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Abstract—We explore the trade-offs of performing linear
algebra using Apache Spark, compared to traditional C and
MPI implementations on HPC platforms. Spark is designed for
data analytics on cluster computing platforms with access to
local disks and is optimized for data-parallel tasks. We examine
three widely-used and important matrix factorizations: NMF
(for physical plausability), PCA (for its ubiquity) and CX
(for data interpretability). We apply these methods to 1.6TB
particle physics, 2.2TB and 16TB climate modeling and 1.1TB
bioimaging data. The data matrices are tall-and-skinny which
enable the algorithms to map conveniently into Spark’s data-
parallel model. We perform scaling experiments on up to 1600
Cray XC40 nodes, describe the sources of slowdowns, and
provide tuning guidance to obtain high performance.

Keywords-matrix factorization; linear algebra; Apache
Spark; PCA; NMF

I. INTRODUCTION

Modern experimental devices and scientific simulations

produce massive amounts of complex data: in high energy

physics, the LHC project produces PBs of data; the cli-

mate science community relies upon access to the CMIP-

5 archive, which is several PBs in size; the multi-modal

imagers used in biosciences can acquire 100GBs-TBs of

data. Several scientific domains are currently rate-limited by

access to productive and performant data analytics tools that

operate on data of these sizes.

We have seen recent substantial progress in the

adoption of Big Data software frameworks such as

Hadoop/MapReduce [1] and Spark [2]. Ideally, the scientific

data analysis and high performance computing (HPC) com-

munities would leverage the momentum behind Hadoop and

Spark. Unfortunately, these frameworks have been developed

for industrial applications and commodity hardware, and the

performance of such frameworks at scale on conventional

HPC hardware has not been investigated extensively. For

matrix factorizations in particular, there is a gap between the

performance of well-established libraries (SCALAPACK,

LAPACK, BLAS, PLASMA, MAGMA, etc. [3, 4]) and

the tools available in Spark. Our work takes on the important

task of testing nontrivial linear algebra and matrix factoriza-

tion computations in Spark using large-scale scientific data

analysis applications. We compare and contrast its perfor-

mance with C+MPI implementations on HPC hardware. The

main contributions of this paper are as follows:

• We develop parallel versions of three leading matrix

factorizations (PCA, NMF, CX) in Spark and C+MPI;

and we apply them to several TB-sized scientific data

sets. To ensure that our comparison of Spark to MPI is

fair, we implement the same algorithms in Spark and

MPI, drawing on a common set of numerical linear

algebra libaries for which Spark bindings are readily

available (BLAS, LAPACK, and ARPACK).

• We conduct strong scaling tests on a XC40 system, and

we test the scaling of Spark on up to 1600 nodes.

• We characterize the performance gap between Spark

and C+MPI for matrix factorizations: by identifying the

causes of the slow-downs in algorithms that exhibit dif-

ferent bottlenecks (e.g. I/O time versus synchronization

overheads), we provide a clear indication of the issues

that one encounters attempting to do serious distributed

linear algebra using Spark.

• We comment on opportunities for future work in Spark

to better address large scale scientific data analytics on

HPC platforms.

II. SCIENCE DRIVERS AND DATA SETS

In this study, we choose leading data sets from experimen-

tal, observational, and simulation sources, and we identify

associated data analytics challenges. These data sets are

summarized in Table I.

The Daya Bay Neutrino Experiment: The Daya Bay

Neutrino Experiment (Figure 1a) detects antineutrinos pro-

duced by the Ling Ao and Daya Bay nuclear power plants



(a) Daya Bay Neutrino Experiment (b) CAM5 Simulation (c) Mass-Spec Imaging

Figure 1: Sources of various data sets used in this study

Table I: Summary of the matrices used in our study

Science Area Format/Files Dimensions Size

MSI Parquet/2880 8, 258, 911× 131, 048 1.1TB
Daya Bay HDF5/1 1, 099, 413, 914× 192 1.6TB
Ocean HDF5/1 6, 349, 676× 46, 715 2.2TB
Atmosphere HDF5/1 26, 542, 080× 81, 600 16TB

and uses them to measure theta-13, a fundamental constant

that helps describe the flavor oscillation of neutrinos. We

computed an NMF factorization on a sparse 1.6TB matrix

consisting of measurements from Daya Bay’s photodetector

arrays. The analytics problem that we hope to tackle with

NMF is that of finding characteristic patterns or signatures

corresponding to various particle types.

