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This Lecture presents matrix-free methods for the stability analysis and control design of high-dimensional

systems arising from the discretized linearized Navier–Stokes equations. The methods are applied to the two-

dimensional spatially developingBlasius boundary layer. A critical step in the process of systematically investigating

stability properties and designing feedback controllers is solving very large eigenvalue problems by storing only

velocity fields at different times instead of large matrices. For stability analysis, in which the entire dynamics of

perturbations in space and time is of interest, iterative and adjoint-based optimization techniques are employed to

compute the global eigenmodes and the optimal initial conditions. The latter are the initial conditions yielding the

largest-possible energy growth over a finite time interval. The leading global eigenmodes take the shape of Tollmien–

Schlichting wave packets located far downstream in the streamwise direction, whereas the leading optimal

disturbances are tilted structures located far upstream in the boundary layer. For control design, on the other hand,

the input–output behavior of the system is of interest and the snapshot method is employed to compute balanced

modes that correctly capture this behavior. The inputs represent external disturbances and wall actuation and the

outputs represent sensors that extract wall shear stress. A low-dimensional model that captures the input–output

behavior is constructed by projection onto balanced modes. The reduced-order model is then used to design a

feedback control strategy such that the growth of disturbances is damped as they propagate downstream.

I. Introduction

C ONTROL of wall-bounded transitional and turbulent flows has
been the subject of several research efforts, owing to the high

potential benefits. In these fluid-mechanics systems, due to the large
flow sensitivity, dramatic effects on global flow parameters may be
achieved by minute local perturbations using devices sensing and
acting on only small parts of the flowwith a small amount of energy.
Such control devices can be used to obtain reduction of the skin-
friction drag, for example, implying relevant savings of the
operational cost of commercial aircraft and cargo ships.

In this Lecture, we perform stability analysis and control design
for the Blasius flow. The work is motivated by the need to provide
efficient numerical tools to analyze complex flows and to design
efficient control strategies. Although we present results for the
Blasius flow, the methodology is applicable to any complex flow
described by the linearizedNavier–Stokes equations. The techniques
in this Lecture share a common methodology: very large eigenvalue
problems are solved based only on snapshots of the velocity field at

different points in time. No large matrices are stored. Therefore, the
main tool is a code that integrates the forward and adjoint linearized
Navier–Stokes equations in time. This so-called time-stepper
technique has become increasingly popular in both stability analysis
[1–3] and in control design [4].

It is now well understood that wall-bounded flows are very
sensitive to specific perturbations [5]. In particular, boundary-layer
flows support convective instabilities and behave as noise amplifiers
[6]. Convectively unstable shear flows are stable from a global point
of view [6,7]; wave packets generated locally grow in amplitude as
they travel downstream and finally decay or leave the observation
window. This behavior can be captured by a nonmodal analysis (see,
for example, [8]). It is therefore meaningful to analyze the spatial
structure of the initial conditions and forcing, yielding the largest-
possible energy growth over a finite time interval. This optimization
problem can be solved efficiently for complex flows by solving the
direct and adjoint Navier–Stokes equation for the linear evolution of
perturbation about a steady state, as shown here (see also [1] or [9]).
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Two aspects inflowcontrol have been identified as crucial to apply
feedback control in more complex flows and to move toward an
implementation in wind-tunnel tests:

1) Model reduction significantly decreases the cost of both
constructing the controller and running it online, thus allowing the
fast computation of the control signal directly from the sensor output.

2) There is a need to naturally consider localized sensors and
actuators.

Both of these aspects are addressed by Bagheri et al. [4]. In this
Lecture, the results of [4] are extended by introducing wall actuation
and wall shear stress measurements instead of idealized volume
forcing actuation and velocity measurements inside the flow. The
incorporation of actuators and sensors at the physical boundaries in
our design takes us one step closer to use the controller in actual
experiments.

Recently, several groups have suggested and pursued the
combination of computational fluid dynamics and control theory,
thus going past early attempts of flow control based on physical
intuition or on a trial-and-error basis (see the review in [10]). The
reader is also referred to Bagheri et al. [11] for a thorough review of
the many tools used in flow control. In early work from our group
[12–14], a linear model-based feedback control approach that
minimizes an objective function that measures the perturbation
energy is formulated in which the Orr–Sommerfeld and Squire
equationsmodel the flow dynamics. The latter equations describe the
linear evolution of perturbations evolving in a parallel base flow. The
control problem is combined with a state estimator. The so-called
Kalman and extended Kalman filters have been implemented to
reconstruct the flow in an optimal manner by only considering
continuous wall measurements. These studies have also shown the
importance of physically relevant stochastic models for the
estimation problem [15,16], in which stochastic noise needs to
accurately describe the unmodeled dynamics such as uncertainties
and nonlinearities. Based on these models, the estimator is shown to
work for both infinitesimal and finite amplitude perturbations in
direct numerical simulations of transitional flows [17,18]. However,
these studies assumed a parallel base flow and distributed sensing
and actuation at the wall.

Model reduction becomes essential to apply modern control
theoretical tools to fluid flow systems. For linear control, the aim is to
build a model of low dimension that captures the input–output
behavior of the Navier–Stokes system and to use this model for
optimal feedback control design. Balanced truncation [19] is a
method for model reduction that takes into account both the flow
structures most easily influenced by the input and the flow structures
to which the outputs are most sensitive. The method provides a set of
biorthogonal modes, called the balanced modes, that serve as a
projection basis for model reduction. The method employed to
compute the balanced modes is the snapshot-based balanced
truncation introduced by Rowley [20]. This method has been
recently applied to the channel flow [21], the flow around a pitching
airfoil [22], and the Blasius flow [4].

