, but are intrinsically

tied to the curve W = 0 in P
2.

In this appendix, we study a class of Z3-equivariant, quasi-homogeneous 2 × 2 matrix

factorizations of the cubic (1.1), that describe these minimal branes. At a = 0, such matrix

factorizations were discussed in [25]. Analogous branes for the quintic at the Fermat point

have been obtained in [6], where it was shown that they provide an integral basis of the

full charge lattice.

We start with the following system of homogeneous linear functions:

L1 = α3x1 − α2x3

L2 = −α3x2 + α1x3.

For α3 = 0 the linear equations L1 = L2 = 0 describe a point which lies on the torus

provided that the αi fulfill the torus equation (1.1). We can then find two polynomials

F1, F2 of degree 2 such that

α1α2α3W = L1F1 + L2F2.

Explicitly, F1, F2 can be chosen to be

F1 = α1α2x
2
1 + α2

2x1x2 − α2
1x

2
2 − α1α3x

2
3

F2 = α2
2x

2
1 − α2

1x1x2 − α1α2x
2
2 + α2

3x1x3.

Under the exchange xi ↔ αi the polynomials transform as L1 ↔ L2 and F1 ↔ −F2.

Note that the factorization becomes singular in the limit α3 → 0, since the equations

L1 = L2 = 0 fail to describe a point in that case. To cover this coordinate patch, one has

to use linear combinations of L1, L2 that are well-behaved in the limit, such as the system

consisting of L̃1 and L̃2 = 1
α3

(α1L1 + α2L2) and F̃1 = F1 −
α1
α2

F2 and F̃2 = α3
α2

F2.

The BRST operator takes the form

Q = L̃1π1 + L̃2π2 +
1

α1α2α3
(F̃1π̄1 + F̃2π̄2),

where πi, π̄i form a representation of the four dimensional Clifford algebra. It can also be

written in the form (2.1) with J =
(

L̃1 F̃2

−L̃2 F̃1

)
and E = 1

α1α2α3

(
F̃1 −F̃2

L̃2 L̃1

)
.

To verify that the 2 × 2 factorizations correspond to the short diagonals in the A-

picture, we determine their charges. This can easily be done by first determining their

intersection numbers with the 3× 3-factorization type of branes. In a second step one can

then determine a collection of 3× 3 branes which have the same intersection numbers with
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any other set of 3 × 3 branes as the 2 × 2 branes. The charge of this collection of 3 × 3

branes is known from our earlier considerations and equals the charge of the 2× 2 branes.

The intersection numbers of the 2 × 2 factorizations with the 3 × 3 factorizations

have been determined in [6]. In that paper, all computations were done exclusively at the

Gepner point, but since the intersection numbers are topological, we can make use of their

calculations. The result is that the intersection matrix is

I2×2,3×3 = −1 + 2g − g2, (A.1)

where g is the Z3 shift matrix that shifts the Z3 representation label of a brane by one.

For our calculation, we need in addition the intersection matrix of the 3× 3 branes, which

is given by

I3×3,3×3 = −3g + 3g2.

We now look for a stack of xi branes of type Li having th intersection numbers (A.1). This

amounts to the following equation:

(−3g + 3g2)(x1 + x2g + x3g
2) = −1 + 2g − g2,

with the solution x1 = −2
3 + x3, x2 = −1

3 + x3. Translating this into charges, the first of

the three 2 × 2 branes has the charge of q1 = −1/3(2q(L3) + q(L1)) = (0, 1) and is a pure

D0 brane, confirming the expectation that one of the branes should be a pure D0 brane.

The charges of the other two branes are q2 = −1/3(2q(L2) + q(L3)) = (1, 0), which is a

pure D2 brane, and q3 = −1/3(2q(L1) + q(L2)) = (−1,−1). To find the interpretation of

the branes in the A-type picture, we note that 2 times a long diagonal plus 1 times the Z3

rotated long diagonal yields 3 times a short long diagonal, such that the 2×2 factorizations

indeed correspond to the branes Si wrapped along the short diagonals (see figure 1).

We can give another consistency check of our results by determining the flat brane

modulus as we did in section 3 for the 3 × 3 factorizations. In the same notation, and in

the same normalization as in eq. (3.10), we find for the 2 × 2 factorizations

〈∂uQ〉disk,normalized =
1

3
f(τ, u) , (A.2)

where f is as in (3.11). The α`, then, have to be identified with Θ-functions as in (3.3),

with 3u → u.
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[32] M. Kontsevich, Homological algebra of mirror symmetry, in Proceedings of the International
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