Climate Science: Climate scientists rely on HPC sim-

ulations to understand past, present and future climate

regimes. Vast amounts of 3D data (corresponding to at-

mospheric and ocean processes) are readily available in

the community. The most widely used tool for extracting

important patterns from the measurements of atmospheric

and oceanic variables is the Empirical Orthogonal Function

(EOF) technique. Mathematically, EOFs are exactly PCA

decompositions. Traditionally, the lack of scalable analyt-

ics methods and tools has prevented the community from

analyzing full 3D fields; typical analysis is performed only

on 2D spatial averages or slices. We compute the EOFs of

a dense 2.2TB matrix comprising global ocean temperature

data collected over 30 years [5], and of a dense 16TB matrix

comprising atmospheric humidity measurements collected

over 28 years [6] (Figure 1b). A better understanding of the

dynamics of large-scale modes of variability in the ocean

and atmosphere may be extracted from the 3D EOFs we

compute.

Mass-Spectrometry Imaging: Mass spectrometry mea-

sures ionic spectra derived from the molecules present in a

biological sample. We analyze one of the largest (1TB-sized)

mass-spec imaging data sets in the field, obtained from a

sample of a plant from the Peltatum species (Figure 1c).

The MSI measurements are formed into a sparse matrix the

sheer size of which has previously made complex analytics

intractable. CX decompositions select a small numbers of

columns (corresponding to ions) in the original data that

reliably explain a large portion of the variation in the data.

III. METHODS

Given an m × n data matrix A, low-rank matrix factor-

ization methods aim to find two or more smaller matrices

Y and Z such that

A
m×n

≈ Y
m×k
× Z

k×n
.

Depending on the particular application, various low-rank

factorization techniques are of interest. Popular choices

include the singular value decomposition [7], principal com-

ponent analysis [8], rank-revealing QR factorization [9],

nonnegative matrix factorization (NMF) [10], and CX/CUR

decompositions [11]. In this work, we consider the PCA

decomposition, due to its ubiquity, as well as the NMF

and CX/CUR decompositions, due to their usefulness in

scalable and interpretable data analysis. In the remainder

of the section, we briefly describe these decompositions and

the algorithms we used in our implementations, and we also

discuss related implementations. Throughout, we assume the

data matrix A has size m×n and can be well approximated

by a rank r approximation, with r ≪ n ≪ m; this “tall-

skinny”, highly rectangular setting is common in practice.

Prior Work: The body of theoretical and practical

work surrounding distributed low-rank matrix factorization

is large and continuously growing. The HPC community

has produced many high quality packages specifically for

computing partial SVDs of large matrices: PROPACK [12],

BLOPEX [13], and ANASAZI [14], among others. We refer

the interested reader to [15] for a well-written survey. As

far as we are aware, there are no published HPC codes for

computing CX decompositions, but several HPC codes exist

for NMF factorization [16].

The machine learning community has produced many

packages for computing a variety of low-rank decompo-

sitions, including NMF and PCA, typically using either

an alternating least squares (ALS) or a stochastic gradient



Algorithm 1 PCA Algorithm

Require: A ∈ R
m×n, rank parameter k ≤ rank(A).

Ensure: UkΣkV
T
k = PCA(A, k).

1: Let (Vk, ) = IRAM(MULTIPLYGRAMIAN(A, ·), k).
2: Let Y = MULTIPLY(A, Vk).
3: Compute (Uk,Σk, ) = SVD(Y ).

descent approach [17, 18, 19]. We mention a few of the

high-visibility efforts in this space. The earlier work [20]

developed and studied a distributed implementation of the

NMF for general matrices under the Hadoop framework,

while [21] introduced a scalable NMF algorithm that is par-

ticularly efficient when applied to tall-and-skinny matrices.

We implemented a variant of the latter algorithm in Spark,

as our data matrices are tall-and-skinny. The widely used

MLLIB library, packaged with Spark itself, provides imple-

mentations of basic linear algebra routines [22]; we note

that the PCA algorithm implemented in MLLIB is almost

identical to our concurrently developed implementation. The

Sparkler system introduces a memory abstraction to the

Spark framework which allows for increased efficiency in

computing low-rank factorizations via distributed SGD [23],

but such factorizations are not appropriate for scientific

applications which require high precision.