The Lecture is organized as follows: The modal and nonmodal
stability analysis is presented in Sec. II. We start with describing the
flow setup and formulating two eigenvalue problems. We continue
with showing how the eigenvalue problems can be solved iteratively
and,finally, present results for theBlasiusflow. Section III dealswith
the control design. We introduce inputs and outputs and write the
system in the state-space formulation. A brief summary of the linear
quadratic Gaussian (LQG) framework is provided before model
reduction based on balanced modes is introduced. The snapshot
method used for model reduction is explained, and results on the
performance of the reduced-order and controller are shown.
Section IV provides concluding remarks.

II. Stability Analysis

A. Flow Configuration and the Initial Value Problem

We consider the two-dimensional incompressible flow over a flat
plate with constant freestream velocity U1, as shown in Fig. 1.
Starting from the leading edge, a viscous boundary layer evolves

downstream. The evolution of the streamwise velocity u, the wall-
normal velocity v, and the pressure p in time t and space !x1; x2" is
governed by the incompressible nonlinear Navier–Stokes equation
[23]. Our analysis deals with the evolution of infinitesimal
perturbations on this laminar boundary-layer solution and is limited
to the computational domain shown by the gray area in Fig. 1. The
inflow boundary is set to the downstream position corresponding to a
Reynolds number Re!#

0
$U1!#0="$ 1000, where !#0 is the local

displacement thickness of the boundary layer and " is the kinematic
viscosity. Throughout the Lecture, all variables are nondimension-
alized by U1 and !#0 . The length and height of the domain are
Lx $ 1000 and Ly $ 30 in the streamwise direction x1 and wall-
normal direction x2, respectively.

The steady state, about which a linearization is performed, is
obtained bymarching the nonlinear governing equations in time. The
discretized and linearized Navier–Stokes equations with boundary
conditions can be cast as an initial value problem:

_u!t" $Au!t" u!0" $ u0

where u$ !u; v"T . However, for two- or three-dimensional base
flows the system matrix A will have very large dimension (i.e., the
number of grid points times the number of velocity components
n$ 2NxNy). Our analysis will therefore be based on the solution of
the linearizedNavier–Stokes equations that can be represented by the
matrix exponential (also referred to as the evolution operator):

u !t" $ T!t"u!0" $ eAtu0

The matrix exponential T!t" is the key to both stability analysis and
control design, which will be discussed in the subsequent sections.
However, this discrete operator also poses the greatest computational
challenge, due to its dimension. For example, the storage of the one-
dimensional Orr–Sommerfeld matrix for the evolution of
disturbances in parallel flows requires approximately 1 MB of
memory, the system matrix for the present spatially inhomogeneous
flow with the numerical scheme introduced previously requires
approximately 200 GB, and the memory usage for a full three-
dimensional system would be of the order of 200 TB.

However, the action of T!t" on any flowfield simply amounts to
integrating the Navier–Stokes equations in time. In what follows, the
reader should equate T!t"u!s" with a direct numerical simulation
(DNS) starting with an initial condition u!s" and providing u!t% s"
at a later time. In this so-called time-stepper approach, system
matrices are never stored and storage demands in memory are of the
same order as a small number of flowfields. Numerically, the
equations are solved with the pseudospectral DNS code described in
[24], in which the spatial operators are approximated by Fourier
expansion in the streamwise direction with Nx $ 768 equally
distributed points and Chebyshev expansion in the wall-normal
direction on Ny $ 101 Gauss–Lobatto collocation points. A fringe
region enforces periodicity in the streamwise direction [25].

B. Modal Stability

The first step in the understanding of the fluid problem at hand is
examining the hydrodynamic stability of the flow (i.e., the behavior
of infinitesimal disturbances to a base flow). In particular, modal
stability deals with the response behavior of the base flow to
disturbances as time tends to infinity and is determined by the
eigenvalues of A:

A $U!U&1 (1)

where the columns of the matrix U contain the global modes, the
columns of U&1 contain the adjoint global modes (i.e., U&1U $ I),
and the diagonal matrix ! contains the eigenvalues #j of A. As
mentioned previously, in many cases, only instantaneous velocity
fields at different times are available, not matrices. To use the time-
stepper technique explained in Sec. II.D, it is convenient to rewrite
the eigenvalue problem (1) in terms of the evolution operator:
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T !t" $U"U&1 (2)

where"$ exp!!t". Note that the evolution operator for afixed t has
the same eigenfunctions as A. The temporal growth rate and the
frequency of the eigenmodes are given by

Re !#j" $ ln !j$jj"=t Im!#j" $ arg!$j"=t

respectively, with"$ diag!$1; . . . ; $n". IfRe!#j"> 0 (or j$1j> 1),
the flow is linearly globally unstable.

C. Nonmodal Stability

The amount of information obtained from Eq. (2) is limited to the
asymptoticflow response and does not reveal the short-time behavior
of disturbances inherent to many flow systems. Relevant transient
growth [5] of perturbations is indeed observed for many fluid
dynamic systems due to the nonnormality of the operator A (an
operator that does not commute with its adjoint), and nonmodal
analysis is concerned with finding instabilities that are amplified in a
finite time interval. Furthermore, a competition between nonmodal
and modal growth is observed in many systems: for example, for
three-dimensional perturbations in the Blasius boundary layer [26].
For such flows, different transition scenarios can be observed,
depending on the external ambient noise. Therefore, to examine the
largest-possible disturbance growth due to all possible unit-norm
initial conditions u0, we will consider the energy associated with the
disturbance at any time t:

ku!t"k2 $ !T!t"u0;T!t"u0" $ !u0;T
#!t"T!t"u0" (3)

In the preceding expression, the perturbation kinetic energy is the
relevant norm and the adjoint evolution operatorT#!t" is introduced.
Applying this operator corresponds to the integration of an adjoint
state from time t to time 0. One can show [4] that an initial value
problem for the adjoint linearized Navier–Stokes equations
governed byA# but with negative time derivative can be associated
with the adjoint evolution operatorT#. For a derivation of the adjoint
operators in general, we refer to [27], and for this particular setup, we
refer to [4].

