
Matrix Factorizations for Parallel Integer Transforms *

Yiyuan She
1,2

Pengwei Hao
1,2

Yakup Paker
2

1
Center for Information Science, Peking University, Beijing, 100871, China

2
Department of Computer Science, Queen Mary, University of London, E1 4NS, UK

E-mail: {yyshe, phao, paker}@dcs.qmul.ac.uk

Abstract

Integer mapping is critical for lossless source coding

and the techniques have been used for image compression

in the new international image compression standard,

JPEG 2000. In this paper, from block factorizations for

any nonsingular transform matrix, we introduce two types

of parallel elementary reversible matrix (PERM)

factorizations which are helpful for the parallelization of

perfectly reversible integer transforms. With improved

degree of parallelism (DOP) and parallel performance,

the cost of multiplication and addition can be respectively

reduced to O(logN) and O(log
2
N) for an N-by-N

transform matrix. These make PERM factorizations an

effective means of developing parallel integer transforms

for large matrices. Besides, we also present a scheme to

block the matrix and allocate the load of processors for

efficient transformation.

1. Introduction

Due to the limitation of computational precision and

storage capacity, transforms used in data compression

should be integer reversible. Integer transform (or integer

mapping) is such a type of transform that maps integers to

integers with perfect reconstruction (PR). People had long

before explored in this area, and their early work, such as

S transform [1], TS transform [2] and S+P transform [3],

suggests a promising future of reversible integer mapping

in image compression, region-of-interest (ROI) coding,

and unified lossy/lossless compression systems. However,

not until lifting scheme (LS) [4] was proposed for

constructing the second generation wavelets did people try

to break away from various specific transforms and

roundings and to build generic integer wavelet transforms

[6] based on the simplified ladder structure [5].

Afterwards, research in this area is enhanced and the

technique is widely adopted in applications.

For finite dimensional signal, the transform matrix

can be simplified from a polyphase matrix consisting of

Laurent polynomials [7] to a constant matrix of finite

dimension. By matrix factorization, Hao and Shi first

* This work was supported by the foundation for the authors of

National Excellent Doctoral Dissertation of China, under Grant

200038.

considered reversible integer implementations for such

invertible linear transforms in a finite dimensional space

[8], and later obtained an optimal factorization of

minimum number of matrices [9]. The technique [10] has

been included in the new international image compression

standard, JPEG 2000.

However, the computational efficiency of the inverse

integer transform based on their matrix factorizations still

remains a problem, especially for large matrices, due to

the recursiveness of the reconstruction. To overcome this

drawback, in this paper we introduce two new block

factorizations that are easier for computation optimization

and parallel design. Actually, even for the sequential

computation they may be preferred. To differentiate from

block factorizations, we take the element matrix

factorizations (or block size of 1-by-1) as point

factorizations hereinbelow.

Section 2 recalls point factorization and block

factorization. In Section 3, based on the block TERM and

SERM factorizations [11, 12], we introduce two types of

PERM factorizations for parallel integer transform.

Section 4 is a discussion of computational complexity,

and we present an efficient scheme for matrix blocking

and multiprocessor arrangement in Section 5. At the end

of this paper, we conclude in Section 6.

2. Point and Block Factorizations

The basic matrix factors for reversible integer

transformation are called elementary reversible matrices

(ERMs), including triangular ERMs (TERMs) and single-

row ERMs (SERMs). A TERM is defined as a special

triangular matrix whose diagonal elements belong to the

unit group of an integral domain. For instance, they are

1± and i± on the set },|{ Zbabia ∈+ , the so-called

integer factors in [9]. A SERM is a matrix with integer

factors on the diagonal and only one row possibly

nonzero. Obviously, a SERM can be converted to a simple

TERM by a row and a column permutation. Furthermore,

a unit TERM is actually a unit triangular matrix and a unit

SERM associated with the i-th row can be formulated as
T

i i i
= +S I e s , where

i
e is an elementary vector with the i-

th element 1 and all others 0, and
i

s is a vector whose i-th

element is zero.