Our contribution is the provision of, for the first time,

a detailed investigation of the scalability of three low-

rank factorizations—PCA, NMF, and CX—using the linear

algebra tools and bindings provided in Spark’s baseline

MLLIB [22] and ML-MATRIX [24] libraries.

Principal Components Analysis: Throughout, we use

the term principal component analysis (PCA) of a centered

matrix A (i.e., one whose columns are zero-mean) to refer to

the rank-k approximation given by Ak = UkΣkV
T
k , where

the columns of Uk and Vk are the top k left and right

singular vectors of A, respectively, and Σk is a diagonal

matrix containing the corresponding top k singular values.

Direct algorithms for computing the PCA decomposition

scale as O(mn2), so are not feasible for the scale of the

problems we consider. Instead, we use the iterative algorithm

presented in Algorithm 1: a series of matrix-vector products

against ATA (MULTIPLYGRAMIAN) are used to extract

Vk by applying the implicitly restarted Arnoldi method

(IRAM) [25], then the remaining factors Uk and Σk are

computed by taking the SVD of AVk. Here QR and SVD

compute the “thin” versions of the QR and SVD decompo-

sitions [7]. (Algorithm 1 calls MULTIPLYGRAMIAN, which

is summarized in Algorithm 2).

Nonnegative Matrix Factorization: Nonnegative matrix

factorizations (NMFs) provide interpretable low-rank matrix

decompositions when the columns of A are nonnegative and

can be viewed as additive superpositions of a small num-

ber of positive factors [26]. NMF has found applications,

Algorithm 2 MULTIPLYGRAMIAN Algorithm

Require: A ∈ R
m×n, B ∈ R

n×k.

Ensure: X = ATAB.

1: Initialize X = 0.

2: for each row a in A do

3: X ← X + aaTB.

4: end for

Algorithm 3 NMF Algorithm

Require: A ∈ R
m×n with A ≥ 0, rank parameter k ≤

rank(A).
Ensure: WH ≈ A with W,H ≥ 0

1: Let ( , R) = TSQR(A).
2: Let (K, H) = XRAY(R, k).
3: Let W = A(:,K).

among other places, in medical imaging [27], facial recog-

nition [28], chemometrics [29], hyperspectral imaging [30],

and astronomy [31].

To find an NMF decomposition, we seek matrices W ∈
R

m×k and H ∈ R
k×n such that the approximation error

‖A − WH‖F is small and W and H are entrywise non-

negative. We adopt the one-pass algorithm of [21] to solve

this problem. This approach assumes that W can be formed

by selecting columns from A. In this setting, the columns

of A constituting W as well as the corresponding H can

be computed directly from the (much smaller) R factor in

a thin QR factorization of A. More details are given in

Algorithm 3: in step 1, a QR factorization is used to compute

the R factor of A; in step 2, the XRAY algorithm of [32] is

applied to R to simultaneously compute H and the column

indices K of W in A. Finally, W can be explicitly computed

once K is known.

CX decompositions: CX decompositions are low-rank

matrix decompositions that are expressed in terms of a small

number of actual columns of A. They have been used in

scientific applications where interpretability is paramount,

including genetics [33], astronomy [34], and mass spectrom-

etry imaging [35].

To find a CX decomposition, we seek matrices C ∈
R

m×k and X ∈ R
k×n such that the approximation error

‖A − CX‖F is small and C contains k actual columns of

A. The randomized algorithm of [36] generates a C with

low approximation error. Details are given in Algorithm 4:

the first nine steps of the algorithm approximate Vk, and

the next step computes measures of the extent to which the

columns of A influenced Vk; the remaining two steps uses

these importance measures to sample from the columns of

A to form C. The matrix X is implicitly determined, and

for our purposes does not need to be computed.



Algorithm 4 CX Algorithm

Require: A ∈ R
m×n, number of power iterations q ≥ 1,

target rank k > 0, slack p ≥ 0, and let ℓ = k + p.

Ensure: C.

1: Initialize B ∈ R
n×ℓ by sampling Bij ∼ N (0, 1).