Initial conditions experiencing the largest nonmodal growth at
time t correspond to the leading eigenvalues of the operator
T#!t"T!t": that is,

T #!t"T!t" $U"U# (4)

In this Lecture, the eigenmodes of all matrices are denoted byU, and
it is clear from the context withwhichmatrix they are associated. The
first unit-norm eigenvector u1 is the optimal initial condition,
resulting in the largest energy growth at time t. If its corresponding
eigenvalue is larger than 1, $1 > 1, the system can support nonmodal
growth. The corresponding flow state at time t can be found by the
evaluation of T!t"u1. To obtain a full map of the potential for
transient growth, the computations are repeated for different times t.

D. Iterative Time-Stepping Technique

The eigenvalue problems defined in Eqs. (2) and (4) provide
information about the modal and nonmodal flow behavior of the
system, respectively. The dimensions of the matrices in Eqs. (2) and
(4) are too large to be solved by direct methods, such as the standard
QR method [28] (the decomposition of a matrix into an orthogonal
and a triangular matrix). Therefore, one has to resort to iterative
methods, such as theArnoldi [29],which is based on the projection of
the large matrix onto a lower-dimensional subspace m ' n. This
results in a significantly smaller system that can be solved with direct
methods. In addition, as mentioned previously, in many cases, only
instantaneous velocity fields at different times are available. A
particular subspace is the KrylovK spanned by snapshots taken from
flowfields separated by a constant time interval !t:

K $ spanfu0;F!!t"u0;F!2!t"u0; . . . ;F!!m & 1"!t"u0g

whereF!t" $ T!t" (modal stability) orF!t" $ T#!t"T!t" (nonmodal
stability), and u0 is the initial guess that should contain nonzero
components of the eigenmodes (it is usually chosen as random
noise).

For modal stability analysis, every basis vector of the Krylov
subspace is created by a numerical simulation of!t. The actual time
step of these simulations depends on the Courant–Friedrichs–Lewy
condition and is much smaller than the sampling period !t. The
global spectrum using both thematrixmethod (i.e., storingmatrixA)
and the time-stepper method is discussed further in the next section.
See [3] for the application of this technique on a fully three-
dimensional flow, where the size of the problem (A would be
approximately a 107 ( 107 matrix) prohibits matrix methods. Note
that the eigenmodes ofT are the same as those of the systemmatrixA
only if!t is chosen properly (i.e., so that it reflects the characteristic
time scale of the physical structures in the flow). More specifically,
the choice !t is a balance between the time scale given by the
Nyquist criterion and a sufficient temporal separation of the Krylov
vectors to ensure convergence of the iterative method. Frequencies
larger than the Nyquist frequency (i.e., ! > !c $ %=!t) are
spuriously moved into the range of ! < !c. To avoid aliasing, !t
must therefore be small enough to include two sampling points in one
period of the highest-frequency mode. In Fig. 2, the aliasing
phenomenon is illustrated. The time stepper with!t$ 30 (squares)
has Nyquist frequency !c $ 0:1 and therefore captures all
frequencies in the range [0, 0.1] correctly. The time stepper with
!t$ 40 (circles) has!c $ 0:07, and all frequencies higher than 0.07
are therefore mapped into [0, 0.07].

For nonmodal stability, every basis vector of the Krylov subspace
is first constructed by a numerical simulation of !t yielding the
flowfield at t$!t, which is then used as an initial condition for
numerical simulation of the adjoint system backward in time for!t.

TheKrylov subspaceK is orthonormalizedwith anm stepArnoldi
factorization yielding the unitary basis V on the which F can be
projected on

F !!t" ) VRV#

This leads to a small m (m eigenvalue problem of the upper

B1 B2 C1C2

U∞ δ∗
0

341

x

y

0 800 200

30

0

Fig. 1 Configuration used for the control of perturbations in a two-dimensional flat-plate geometry. The computational domain#! "0;Lx# $ "0;Ly#,
shownby the gray region, extends from x! 0 to 1000with the fringe region starting at x! 800. Thefirst inputB1, located at "xw; yw# ! "35; 1#, models the
initial receptivity phase, in which disturbances are induced by freestream turbulence, acoustic waves or wall roughness. The actuator B2 provides a
mechanism to manipulate the flow: in this case, by a wall blowing and suction centered at xu ! 400. Two sensors C1 and C2, measuring the skin friction
near the wall, are located at xy ! 300 and xz ! 750, respectively. The upstream measurements are used to estimate the incoming perturbations, and the

downstream sensor quantifies the effect of the control.
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Hessenberg matrix R,

RS $"S

which can be computed by standard methods such as the QR
algorithm. A number of the so-called Ritz values "$
diag!$1; . . . ; $m" typically converge rapidly to the eigenvalues of
the large system F. The eigenmodes corresponding to the m
converged eigenvalues with the largest magnitude are recovered by
U $ VS.

Note that one does not know beforehand how large the Krylov
subspace (i.e., m) has to be to converge to the desired number of
eigenvalues. An implicitly restarted Arnoldi algorithm (IRAM) [30]
implemented in the software package ARPACK [29] can be used to
restart the Arnoldi procedure with a new improved initial guess, u0,
repeatedly until convergence. In this way, the Krylov subspace can
be very small although the number of flowfield snapshots separated
by!t required for convergence can be very large. As an example, the
number of snapshots required for convergence of the 22 eigenmodes
in [3] was 1800, however, thanks to IRAM, the Krylov subspace was
only of the order m) 60.