The reversible integer mapping can be implemented

Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’04)
1087-4089/04 $ 20.00 © 2004 IEEE

via a series of TERMs, or SERMs equivalently. Let

,()i ja=A be a lower TERM of size N with a diagonal of

integer factors
Njj ,,1 �

. Then the forward integer

transform for =y Ax is computed as follows:

�
�

�
�

�

�
�

�
�
�

�
+=

=

	
−

=

1

1

111

m

n

nmnmmm xaxjy

xjy

Nm ≤≤2

(1)

while its inverse should be executed in a recursive way

like forward elimination:
1

1
1

11

1
; , 2, ,

m

m m mn n

nm

y
x x y a x m N

j j

−

=

 �� �
= = − =�
� �

� �� �
	 �

(2)

where � � is a rounding arithmetic. The computation is

analogous for an upper TERM, except that the

computational ordering of the inverse should be upward.

It is easy to see the following characteristics of the above

transform computations: (i) mapping integers to integers;

(ii) perfect reconstruction; (iii) in-place computation. All

these are attractive for lossless data compression.

Given an NN × nonsingular matrix A , there are two

SERM factorizations in [9]: (i) if the leading principal

minors of A are all 1’s,
1N

= =A LU S S� , denoted by

SERM
(0)

below; (ii) if det()A is an integer factor, then

1 0

T

N
=P A S S S� , denoted by SERM

(1)
, where P is a

permutation matrix,
0 1, , , NS S S� are unit SERMs, and

0S

is associated with the last row (also a lower TERM). If

det()A is an integer factor, after a scaling modification

and a few permutations, the integer transform of A of size

NN × can be implemented by no more than 1+N

SERMs. The number of the scalar floating-point multiply-

add operations are respectively 2N N− and 2 1N − for

SERM
(0)

and SERM
(1)

integer transforms.

Observing that a unit SERM can be trivially

generalized to a unit block SERM (for notation simplicity,

we still use
i

S to denote afterwards): T

i i i
= +S I e s , where

i
e is an elementary block matrix of which the i-th block is

I and
i

s is a block matrix with the i-th block zero, we

studied block factorizations in [11, 12]. By contrast with

point SERM factorizations, block SERM factorizations

boost the degree of parallelism and make it possible that

the factorization and transforms are carried out at the

block level. Such block approaches are more appropriate

for efficient integer implementation of large matrices, let

alone those with natural block structures originated from

underlying physical backgrounds.

For example, given a 2-by-2 block unit lower SERM

� �
� �
� �

I 0
A =

M I

, to reconstruct 1

2

� �
� �
� �

x
x =

x

from 1

2

� �
� �
� �

y
y =

y

, the

integer transform for Ax , we can use the block formula

below instead of the one-by-one reconstruction of (2)

� �
�
�

�
�
�

�

−
=�

�

�
�
�

�
=

12

1

2

1

Mxy

y

x

x
x

(3)

where � � is a rounding operator for all elements in the

vector.

Generalizing the point factorizations to block

factorizations is not so straightforward due to the

difficulty of the scaling modification and the possibility

that some crucial blocks may not have full rank in

factorization. In [11], in an almost arbitrary partition

manner, we defined a generalized determinant matrix

function “DET” and studied the block LU (BLU)

factorization =A PLDU , where P is a permutation

matrix, L , U are unit lower and unit upper block

triangular matrix respectively, and D is a block diagonal

matrix. We also discussed how to convert them into block

unit SERM factorizations in [11]. In the case that all

blocks are of the same size [12], we redefined the

generalized determinant matrix function “DET” and

obtained a BLUS factorization A=PLDUS0, where S0 is a

unit block SERM associated with the last block row,

)),,,,(A(PIIID
T

diag DET�= . Thus S0 is also a unit

lower TERM. We proposed a practical algorithm in [12]

as a generalization of point TERM factorization [9]. We

also proved that block SERM factorization

1 0nA = PS S S� exists if and only if)T
(P ADET is a

diagonal matrix and all the diagonal elements are integer

factors.