2: for q times do

3: B ← MULTIPLYGRAMIAN(A,B)
4: (B, )← QR(B)
5: end for

6: Let Q be the first k columns of B.

7: Let Y = MULTIPLY(A,Q).
8: Compute (U,Σ, Ṽ T ) = SVD(Y ).
9: Let V = QṼ .

10: Let ℓi =
∑k

j=1 v
2
ij for i = 1, . . . , n.

11: Define pi = ℓi/
∑d

j=1 ℓj for i = 1, . . . , n.

12: Randomly sample ℓ columns from A in i.i.d. trials, using

the importance sampling distribution {pi}
n
i=1 .

IV. IMPLEMENTATION

Spark is a parallel computing framework, built on the

JVM, that adheres to the data parallelism model. A Spark

cluster is composed of a driver process and a set of executor

processes. The driver schedules and manages the work,

which is carried out by the executors. The basic unit of

work in Spark is called a task. A single executor has several

slots for running tasks (by default, each core of an executor

is mapped to one task) and runs several concurrent tasks

in the course of calculations. Spark’s primitive datatype is

the resilient distributed data set (RDD), a distributed array

that is partitioned across the executors. The user-defined

code that is to be run on the Spark cluster is called an

application. When an application is submitted to the cluster,

the driver analyses its computation graph and breaks it up

into jobs. Each job represents an action on the data set, such

as counting the number of entries, returning data set entries,

or saving a data set to a file. Jobs are further broken down

into stages, which are collections of tasks that execute the

same code in parallel on a different subset of data. Each

task operates on one partition of the RDD. Communication

occurs only between stages, and takes the form of a shuffle,

where all nodes communicate with each other, or a collect,

where all nodes send data to the driver.

Implementing Matrix Factorizations in Spark: All three

matrix factorizations store the matrices in a row-partitioned

format. This enables us to use data parallel algorithms and

match Spark’s data parallel model.

The MULTIPLYGRAMIAN algorithm is the computational

core of the PCA and CX algorithms. This algorithm is

applied efficiently in a distributed fashion by observing that

if the i-th executor stores the block of the rows of A denoted

by A(i), then ATAB =
∑ℓ

i=1 A
T
(i)A(i)B. Thus MULTI-

PLYGRAMIAN requires only one round of communication.

The local linear algebra primitives QR and SVD needed for

PCA and CX are computed using the LAPACK bindings of

the Breeze numerical linear algebra library. The NETLIB-

JAVA binding of the ARPACK library supplies the IRAM

primitive required by the PCA algorithm.

The NMF algorithm has as its core the tall-skinny QR

factorization, which is computed using a tree reduction

over the row-block partitioned A. We used the TSQR

implementation available in the ML-MATRIX package. To

implement the XRAY algorithm, we use the MLLIB non-

negative least squares solver.

Implementing Matrix Factorizations in C+MPI: NMF,

PCA and CX require linear algebra kernels that are available

in widely-used libraries such as Intel MKL, Cray LibSci, and

arpack-ng. We use these three libraries in our implemen-

tations of the matrix factorizations. The data matrices are

represented as 1D arrays of double-precision floating point

numbers and are partitioned across multiple nodes using a

block row partitioned layout. The 1D layout enables us to

use matrix-vector products and TSQR as our main compu-

tational kernels. We use MPI collectives for inter-processor

communication and perform independent I/O using the Cray

HDF5 parallel I/O library.

V. EXPERIMENTAL SETUP

All performance tests reported in this paper were con-

ducted on the Cori system at NERSC. Cori Phase I is a

Cray XC40 system with 1632 dual-socket compute nodes.

Each node consists of two 2.3GHz 16-core Haswell pro-

cessors and 128GB of DRAM. The Cray Aries high-speed

interconnect is configured in a “Dragonfly’ topology. We use

a Lustre scratch filesystem with 27PB of storage, and over

700 GB/s peak I/O performance.

We use Spark’s Standalone Cluster Manager to run the

Spark cluster in an encapsulated Shifter image. Shifter is

a framework that delivers docker-like functionality to HPC

[37]. Shifter allows users with a complicated software stack

to easily install them in the environment of their choosing. It

also offers considerable performance improvements because

metadata operations can be more efficiently cached com-

pared to a parallel file system and users can customize the

shared library cache (ldconfig) settings to optimize access

to their analysis libraries.