E. Results

Results on modal and nonmodal stability of the two-dimensional
perturbations of the Blasius boundary layer are presented in this
section. As mentioned previously, the flow under investigation here
is locally unstable but globally stable. Locally unstable
perturbations, the Tollmien–Schlichting waves, grow while
traveling downstream, eventually leaving our control domain. From
a global point of view, the flow is then stable, because disturbances
have to be continuously fed upstream to avoid that the flow returns to

its undisturbed state at each streamwise position. However, a
significant transient growth of the disturbance energy in the domain
is associated with the propagation of the wave packet [31,32]. This is
also referred to as streamwise nonnormality [7,33].

1. Modal Stability

For two-dimensional perturbations of the Blasius boundary-layer
flow, the memory requirements are still small enough to enable the
storage of the system matrix A in memory; the leading eigenmodes
from the matrix eigenvalue problem (1) can thus be obtained by
means of the shift and invert Arnoldi procedure. Figure 3a shows the
eigenvalues obtained by the shift and invert matrix method as black
circles. In the spectrum, one can identify several branches that all can
be related to corresponding modes in the spectrum of a parallel
Blasius boundary layer, as found by solving the Orr–Sommerfeld
equations, though modified by nonparallelism and boundary
conditions [32]. The upper branch can be identified as pure
Tollmien–Schlichting (TS)waves. Thesemodes are characterized by
slightly damped eigenvalues, with the corresponding eigenvectors
obtaining their maximum values inside the boundary layer and
decaying exponentially in the freestream. More stable modes can be
associated with the continuous spectrum: that is, modes oscillating in
the freestream and decaying inside the boundary layer.

Figures 3b and 3c show two examples of TS eigenvectors
associated with eigenvalues marked as k1 and k2 in Fig. 3a. As a
consequence of the convective nature of the instabilities arising in the
Blasius flow, where disturbances grow in amplitude as they are
convected in the downstream direction, the global eigenmodes are
located far downstream, where the flow energy is the largest. The
wall-normal structures of these modes are very similar to those
obtained by local temporal analysis in the framework of the Orr–
Sommerfeld equation. The amplitude of the waves is exponentially
increasing downstream: this, together with the temporal decay rate
given by the eigenvalue, accounts for the spatial behavior of the
mode. The matrix-free method based on the time stepper introduced
in Sec. II.D successfully locates the least damped eigenvalues by
solving the eigenvalue problem (2). The eigenvalues are shown as
squares in Fig. 3a and are in perfect agreement with the results
obtained by the matrix method.

Note that all the eigenvalues are damped, indicating that we will
never observe the evolution of single eigenmodes in the flow, but we
should rather focus our attention on the nonmodal behavior: in other
words, the transient-growth scenario. It is possible to project the
system (3) on a set of eigenmodes obtained from Eq. (2), thereby
approximating theflowdynamics by a low-dimensionalmodel living
in the space spanned by a finite number of eigendirections [5]. For
globally unstable flows, only one or a few eigenmodes may be
sufficient to capture the physical mechanism of the instability (see,
for example, the shallow rounded cavity flow in [34], in which an
oscillating cycle could be captured by the sum of two unstable
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Fig. 3 Plots of a) eigenvalues of A as computed by the shift and invert Arnoldi method (shown as black circles) and eigenvalues computed by time
stepping using the evolution operator T"t# (shown as magenta squares) (the slightly damped eigenvalues, corresponding to Tollmien–Schlichting (TS)
modes, and the freestreampropagatingmodes are found by bothmethods), b) streamwise velocity component of the least stable TS eigenvectors, marked
as k1 in the first plot, and c) streamwise velocity component of a high frequency but more damped TS mode, marked as k2 in the first plot.
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Fig. 2 Spectrum of the 2-D Blasius flow computed using the time-
stepping technique with $t! 30 (squares) and $t! 40 (circles). The
high-frequency eigenvalues of the latter computation are mapped/
aliased into the low-frequency domain.
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eigenmodes). However, for a boundary-layer flow such as that
studied here, it is shown in [32] thatO!1000" eigenmodes are needed
to capture the full instability mechanism. With the present
discretization and boundary conditions, moreover, the sum of the
1500 eigenmodes obtained from the Arnoldi method is not able to
correctly describe theOrrmechanism [5,32,35,36] as obtained by the
optimization via the time stepper defined in Eq. (4). This is most
likely due to the presence of eigenmodes related to the fringe region
among the least damped eigenmodes. This points to the limitations of
using eigenvalues as a general tool to study stability of complex
systems characterized by strong nonnormality.

2. Nonmodal Stability

Figure 4 shows the spectrum and two eigenfunctions of the
eigenvalue problem (4) computed using the time stepper with
t$ 1800. BecauseT#T is a self-adjoint positive-definite operator, its
eigenvalues are real and positive. Moreover, the eigenvalues shown
in Fig. 4a come in pairs with similar magnitudes. The corresponding
velocity fields have the same wave packet structure 90 deg out of
phase, representing traveling structures. The most unstable modes
(i.e., the optimal disturbance and a suboptimal mode) are shown in
Figs. 4b and 4c. They both have a spatial support far upstream, where
the sensitivity of the flow is the largest. The modes are tilted in the
upstream direction, leaning against the shear layer. As noticed in
[37], the upstream tilting of the optimal initial conditions can be
attributed to the wall-normal nonnormality of the governing
operator; perturbations extract energy from the mean shear by
transporting momentum down the mean velocity gradient (the so-
called Orr mechanism). Also note the separation of the spatial
support of the optimal disturbance modes shown in Figs. 4b and 4c
(far upstream) and the global eigenmodes shown in Figs. 3b and 3c

(far downstream). This separation is associated with streamwise
nonnormality of the system [7]. Finally, note that there is nearly 1
order ofmagnitude between the energy of first pair and second pair of
eigenvalues shown in Fig. 4a. As a consequence, one can expect a
selection of disturbances in a randomly forced flow that resembles
the flow response obtainedwhen using the optimal disturbance as the
initial condition.