In the following discussions, we assume uniform

blocking, and mainly use the basic block SERM forms of

BLU and BLUS factorizations --
1n

PDS S� and

1 0n
′PD S S S� , where P is a permutation matrix at the

element level, D is a block diagonal matrix, and D’ is a

block diagonal matrix with only one diagonal block not to

be I (in this paper it’s supposed to be the bottom-right

block). Throughout the rest of this paper, let A be the

original transform matrix in a finite dimensional space, n

the number of blocks in a row or column, m the size of the

each block, and
nA the corresponding block matrix of A.

3. Parallel ERM (PERM) factorizations

For parallel computing, a linear transform of an NN ×

block SERM, T

i i i
= +S I e s , with the i-th block of

i
s

being zeros and of block size mm× , can be implemented

by parallel multiplications and parallel additions. The

main difficulty of applying block factorizations to

efficient parallel computing lies in D (or ′D), the residue.

Row and column permutations alone are not capable of

converting ()
n

ADET into I. For ′D , ()
n

ADET is a non-

identity block. See [11, 12] for detailed definitions of

DET. Therefore, we exploit recursive factorizations. For a

Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’04)
1087-4089/04 $ 20.00 © 2004 IEEE

matrix of size
1

N , at the k-th level, partition the residue of

the last level into ()k
n blocks of size ()km , till the block

size reduces to
2N . This process is denoted as

(1) (2) ()
(0) (1) (2) (1) ()

1 2

Kn n nK KN m m m m m N−= → → → =� (4)

Take BLU factorization as an example. At the k-th

level, each diagonal block of (1)k −
D is further partitioned

into () ()k k
n n× blocks of block size () ()k km m× . Then we

apply BLU and block SERM factorizations to factorize
(1)k −

D into ()kn block SERMs, formally denoted as
() (1)k

j k
j n≤ ≤S , and a non-ERM block diagonal matrix

()k
D . Repeat this process recursively till all the non-ERM

blocks are reduced to single elements (see Figure 1 for an

illustration), and finally we obtain

()

(1) (2) () () () () (1) (1)

1
() ()

1

() ()

k

K K K K

k k

n
k K=

=

= ∏

A P P P D L U L U

PD S S

� �

�

(5)

where
1

(, ,)
N

diag d d=D � , and K is the number of

factorization levels. It’s not difficult to see that
1

i

jj
d

=∏ is

the i-th leading principal minor of T
P A .

Similarly, successively applying BLUS to factorize

the last diagonal block of previously remained non-

identity sub-matrix as shown in Figure 2, we obtain

()

1
() () ()

1 0k

k k k

n
k K=

= ∏A PD S S S�
(6)

where (1, ,1,det())diag= T
D P A� .

Figure 1 PERM
(0)

factorization (Suppose (1) (2) (3) 2n n n= = =)

Figure 2 PERM
(1)

factorization (Suppose (1) (2) (3) 2n n n= = =)

To realize perfect integer-reversible transform, we

need to make a scaling modification to the original

transform matrix as suggested in [9]. For factorization

formula (5), we can left-multiply A by 1 T−
PD P , where

the leftmost P is to maintain the order. Since the scaling

values here are perhaps only meaningful in mathematics,

formula (5) may be of limited use in real-world

applications, although it has fewer factor matrices. By

contrast, multilevel factorization (6) has one more term at

each level, but the less restrictive modification provides

more flexibility and practicability: we are free to choose

any rows or columns for scaling, as long as the final

determinant turns out to be an integer factor. This

property plays an important role in keeping proportions of

the transform matrix and adjusting the dynamic ranges of

data (see Section VIII of [9]). Of course, BLU and BLUS

can be combined in factorization. Analogously, we can

draw similar conclusions from right-permutation block

factorizations.