H5Spark: Loading HDF5 data natively into Spark:

The Daya Bay and climate data sets are stored in HDF5.

We used the H5Spark [38] package to read this data into

an RDD. H5Spark partially relies on the Lustre file system

striping to achieve high I/O bandwidth. We chose a Lustre

configuration optimal for each data set: we stored the Daya

Bay data on 72 OSTs and the climate data sets on 140 OSTs,

both with striping size of 1MB.

Spark Tuning Parameters: We followed general Spark

guidelines for Spark configuration values. The driver and

executor memory were both set to 100 GB, a value chosen



to maximize the memory available for data caching and

shuffling while still leaving a buffer to hedge against running

the nodes out of memory. Generally we found that fetching

an RDD from another node was detrimental to performance,

so we turned off speculation (a function that restarts tasks

on other nodes if it looks like the task is taking longer

than average). We also set the spark locality wait to two

minutes, this ensures that the driver will wait at least two

minutes before scheduling a task on a node that doesn’t

have the task’s RDD. The total number of spark cores was

chosen such that there was a one-to-one correspondence

between spark cores and physical cores on each node (with

the exception of the 50-node NMF run which used a factor

of two more partitions because it ran into hash table size

issues). We used the KryoSerializer for deserialization of

data. We compiled Spark to use multi-threaded OpenBLAS

for PCA.

C+MPI Tuning Parameters: The NMF algorithm uses

the Tall-Skinny QR (TSQR) [39, 40] factorization imple-

mented as part of the Communication-Avoiding Dense Ma-

trix Computations (CANDMC) library [41] which links to

Intel MKL for optimized BLAS routines using the For-

tran interface and ensured that loops were auto-vectorized

when possible. We explored multi-threading options with

OPENMP but found that it did not significantly improve

performance. Applying TSQR on the Daya Bay data set

results in a 192 × 192 upper-triangular matrix. Due to

the small size we utilized a sequential non-negative least

squares solver by Lawson and Hanson [42] in the XRAY

algorithm. PCA requires EVD, SVD, matrix-vector products,

and matrix-matrix products. We use arpack-ng [43] for the

SVD and link to single-threaded Cray LibSci for optimized

BLAS routines using the C interface. All experiments were

conducted using a flat-MPI configuration with one MPI

process per physical core and disabled TurboBoost.

Spark Overheads: When reporting the overheads due to

Spark’s communication and synchronization costs, we group

them into the following bins:

• Task Start Delay: the time between the stage start and

when the driver sends the task to an executor.

• Scheduler Delay: the sum of the time between when

the task is sent to the executor and when it starts

deserializing on the executor and the time between

the completion of the serialization of the result of the

task and the driver’s reception of the task completion

message.

• Task Overhead Time: the sum of the fetch wait times,

executor deserialize times, result serialization times,

and shuffle write times.

• Time Waiting Until Stage End: the time spent waiting

on the final task in the stage to end.

VI. RESULTS

A. NMF applied to the Daya Bay matrix

The separable NMF algorithm we implemented fits nicely

into a data parallel programming model. After the initial dis-

tributed TSQR the remainder of the algorithm is computed

serially on the driver.

Figure 2: Running time breakdown when using NMF to

compute a rank 10 approximation to the 1.6TB Daya Bay

matrix at node counts of 50, 100, and 300. Each bin depicts

the sum, over all stages, of the time spent in that bin by the

average task within a stage. The 50 node run uses double

the number of partitions as physical cores because due to

out-of-memory errors using fewer partitions– this results in

a large task start delay.

C+MPI vs. Spark: The TSQR algorithm used performs

a single round of communication using a flat binary tree.

Because there are few columns, the NMF algorithm is en-

tirely I/O-bound. Figure 2 gives the running time breakdown

when computing rank 10 approximations using the MPI

implementation of NMF on 50 nodes, 100 nodes, and 300

nodes. Each bin represents the sum, over all stages, of the

time spent in that bin by the average task within a stage.

The running time for NMF is overwhelmingly dominated

by reading the input. In comparison, TSQR and XRAY

have negligible running times. Figure 2 shows that the

HDF5 read time does not scale linearly with the number

of nodes and is the primary source of inefficiency – this

is due to saturating the system bandwidth for 72 OSTs.