The energy evolution when solving for the largest eigenvalues of
Eq. (4) at times t$ f100; 200; . . . ; 2000g is reported in Fig. 5a.
When optimizing for short times, the optimal initial condition
consists of upstream-tilted structures that exploit the Orr mechanism
only [32] to extract energy from theflow. Increasing the optimization
time, the upstream-tilted structures move upstream, toward the start
of our computational domain, weighting the possibility of growth
due to the local Orr mechanism with the energy gain associated with
the amplification and propagation of TS waves. The maximum
energy growth in this box is obtained for final time t$ 1800. The
corresponding optimal initial condition is shown in the top frame in
Fig. 6. In Fig. 5b, we compare the energy evolution due to this
optimal initial condition with the energy evolution obtained when
projecting Eq. (4) onto the space spanned by a small number of
modes: all modes included in the TS branch in Fig. 3. The evolution
in the reduced system clearly does not capture the initial energy gain
due to the Orr mechanism; however, by rescaling the energy curve
and shifting it in time to account for the initial gain due to the Orr
mechanism, the subsequent evolution (amplification and propaga-
tion of the TS waves) is almost perfectly matching that of the full
system.

The detailed evolution of the streamwise velocity due to the
optimal initial condition at time t$ 1800 is shown in Fig. 6. At the
initial time, the structures are leaning backward against the shear.
During the initial phase of the development, the disturbance is raised

0 1 2 3 4 5 6 7 8 9
10

1

10
2

10
3

10
4

10
5

0

5

10

0 200 400 600 800
0

5

10
σ j

j x1

x2

x2

b)

c)a)

Fig. 4 Plots of a) eigenvalues of T%T computed using the forward and adjoint time-stepper with t! 1800, b) streamwise velocity component of the
optimal disturbance corresponding the largest eigenvalue in the first plot, and c) streamwise velocity component of a suboptimal, corresponding to the
third largest eigenvalue in the first plot.
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Fig. 5 Plots of a) energy growth when optimizing for different times (the maximum is achieved for time tm ! 1800 for which the maximum energy is
E! 2:35 $ 104) and b) the energy evolution leading to the maximum growth at tm ! 1800 (thin black line) and the energy evolution obtained when
projecting the system onto a small number of eigenvectors related to the TS branch in Fig. 3a (thick magenta line).
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up, gaining energy through the Orr mechanism [5,35,36] and
forming awave packet consisting of TSwaves. Thewave packet then
propagates downstream, grows in size, and finally leaves the
computational domain; the energy evolution for this flow is reported
in Fig. 5b.

III. Control Design

A. Introducing Inputs and Outputs

The next step after the analysis of the internal dynamics of our
linear system is to manipulate it or to control it. In particular, our
objective is to minimize the perturbation energy resulting from the
growth of instabilities during the transition process to suppress or
delay turbulence. To this end, we introduce the inputsB1 andB2 and
the outputs C1 and C2:

_u!t" $Au!t" %B1w!t" % B2&!t" (5)

z!t" $ C1u!t" % l&!t" (6)

y!t" $ C2u!t" % 'g!t" (7)

The linearized Navier–Stokes equations represented by A are now
forced with external disturbances represented by the term B1w!t".
These external disturbances may enter the boundary layer upstream
through some receptivity mechanism such as freestream turbulence
or acoustic waves interacting with roughness, as shown schemati-
cally in Fig. 1.

In practice, the entire spatiotemporal evolution of disturbances is
not available, and it is therefore necessary to monitor the disturbance
behavior through measurements. To accomplish this task, two
sensors, C1 andC2, are introduced that measure the shear stress near
the wall. The partial information of the incoming perturbations
provided from the first sensor measurements (C2 in Fig. 1) is used to
reconstruct the actual flow dynamics by using a Kalman filter. Based
on this flow estimation, we can alter the behavior of disturbances by
injecting fluid through blowing/suction holes in thewall. This type of
actuation corresponds to imposing an inhomogeneous boundary
condition uw at the wall [see Eq. (B1) in Appendix B]. To pose the
system in the standard state-space formulation commonly used in
systems and control theory, the boundary term is lifted [38] into a
volume forcing B2&!t". In Appendix B, the lifting technique is
demonstrated. The sensor output signal y!t" is forced with noise g!t"

to model the uncertainty that may exist in the measurements under
realistic conditions. The noise g!t" can be considered as a third
forcing, but rather than forcing theNavier–Stokes equations, it forces
the measurements. Large values of the scalar ' indicate a high level
of noise corruption in the output signal, whereas for low values of ',
the measurement y!t" reflects information about the flowfield with
high fidelity.

Measurements provided by the second sensor C1 located far
downstream (see Fig. 1) is used to determine whether our controller
has been successful in reducing the shear stress near the wall. It thus
plays the role of an objective function§: that is,

kzk2 $

Z

1

0

!u#C#
1C1u% l2&2"dt (8)

For large values of the scalar l, the control effort is considered to be
expensive, whereas small values indicate inexpensive control.

The systemwith all inputs and outputs can be written in a compact
state-space form:

G :$
A B

C D

! "

(9)

where

B $ !B1; 0;B2" 2 Rn(3

contains the three input operators, and

C $ !C1;C2" 2 R2(n

contains the two output operators. The corresponding input time
signals are

f !t" $ !w!t"; g!t"; &!t"" 2 R3(1

and output time signals are

y !t" $ !y!t"; z!t"" 2 R2(1

In addition, the feedthrough termD 2 R2(3 is included to model the
effects of measurement noise g!t" and to penalize the actuation
effort:

D $
0 0 l

0 ' 0

! "

Hereafter, the number of inputs and outputs will be denoted byp and
r, respectively. The inputs and outputs used in the present study are
given inAppendixA. The formal solution to input–output system (9)
is

y !t" $ Gf!t" $ C

Z

t

0

T!t & ("Bf!("d( %Df!t" (10)

B. LQG=H2 Problem

The LQG=H2 framework provides a controller that minimizes the
cost functional (8). It is appropriate if the systemmatrixA accurately
describes the flow dynamics, although a precise knowledge of
external disturbances and the degree of noise contamination of the
measurements are not available. We refer to [11,40,41] for further
details on theH2 control algorithm, as we will only outline the main
steps here. The method can be extended (the so-calledH1 method)
to guarantee certain robustness properties. The control problem from
an input–output viewpoint, or theH2 problem, can be formulated as
follows:

Find an optimal control signal &!t" based on the measurements
y!t" such that in the presence of external disturbances w!t" and
measurement noise g!t", the output z!t" is minimized.
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Fig. 6 Time evolution for streamwise velocity with the combined Orr
and TS mechanism, when initiated with the optimal initial condition
from t! 1800. Note that themaximum amplitude is growing from frame
to frame following the energy evolution given in Fig. 5b.