Hereafter, the scaled formulas (5) and (6) which are

appropriate for perfectly reversible integer transform are

referred to as parallel ERM (PERM) factorizations and

are denoted by PERM
(0)

and PERM
(1)

, respectively, as a

counterpart of SERM
(0)

and SERM
(1)

. From the scaling

process we easily see that it is sufficient to investigate unit

PERM and unit SERM factorizations.

4. Parallel computational complexity

For PERM
(0)

, if
1 2, 1N N N= = , there are

(1)
(1) () 2

() (1) ()

1
() ((1))

k
k k

k k k
k

m N
m n N N

n m n

−
−

−
⋅ ⋅ − ⋅ = −	 (7)

multiplications and additions, equal to those of SERM
(0)

.

For PERM
(1)

, the number is
() (1) () () 2()(1) 1k k k k

k

m m m n N
− − + = −	 (8)

also the same as SERM
(1)

. Thus the sequential

computational complexity of PERM does not increase in

the least, and does not take advantage of the factorization,

either. In fact, since the computation can be now focused

onto blocks (see formula (3) for an example), the

performance can be improved more by using some

Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’04)
1087-4089/04 $ 20.00 © 2004 IEEE

mathematical packages, such as BLAS. Moreover, with

nontrivial elements to be () 1m N m N− ≥ − , degree of

parallelism increases and more processors (up to 2 4N)

can be involved in computing. We notice that the

additional freedom of row partitioning in the two

dimensional data structure helps cutting down the

computation cost for parallel computing, owing to the

independent reconstruction of all the intra-block rows in

the inverse PERM integer transform.

In a block SERM transformation, all the

multiplications can be efficiently done in parallel by using

as many processors as possible, so the total computational

time of multiplications in parallel is � �pmNm /)(− times

multiplications if the number of processors is p. However,

additions are not so simple. For dual additions, p

processors can only implement addition (summation) of n

numbers in � �n2log times addition if 2n p< . For 2n p≥ ,

the computational time of additions is

2() logn p p C p− +� �� � , where 0 1C< ≤ . Therefore, the

computational time of additions in parallel for a block

SERM transform is
2log ()N m−� �� � if () 2m N m p− < , and

() ()2 2() / log logm N m p p C p m− − + −� �� �
, or simply

()2 2() / log logm N m p C p m− + −� �� �
, if () 2m N m p− ≥ .

Theoretically, the multiplication time of the parallel

integer transform (4) with PERM
(0)

is

(0)

* () () (1) () 1

(1)
1

(1) ()1 1 1 2

1

() /

()
()

K
k k k k

kPERM
k

K
k k

k

N
T n m m m p

m

N N N N
m m

p p

−

−
=

−

=

� �= −� �

−
≈ − =

	

	

(9)

where () () (1)k k kn m m −= , (0)

1m N= , ()

2

K
m N= .

Analogously, the multiplication time of (4) with

PERM
(1)

is

()

(1)

* () () (1) ()

1

2 2
(1) 2 () 2 1 2

1

(1) () /

1
() ()

K
k k k k

PERM
k

K
k k

k

T n m m m p

N N
m m

p p

−

=

−

=

� �= + −� �

−
≈ − =

	

	

(10)

where () () (1)k k kn m m −= , (0)

1m N= , ()

2

K
m N= .

From (9) and (10), we see that the multiplication

time has nothing to do with n for PERM
(0)

and PERM
(1)

.

If all ()kn are equal to n , then
() (1) (0)

1
/ / /k k k k

m m n m n N n
−= = = , and we have

()

1 2
/K K

m N n N= = or
1 2log (/)nK N N= .

However, PERM factorizations are not perfect.