XRAY, which is computed on the driver, is a sequential

bottleneck and costs 100ms at all node counts. TSQR only

improves by tens of milliseconds, costing 501ms, 419ms,

and 378ms on 50, 100, and 300 nodes, respectively. This

poor scaling can be attributed to hitting a communication

bottleneck. Forming the TSQR binary tree is expensive for

small matrices, especially using flat MPI. We did not tune



our TSQR reduction tree shapes or consider other algorithms

since TSQR is not the limiting factor to scalabilty. These

results illustrate the importance of I/O scalability when

performing terabyte-scale data parallel analytics on a high-

performance architecture using MPI.

Figure 2 also illustrates the running time breakdown for

the Spark implementation of NMF on 50, 100, and 300

nodes. Unlike the MPI implementation, the Spark implemen-

tation incurs significant overheads due to task scheduling,

task start delays, and idle time caused by Spark stragglers.

For the 50 node run we configured Spark to use double

the number of partitions as physical cores because we

encountered out-of-memory errors using fewer partitions—

this incurs a task start delay overhead because some only half

of the total tasks can be executed concurrently. The number

of partitions was not doubled for the 100 and 300 node

runs, so the task start delay overhead is much smaller for

these runs. Similar to the MPI results, most of the running

time is spent in I/O and Spark overheads, with a small

amount of time spent in TSQR and XRAY. Figure 2 shows

that the Spark implementation exhibits good strong scaling

behavior up to 300 nodes. Although the NMF algorithm used

is entirely data parallel and suitable for Spark, we observed

a 4×, 4.6×, and 2.3× performance gap on 50, 100, and

300 nodes, respectively, between Spark and MPI. There is

some disparity between the TSQR costs but this can be

attributed to the lack of granularity in our Spark profiling,

in particular the communication time due to Spark’s lazy

evaluation. Therefore, it is likely that the communication

overhead is included in the other overhead costs whereas

the MPI algorithm reports the combined communication and

computation time.

Figure 3 shows the parallel efficiencies of the MPI and

Spark implementations of NMF, normalized to the 50 node

running time of the respective parallel frameworks. MPI

NMF is completely dominated by I/O and the results are

primarily indicative of scaling issues in the I/O subsystem.

Spark NMF displays good scaling with more nodes; this is

reflected in the parallel efficiency. However, the scaling is

due primarily to decreases in the Spark overhead.

B. PCA applied to the climate matrices

We compute the PCA using an iterative algorithm whose

main kernel is a distributed matrix-vector product. Since

matrix-vector products are data parallel, this algorithm fits

nicely into the Spark model. Because of the iterative nature

of the algorithm, we cache the data matrix in memory to

avoid I/O at each iteration.

C+MPI vs. Spark: Figure 4 shows the running time

breakdown results for computing a rank-20 PCA decompo-

sition of the Ocean matrix on 100, 300, and 500 nodes using

the MPI implementation. Each bin depicts the sum, over all

stages, of the time spent in that bin by the average task

within a stage.

Figure 3: Comparison of parallel efficiency for C+MPI

and Spark. The x-axis label “Node Bucket” refers to the

node counts. For NMF these are 50, 100, and 300 nodes

(left to right) and 100, 300, and 500 nodes for PCA. For

both algorithms, efficiency is measured relatively to the

performance at the smallest node count.

Figure 4: Running time breakdown of PCA on the 2.2TB

Ocean matrix at node counts of 100, 300 and 500. Each bin

depicts the sum, over all stages, of the time spent in that bin

by the average task within a stage.

I/O is a significant bottleneck and does not exhibit the

scaling observed for NMF in Figure 2. The I/O time is

reduced going from 100 to 300 nodes, but not 300 to

500 nodes because the I/O bandwidth is saturated for the

stripe size and number of OSTs used for the Daya Bay

and Ocean data sets. The Gram matrix-vector products are

a significant portion of the running time but scale linearly

with the number of nodes. The matrix-matrix product (AV )

does not scale due to a communication bottleneck. The

bottleneck is because we compute a rank-20 PCA which



Figure 5: Running time comparison of the Spark and MPI

implementations of PCA on the 16TB Atmosphere matrix.