§We assume that the cross weighting between the state and control signal is
zero [39].
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The determination of the control signal &!t" is based only on the
measurements y!t" from the sensorC2. However, for linear systems,
due to the separation principle [41], the feedback control law can be
determined by assuming that the complete velocity field is known.
The forcing needed to reproduce the flow only from wall
measurements can be computed independently. Hence, the design of
the H2 controller is performed by solving two quadratic matrix
equations called Riccati equations [39] that are independent of each
other. Solving the first Riccati equation, we obtain the feedback type
of control signal &!t" $Ku!t". The second Riccati equation
provides the estimation feedback gain L so that the observer

_̂u!t" $ !A% LC2"û!t" % Ly!t"

can estimate the state û from the wall stress measurements contained
in y!t". Finally, the controller is obtained by the combination of these
two as (written in compact form)

G c :$
A%B2K%LC2 L

K 0

! "

(11)

This controller runs online next to the experiments. Based on wall
shear stress measurements y!t" extracted by the first sensor, it
provides an optimal control signal &!t" [i.e., &!t" $Gcy!t"].

Any adequately accurate spatial discretization of the Navier–
Stokes equations linearized about two- or three-dimensional base
flows results in a system with at least n * 105 degrees of freedom.
Because of the high-dimensional state space, we cannot, in general,
solve the Riccati equations. Moreover, it would be very expensive to
run the controller online, because it has the same dimension as the full
system. For this reason, there is a desire to have a low-order
controller (11) for the high-order Navier–Stokes system (also called
the plant hereafter). The available methods can be broadly divided
into two categories:

1)With controller reduction [42], a high-order controllerGc is first
found and then a procedure is used to simplify it.

2)Withmodel reduction, a low-order approximation of the plantG
is first constructed and then a controller is designed.

In this Lecture, we will focus on the latter approach, because
solving Riccati equations is not straightforward for n * 105.

C. Model Reduction Problem and Balanced Truncation

Themain features of theflowbehavior that are relevant to preserve
in the reduced-order model are the input–output (I/O) behavior of the
system (i.e., the relation between disturbances), wall actuation, and
sensor outputs. Rather than investigating the entire dynamics of
flowfields at different times, the I/O behavior considers the time
signals f!t" and y!t". Fortunately, the I/O behavior has significantly
simpler dynamics compared with stability analysis, in which the
entire flow dynamics are under investigation.

The model reduction problem for the preservation of input–output
dynamics can be posed as follows:

Find the state-space system of order m ' n,

G m :$
Y#AX Y#B

CX D

! "

$
Am Bm

Cm D

! "

(12)

so that for any input f!t", the difference between the output of the
original y!t" $ Gf!t" and of the reduced system ŷ!t" $ Gmf!t" is
small: that is,

sup
f

ky & ŷk

kfk
$ kG & Gmk1 (13)

One way to compute the reduced-order model (12) with a nearly
minimal model reduction error (13) is called balanced truncation
[19]. To obtain the balanced reduced-order model (12) Gm, we
project Navier–Stokes equations including inputs and outputs (G)
onto the so-called balanced modes X 2 Rn(m. The modes are
biorthogonal modes to adjoint balanced modes Y 2 Rn(m (i.e.,
Y#X$ I).

The method to compute these modes can be introduced in many
different ways. Traditionally, the balanced modes are defined as the
eigenvectors of the product of the controllability and observability
Gramian, defined as

P $

Z

1

0

T!("BB#T#!("d( Q$

Z

1

0

T#!("C#CT!("d( (14)

The Gramians can be obtained by solving the Lyapunov equations:

AP % PA# %BB# $ 0 A#Q%QA% C#C$ 0

In this section, we will outline the method in manner that is
reminiscent of the optimization problems that arise in the stability
analysis. The presentation closely follows Bagheri et al. [4], in which
definitions of appropriate Hilbert spaces and adjoint operators are
also provided.Whereas in stability analysis, wewere concernedwith
the properties of the evolution operatorT!t", our focus herewill be on
the so-called Hankel operator [43] that maps input signals to output
signals. In particular, it is defined as the mapping from past inputs
f!t": t 2 !&1; 0+ to future outputs y!t": t 2 ,0;1":

y !t" $ !Hf"!t" $ C

Z

0

&1

T!t & ("Bf!("d(

To determine Hf , we decompose it into H$ LoLc (shown
schematically in Fig. 7).

First, we need to know the state at a reference time (say, u0) that
results from driving the system with the input f!t":

u 0 $

Z

0

&1

T!&("Bf!("d( $ Lcf!t"

The range ofLc [i.e., the restriction of the state-space to all possible
initial states that we are able to reach with f!t"] is called the
controllable subspace. Second, we define the observability operator
Lo as

y !t" $ CT!t"u0 $Lou0

which generates future outputs from the reference state. IfLou0 $ 0
for an initial conditionu0, thenu0 is unobservable, because it cannot
be detected by the sensors. Moreover, it is easy to verify that the
Gramians are given by P $LcL

#
c and Q$ L#

oLo (see [4] for
derivation of the adjoint operators L#

c and L#
o).