Supposing all ()k
n are equal to n , the total number of

rounding operations of PERM
(1)

is

() ()

1

1 1

1
(1) (1)

K K
k k

k
k k

n m n N
n= =

+ = +	 	

1 1 2

1 1
(1) ()

(1) 1

K

K

n n
n N N N

n n n

− +
= + = −

− −
(11)

which is a decreasing function of n and achieves its

minimum when
1 2

n N N= and 1K = . For PERM
(0)

, the

total number is KN . Hence, as the block size or the

number of factorization levels grows, the rounding

operations also increase, which will probably result in

higher transform error though integer reversibility is still

guaranteed.

The additions cannot be done all in parallel, so the

addition time is theoretically more complicated than

multiplication time.

For PERM
(0)

, if there are p processors and as many

processors as possible are used in computation, the

parallel addition time can be estimated as

()

()
(0)

() (1) ()

() 1

(1)()
1

2 2

() /

log log

p
k k kK

k

kPERM k
k

m m m p p N
T n

mC p m

−

+

−
=

� �− −
� �=
� �+ −� �

	

() (1) () 1
2 (1)

log ()
p

K
k k k

k
k K

N
n m m

m

−

−
=

� �+ −� �	 (12)

For PERM
(1)

, the parallel addition time can be

()

()
(1)

() (1) ()

()

()
1

2 2

() /
(1)

log log

p
k k kK

k

PERM k
k

m m m p p
T n

C p m

−

+

=

� �− −
� �= +
� �+ −� �

	

() (1) ()

2(1) log ()
p

K
k k k

k K

n m m
−

=

� �+ + −� �	 (13)

Above time estimations are related to a turning point,

pK , where () (1) ()
()p p pK K K

m m m
−

− should be a number

closest to but less than 2p. And as level k steps higher, the

problem size decreases to such an extent that the speed-up

reaches its limit and cannot be improved further.

However, in order to minimize the computational time, we

can split the whole task into several phases and use

different processor allocation schemes in different phases.

5. Matrix blocking strategy

How to partition the matrix and allocate the data to

processors is a practical problem to apply PERM

factorizations, for it determines the parallel complexity of

the corresponding integer transform. Generally speaking,

appropriate blocking strategy is made according to

specific optimization principles. Ignoring other factors

like communication and multiprocessor architecture, we

just consider the computation time of parallel

multiplications and parallel additions as the metrics to

evaluate the block structure of PERM
(1)

.

Because there exists a turning point in parallel

implementation, it is necessary to consider the block

structure in the case of a small matrix or abundant

processors. Besides, row distribution should be given first

priority if only a few processors are available, for it leads

Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’04)
1087-4089/04 $ 20.00 © 2004 IEEE

to a higher degree of parallelism of addition. From the

above discussion we propose a three-phase blocking

strategy:

(i) If 2N p≥ , then factorize the matrix recursively in

the first phase till the block size is reduced to p , i.e.,

N p→ →� . In this phase data is allocated in rows

to multiprocessor. To minimize the transform error,

we can employ immediate one-level block

factorization of N p blocks;

(ii) If 2 2p N p≤ < , then perform N p→ →� in this

phase. In mapping the data onto processors, we still

take priority in row distribution. Again, a

straightforward factorization is reasonable with the

block size p ;

(iii) If 2N p≤ , then 1N → →� . Processors are

excessive in this phase and thus the availability

drops. To minimize the parallel cost of

multiplication, or equivalently, the number of

matrices, we have

()

1

(1) (1) (1) log
K

k

n

k

n n K n N
=

+ = + = +	 (14)

where (1) (0) (1) (2) (1) (2) ()K
n n m m n m m n= = = = = =�

(1) ()K K
m m

−= . It follows that the minimum value can

be obtained at 4n = , i.e., partitioning into 4 blocks

at each level is the best solution. In such case, the

parallel computation time of additions and

multiplications is:

(1)

* ()

4PERM
1

(1) 5log
K

k

k

T n N
=

= + =	 (15)

()

()

(1)

() () ()

2PERM
1

2 4 4

1

(1) log (1)

3
5log 5log log 9 1

4

K
k k k

k

K

k
k

T n n m

N
N N

+

=

=

= + −

= = −

	

	

(16)