Each bin depicts the sum, over all stage, of the time spent

in that bin by the average task within a stage.

makes communicating V expensive. This cost grows with

the number processors since it is entirely latency dominated.

The final SVD of AV is a sequential bottleneck and does

not scale. Unlike NMF the sequential bottleneck in PCA is

significant; future implementations should perform this step

in parallel.

Figure 4 also shows the scaling and running time break-

down of the Spark PCA implementation for 100, 300, and

500 nodes. The Gram matrix-vector products scale linearly

with the number of nodes, however this is outweighed by

inefficiencies in Spark. At this scale, Spark is dominated

by bottlenecks due to scheduler delays, task overhead and

straggler delay times. Task overhead consists of deserializing

a task, serializing a result and writing and reading shuffle

data. The Spark scheduling delay and task overhead times

scale with the number of nodes, due to the centralized

scheduler used in Spark. The iterative nature of the PCA

algorithm stresses the Spark scheduler since many tasks

are launched during each iteration. Under this workload

we observed a 10.2×, 14.5×, and 22× performance gap

on 100, 300, and 500 nodes, respectively, between Spark

and MPI. The disparity between the costs of the AV
products and sequential SVDs in MPI and Spark can be

attributed to the lack of granularity in our Spark profiling,

in particular the communication time due to Spark’s lazy

evaluation. Therefore, it is likely that the communication

overhead is included in the other overhead costs whereas

the MPI algorithm reports the combined communication and

computation time.

Figure 3 shows the parallel efficiency of MPI PCA and

Spark PCA. We observed that the MPI version hits an I/O

bottleneck, a communication bottleneck in the AV product

Algo Size # Nodes Spark Time (s)

CX 1.1 TB
60 1200

100 784

300 542

Table II: Spark CX running times

and a sequential bottleneck in SVD(AV ). All of these are

limiting factors and introduce inefficiencies to MPI PCA.

Spark PCA is less efficient than MPI PCA due to scheduler

delays, task overhead and straggler effects. The scheduler

delays are more prominent in PCA than in NMF due to the

larger number of tasks. NMF makes a single pass over the

data whereas PCA makes many passes over the data and

launches many tasks per iteration.

PCA Large-Scale Run.: We used all 1600 Cori nodes

to compute a rank-20 PCA decomposition of the 16TB

Atmosphere matrix. In order to complete this computation in

Spark in a reasonable amount of time, we fixed the number

of iterations for the EVD of ATA to 70 iterations. MPI

PCA was able to complete this run in 160s. Unfortunately

we were unsuccessful at launching Spark on 1600 nodes;

after many attempts we reduced the number of nodes to

1522. At this node count, Spark PCA successfully completed

the run in 4175s. Figure 5 shows the head-to-head running

time comparison for this full-system run; each bin depicts

the sum, over all stages, of the time spent within that bin

by the average task within a stage. The Gram matrix-vector

products are an order of magnitude more costly in Spark. We

noticed that the tree-aggregates were very slow at full-system

scale and are the likely cause of the slow Gram matrix-vector

products. The AV product and SVD are much faster in Spark

than in MPI due to limited profiling granularity. Finally,

we observed that the Spark overheads were an order of

magnitude larger than the communication and computation

time.

C. CX on the Mass-spec matrix

Much like PCA, the CX decomposition requires parallel

Gramian multiplies, and distributed matrix-matrix products

in order to compute extremal columns of A. CX was applied

to the 1.1TB MSI matrix; Table II shows the running times

and scaling behavior of Spark CX. We found that Spark

exhibited good scaling for the range of nodes tested and

attained speedups of 1.5× and 2.2× on 100 and 300 nodes,

respectively. The corresponding parallel efficiencies are 90%

for 100 nodes and 44% for 300 nodes. These results show

that the behavior of CX is similar to that of PCA, which is

expected due to the overlap in their linear algebra kernels.

D. Summary of Spark vs. C+MPI performance comparison

Table III summarizes the wall-clock times of the MPI and

Spark implementations of the considered factorizations, and

Table IV summarizes the performance gaps between Spark

and MPI. These gaps range between 2 × −25× when I/O



time is included in the comparison and 10×−40× when I/O

is not included. These gaps are large, but our experiments

indicated that Spark I/O scaling is comparable to MPI I/O

scaling, and that the computational time scales. The perfor-

mance gaps are due primarily to scheduler delays, straggler

effects, and task overhead times. If these bottlenecks can

be alleviated, then Spark can close the performance gap

and become a competitive, easy-to-use framework for data

analytics on high-performance architectures.