Note that all inputs that give rise to the same u0 produce the same
future output. Therefore, any two linearly independent reference
states u0 result in linearly independent future outputs. Thus, the rank
of the Hankel operator (i.e., the number of linearly independent
outputs) is finite and equal to the minimal number of states required
to realize the input–output behavior of the system. One might think
that it is more natural to consider the input–output mappingG given
by Eq. (10), but this operator is generally not of finite rank, which
makes further analysis difficult [43].

The amplification of the output signal at time t is given by

ky!t"k2 $ !Hf!t";Hf!t"" $ !f!t";H#Hf!t""

In particular, the unit-norm input signals that result in the largest
output response are the eigenmodes of H#H or the right singular

Fig. 7 The operators used to examine the system input–output
behavior. The controllability operator Lc relates past inputs to the
present state, and the observability mappingLo relates the present state
to the future outputs. Their combined action is expressed by the Hankel
operator H.
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vectors ofH: that is,

H $U"V# (15)

where the square root of the eigenvalues $1 > $2 > - - - are called the
Hankel singular values (HSV). If $1 > 1, then the unit-norm input
signal (the first column of V) active in the past t 2 !&1; 0+ will
generate an amplified output signal in the future t 2 ,0;1".

Using the mappings Lc and Lo, we can now obtain the
biorthogonal balanced modes:

X $ LcV"
&1=2 Y $ L#

oU"
&1=2 (16)

Note that balanced modes contained in X$ fu1; . . . ;umg are
flowfields obtained by mapping the most dangerous input signals V
(i.e., right eigenvectors of H#H) onto the state space using Lc (see
[4] for further details).

The balanced reduced-order model is guaranteed to be
asymptotically stable [44] if $i ≠ $i%1. Moreover, upper and lower
bounds [43] of the model reduction error for reduced-order model of
order m are given by the HSV as

$m%1 . kG & Gmk1 . 2
X

n

j$m%1

$j (17)

D. Snapshot-Based Balanced Truncation

Standard balanced truncation is computed by solving two
Lyapunov equations, which is not numerically feasible if n > 105, as
the computational complexity is O!n3" and storage requirement is
O!n2". Usually, the number of inputs and outputs are much smaller
than the state dimension (i.e., m;p ' n). Therefore, the input and
output operatorsLo andLc have low numerical rank. In this section,
a brief summary of the snapshot method [45] for solving the singular
value decomposition (SVD) problem (15) is presented. The method
for the computation of the balanced modes based on snapshots was
introduced by [20], in which it is also described in more detail.

The integrals in Eq. (14) can be approximated by quadratures,

P $ LcL
#
c )

X

k

j$1

T!tj"BB
#T#!tj"!j $ ~Lc

~L#
c

Similarly, for the observability Gramian, we have

Q $ L#
oLo )

X

k

j$1

T#!tj"C
#CT!tj"!j $ ~Lo

~L#
o

where !j are the quadrature weights. The Gramians are thus
approximated with low-rank Cholesky factors ~Lo 2 Rn(kr and
~Lc 2 Rn(kp, respectively, given by

~L c $ !T!t1"B
#####

!1
p

; . . . ;T!tk"B
#####

!k
p

"

~Lo $ !T#!t1"C
#
#####

!1
p

; . . . ;T#!tk"C
#
#####

!k
p

"

For our case, with p$ 3 and r$ 2, the columns

T !ti"B$ !T!ti"B1; 0;T!ti"B2"

contain snapshots of the state at time ti, resulting from impulse
responses of B1 and B2. In a similar manner,

T #!ti"C
# $ !T#!ti"C

#
1 ;T

#!ti"C
#
2"

contain snapshots of the adjoint state at time ti resulting from impulse
responses of each output. Note that for every additional input
(output), the Cholesky factor ~Lc ( ~Lo) increases with k columns.

Similar to theKrylov subspace presented earlier to compute global
eigenmodes and optimal disturbances, the Cholesky factors are
constructed from simulations of the forward and adjoint systems. The
method is therefore matrix-free and based on the employment of a
time stepper. The SVD problem (15) can then be approximated as

~L #
o
~Lc $ ~U ~" ~V#

where ~" contains the approximate HSV. The SVD is of the size
kr ( kp and is small when the number of snapshots m times the
number of inputs p or outputs r is significantly smaller than the
number of states n. If either the number of inputs or the number of
outputs is large, the output projection method of [20] can be
employed. The approximate biorthogonal balanced modes and the
reduced-order model are then computed from the expressions (12)
and (16). Note that the reduced-order model ~Gm, computed using the
low-rank Cholesky factors, is not guaranteed to be stable.

E. Results

1. Performance of Reduced-Order Model

Figure 8 shows the spectrum (HSV) and two eigenfunctions
(balanced modes) computed by the snapshot method. The first
balanced mode and its associated adjoint mode are shown in Figs. 8b
and 8c. The singular values come in pairs [4,21,22], and therefore the
second and fourth balancedmodes look like the first and thirdmodes,
respectively, but shifted in the streamwise direction.We observe that
the leading balancedmode (Fig. 8b) appears as awave packet located
at the downstream end of the domain, whereas the adjoint balanced
mode (Fig. 8c) is an upstream-tilted structure located at the upstream
end of the domain. The adjointmodes are similar to the linear optimal
disturbances shown in Fig. 4b, and the balanced modes are similar to
global eigenmodes shown in Fig. 3b. The adjoint balanced modes
thus account for the output sensitivity, and the direct balancedmodes
account for the most energetic structures.