We now draw a comparison on the computation time

between the above blocking scheme and the direct

parallelization of SERM
(1)

. Let
(1)

*/

PERM
T

+ and
(1)

*/

pSERM
T + denote

the time complexity of parallel addition/multiplication

with PERM factorization and SERM factorization

respectively. For above blocking strategy, we have

(1)

* *

1 2

* *

2 3
*

PERM
2

*

3 4

(,) 1 1 (,),
2

(,) 1 1 (,),

(,)

2 4

(,) 5log ,

N N N
f N p p f p p p

p p

N N
f N p f p p

p pT N p

N N
p

f N p N

 �
 �
= + ⋅ − ⋅ + ≤�
 �

� � � �

 �
 �
= + ⋅ − +�
 �
�
 �

� � � �=

< <

=
2

4

N
p

�
�
�
�
�
�
�
�
�
�
�

≥�
�

(17)

(1)

1 2

2 2 3

PERM
2

(,) 1 1 (,),
2

(,) 1 1 log (,),

(,)

2

N N N
f N p p f p p p

p p

N N
f N p C p f p p

p pT N p

N N
p

+ +

+ +

+

 �
 �
= + ⋅ − ⋅ + ≤�
 �

� � � �

 �
 �
= + ⋅ − + +�
 �
�
 �

� � � �=

< <

()
2

3 4 4

4

(,) 5log log 9 1 ,
4

N
f N p N N p

+

�
�
�
�
�
�
�
�
�
�
�

= − ≥�
�

(18)

while
(1)

*

pSERM

1
(,) (1)

N
T N p N

p

−
= + (19)

(1) 2pSERM

1
(,) (1) log

N
T N p N C p

p

+
 �−
= + +�

� �

(20)

First, the effective processors can be up to N
2
/4 for

PERM integer transform. From (17) and (18), it’s easy to

show that the costs of multiplication and addition are both

()O N when ()p O N= , are (log)O N and 2(log)O N

respectively when 2()p O N= . By contrast, the effective

processors can not exceed N for SERM
(1)

transform; and

when either ()p O N= or 2()p O N= , the time of

multiplication and addition is ()O N and (log)O N N ,

respectively. Just as demonstrated in Table 1, Figure 3

and Figure 4 for 64N = and 1C = , PERM
(1)

is more

efficient than SERM
(1)

for parallel computation.

Table 1 Time Complexity Comparison

p

Operation
O(N) O(N

2
)

SERM
(1)

O(N) O(N)
Multiplications

PERM
(1)

O(N) O(logN)

SERM
(1)

O(NlogN) O(NlogN)
Additions

PERM
(1)

O(N) O(log
2
N)

Of course, regardless of communication and other

overheads, the above blocking strategy is only

demonstrative in nature. In practice, the blocking may be

flexible due to different requirements. For instance, to

accommodate as many processors for parallel computing

as possible, we may use multilevel binary partitioning.

Distinct from that of PERM
(1)

, although total problem

size of PERM
(0)

also drops (yet slower) as the level

increases, the number of effective rows in each matrix can

remain unchanged: at level k, there are altogether ()k
N n

components updated in a single step, whereas the number

for PERM
(1)

is ()(1) ()k
N n n�

. This trait is conducive to

row allocation to efficiently utilize processor resources.

For instance, assuming each ()k
N n is a multiple of p ,

the parallel complexity of multiplication and addition is

both 2()N N p− .

Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’04)
1087-4089/04 $ 20.00 © 2004 IEEE

1

10

100

1000

10000

1 4 16 64 256 1024
Number of Processors (p)

C
o
m

p
u
tatio

n
al

C
o
m

p
lex

ity

PERM Multiplications

PERM Additions

SERM Multiplications

SERM Additions

Figure 3 Computation cost of PERM
(1)

and parallel

SERM
(1)

transforms (N = 64, C = 1)

0

2

4

6

8

10

1 4 16 64 256 1024
Number of Processors (p)

S
p

eed
u

p
(P

E
R

M
/S

E
R

M
)

PERM Multiplication/SERM Multiplication

PERM Addition/SERM Addition

Figure 4 Relative speedup of PERM
(1)

over parallel

SERM
(1)

integer transforms (N = 64, C = 1)

6. Concluding remarks

In the above discussions, we have presented PERM

factorizations for parallel reversible integer transforms

based on block factorizations. Compared with SERM

factorizations, they improve the parallel performance.