Algo Size # Nodes MPI Time (s) Spark Time (s)

NMF 1.6 TB
50 66 278

100 45 207

300 30 70

PCA
2.2 TB

100 94 934
300 60 827
500 56 1160

16 TB MPI: 1600 Spark: 1522 160 4175

Table III: Summary of Spark and MPI running times.

Algo # Nodes Gap with I/O Gap without I/O

NMF
50 4× 21.2×
100 4.6× 14.9×
300 2.3× 15.7×

PCA

100 10.2× 12.6×
300 14.5× 24.7×
500 22× 39.3×

MPI: 1600 Spark: 1522 26× 43.8×

Table IV: Summary of the performance gap between the

MPI and Spark implementations.

VII. LESSONS LEARNED

Throughout the course of these experiments, we have

learned a number of lessons pertaining to the behavior of

Spark for linear algebra computations in large-scale HPC

systems. In this section, we share some of these lessons and

conjecture on likely causes.

Scheduling Bottlenecks: The Spark driver creates and

sends tasks serially, which causes bottlenecks at high concur-

rency. This effect can be quantified by looking at Task Start

Delay and Scheduler Delay. Figure 6 gives a breakdown of

Spark’s overheads for one stage of the 16TB climate PCA

run. It is clear that the time spent waiting at scheduling

bottlenecks is orders of magnitude higher than the time

spent in actual computation. These significant per-stage cost

limits the scaling achievable by Spark for highly iterative

algorithms.

Spark Variability and Stragglers.: The time waiting for

stage to end bucket in Figure 6 describes the idle time

for a single stage in which a task has finished, but is

waiting for other tasks to finish. The main cause of this

idle time is what we call “straggler effect”, where some

tasks take a longer than average time to finish and thus

hold up the next stage from starting. In Figure 6, we can

see there is some variability in the MULTIPLYGRAMIAN

component of the tasks, but this is insignificant compared

Figure 6: Distribution of various components of all tasks in

a MULTIPLYGRAMIAN stage in the Spark PCA hero run.

to the remaining overheads. The straggler time may seem

insignificant, however, Figure 6 shows the statistics for a

single stage. When summed over all stages (i.e., all PCA

iterations) the straggler effect does a become significant

overhead at O(100) seconds (see Figure 5).

The bulk-synchronous execution model of Spark creates

scaling issues in the presence of stragglers. When a small

number of tasks take much longer to complete, many cores

waste cycles idling at synchronization barriers. At larger

scales, we see increases in both the probability of at least

one straggler, as well as the number of underutilized cores

waiting at barriers. During initial testing runs of the Spark

PCA algorithm, variations in run time as large as 25%

were observed (in our staging runs we had a median run

time of 645 seconds, a minimum run time of 489 seconds,

and a maximum run time of 716 seconds). Spark has

a “speculation” functionality which aims to mitigate this

variability by restarting straggling tasks on a new executor.

We found that enabling speculation had no appreciable effect

on improving the run time, because the overhead to fetch a

portion of the RDD from another worker was sufficiently

high. This is because requests for RDDs from other workers

must wait until the worker finishes its running tasks. This

can often result in delays that are as long as the run time of

the straggling task.

VIII. CONCLUSION

We conclude our study of matrix factorizations at scale

with the following take-away messages:

• Spark and C+MPI head-to-head comparisons of these

methods have revealed a number of opportunities for

improving Spark performance. The current end-to-end

performance gap for our workloads is 2 × −25×; and



10 × −40× without I/O. At scale, Spark performance

overheads associated with scheduling, stragglers, result

serialization and task deserialization dominate the run-

time by an order of magnitude.

• In order for Spark to leverage existing, high-

performance linear algebra libraries, it may be worth-

while to investigate better mechanisms for integrating

and interfacing with MPI-based runtimes with Spark.

The cost associated with copying data between the

runtimes may not be prohibitive.

• Finally, efficient, parallel I/O is critical for Data Ana-

lytics at scale. HPC system architectures will need to

be balanced to support data-intensive workloads.
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