Particularly, they increase the degree of parallelism and

thus accommodate more processors. Since the PERM

factorizations and the corresponding integer transforms

can all be calculated at the block level, we also expect the

efficiency in sequential computation with special matrix

computation software such as BLAS can speedup the

block operations. Consequently, the PERM factorizations

are attractive for large matrix integer transforms. In

consideration of the flexibility of the scaling modification,

PERM
(1)

may be more promising in real-world

applications.

One drawback brought in by the PERM

factorizations is that larger block size and more

factorization levels result in more rounding operations,

and possibly greater transform error. However, noticing

that � � in (1) and (2) can actually be any nonlinear

operators, we may keep more decimal digits (e.g.,

rounding to hundredths or thousandths) to effectively

reduce the transform error. The error bound given in

Section VII of [9] can be used to determine the precision.

Another disadvantage is that the problem size gradually

drops with the accretion of level k will probably reduce

the availability of processors. This can not be ignored

especially when PERM
(1)

is employed with relatively

more processors.

The key to applying the PERM factorizations is the

blocking strategy. Including other necessary factors such

as the communication, our future work is to study this

problem systematically and test the performance by

further experimentation.

7. References

[1] H. Blume and A. Fand, Reversible and irreversible

image data compression using the S-transform and

Lempel-Ziv coding, Proceedings of SPIE, 1989, 1091, pp.

2-18.

[2] A. Zandi, J. D. Allen, E. L. Schwartz and M. Boliek,

CREW: Compression with reversible embedded wavelets,

in Proceedings of IEEE Data Compression Conference,

1995, pp. 212-221.

[3] A. Said and W. A. Pearlman, An image

multiresolution representation for lossless and lossy

compression, IEEE Transactions on Image Processing,

1996, 5, pp. 1303-1310.

[4] W. Sweldens, The lifting scheme: A custom-design

construction of biorthogonal wavelets, J. of Applied and

Computational Harmonic Analysis, 1996, 3, pp. 186-200.

[5] F. A. M. L. Bruekers, A. W. M. van den Enden, New

networks for perfect inversion and perfect reconstruction,

IEEE J. on Selected Areas in Communications, 1992, 10,

pp. 130-137.

[6] I. Daubechies, W. Sweldens, Factoring wavelet

transforms into lifting steps, J. of Fourier Analysis and

Applications, 1998, 4, pp. 247-269.

[7] A. R. Calderbank, I. Daubechies, W. Sweldens and B.-

L. Yeo, Wavelet transform that map integers to integers,

J. of Applied and Computational Harmonic Analysis,

1998, 5, pp. 332-369.

[8] P. Hao and Q. Shi, Invertible linear transforms

implemented by integer mapping, Science in China, Series

E (in Chinese), 2000, 30, pp. 132-141.

[9] P. Hao and Q. Shi, Matrix factorizations for reversible

integer mapping, IEEE Trans. Signal Processing, 2001,

49 pp. 2314-2324.

[10] P. Hao and Q. Shi, Proposal of reversible integer

implementation for multiple component transforms,

ISO/IEC JTC1/SC29/WG1N1720, Arles, France, 2000.

[11] Y. She and P. Hao, A new block factorization of

nonsingular matrices for integer transform, submitted to

Linear Algebra and Its Applications, 2003.

[12] Y. She and P. Hao, A block TERM factorization of

nonsingular uniform block matrices, Science in China,

2004, 34(2).

Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’04)
1087-4089/04 $ 20.00 © 2004 IEEE