The projection of the full Navier–Stokes equations on the balanced
modes results in the reducer-order modelGm given by Eq. (12). The
model reduction error (17) is shown in Fig. 9a, together with the
theoretical bounds given by the Hankel singular values. The infinity
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Fig. 8 Plots of a) singular values of Hankel operator, b) streamwise velocity component of the first direct modes, and c) its associated adjoint mode.
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norm of the transfer function equals the peak value of the frequency
response. Estimating the model reduction error amounts to the
calculation of the difference of the peak values of the reduced-order
and the Navier–Stokes systems. We observe that the error norm
remains approximately within the bounds given by the Hankel
singular values for the first 50 modes. Higher modes become
increasingly ill-conditioned and, as a consequence, the numerical
round-off errors increase, the biorthogonality condition is gradually
lost, and the reduced system is no longer balanced. However, the
singular values shown in Fig. 8a decrease rapidly, indicating that the
I/O behavior of the chosen setup can be captured by a low-
dimensional model.

To investigate this further, the amplitudes of the transfer functions
with s$ i! (i.e., the frequency response) are displayed in Fig. 9b for
reduced-order models of order m$ 2; 40, and 70 and for the full
DNS model of order 105. All frequencies in the interval [0, 0.13] are
amplified, and themost dangerous frequency (i.e., the peak response)
is approximately !$ 0:051. From Fig. 9b, we observe that the
reduced-order model of order 2 captures themost important aspect of
the input–output behavior, which is the response of the most
dangerous frequency. The model with 40 modes is able to estimate
the gains of all the amplified frequencies, but fails to capture the
damped low and high frequencies. Adding 30 additional modes

results in a model that preserves the input–output behavior correctly
for nearly all frequencies.

Finally, the impulse responses from all inputs to all outputs of the
reduced-order model (12) are compared with the full Navier–Stokes
system (9). In Fig. 10, signalsB1 ! C1,B1 ! C2 andB2 ! C1 are
shown with black lines. The response of C2 to forcing in B2 is zero,
because disturbances traveling upstream are quickly damped. These
impulse responses were obtained by using the time stepper with
/105 degrees of freedom. The impulse responses of the reduced-
ordermodel (12)withm$ 70 given by y!t" $ Cme

AmtBm are shown
with red dashed lines. We observe that the reduced-order model
registers the same signal as the full model from all inputs to all
outputs. The wave packet triggered by the impulse ofB1 reaches the
first sensor C2 after 500 time units and reaches the second sensor C1

after 1500 time units. Thewave packet triggered from the actuatorB2

reaches the second sensor after 600 time units.

2. Performance of Controller

In this section, a reduced-order feedback controller is developed
with the same dimension as the reduced-order model (m$ 70) of the
previous section. The closed-loop behavior of the system and the
objective function will be investigated and compared with the
uncontrolled case for the flat-plate boundary-layer flow. In
particular, the output z of the closed loop [i.e., the controller (11)Gc

connected to the full Navier–Stokes model (5) G] is compared with
the linearized Navier–Stokes equations without control when the
system is forced with stochastic excitation or initiated with an
optimal disturbance.

Three controllers are investigated: 1) inexpensive control and low
noise contamination with control penalty l$ 1 and noise parameter
'$ 102, 2) expensive control and high noise contamination with
l$ 102 and '$ 107, and 3) an intermediate case with l$ 10 and
'$ 105.

The performance of the inexpensive controller in case 1 for the
control of the optimal initial condition discussed in Sec. II is
examined first. This is interesting, because the controller is not
designed specifically for this configuration and it only has a limited
window in time to counteract the disturbances that are propagating
through the domain in the form of a localized wave packet. In
Fig. 11a, the full domain kinetic energy as a function of time is shown
as a solid black line for the uncontrolled evolution and as a dashed
line for the controlled case. The effect of the controller is evident. The
measurement signal detected by the sensor C2 is shown in Fig. 11b,
revealing that the sensor picks up the front of the wave packet
arriving at t) 350. A time lag of)300, consistent with the speed of
the propagating wave packet (0:3U1), is observed until the
controller starts acting on the information (see Fig. 11c). The
downstream measurement (i.e., the objective function to be
minimized) is shown in Fig. 11d as a black solid line for the
uncontrolled case and as a dashed black line for the controlled case. It
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can be seen that also this measure shows a satisfactory performance
of the controller.

The three different controllers are tested on a flow case that is
forced by the upstream disturbance input B1 with a random time
signal. The wall-normal maximums of the rms values of the
streamwise velocity component in cases with andwithout control are
shown in Fig. 12. The rms value grows exponentially downstream in
the uncontrolled case until the fringe region at x1 $ 800. The rms of
the controlled perturbation grows only until it reaches the actuator
position, where it immediately begins to decay. At the location of the
objective function C1 (x1 $ 750), the amplitude of the perturbations
is 1 order of magnitude smaller than in the uncontrolled case for the
less expensive controller. The rms values in the case of the expensive
(case 2) and intermediate control (case 3) are shownwith dashed and
dashed-dotted lines, respectively. The expensive control is very
conservative, as the measurement signals are highly corrupted and
the control effort is limited: it results only in a small damping of the
disturbances. The intermediate controller (case 3) is more cautious in
reducing the perturbation energy just downstream of the actuator
when compared with the inexpensive controller. Note, however, that
at the location in which the objective function is measured, the
disturbance amplitude has decreased nearly as much as with the

inexpensive controller, although the total perturbation energy is
larger over the entire domain.

IV. Conclusions

Two prerequisites for successful control design are stability
analysis and model reduction. The former provides a sound
understanding of the instabilities, sensitivities, and growth
mechanisms in the flow, and the latter provides a simple and small
model that is able to capture the essential dynamics. This preparatory
work for control design amounts to solving various large eigenvalue
problems, as listed in Table 1. The short-time and asymptotic
behavior of disturbances can be completely characterized by the
solution of two large eigenvalue problems involving the evolution
operator of the linearized Navier–Stokes equations T. The global
spectrum of T determines the asymptotic growth/decay, dominant
temporal frequencies, and the dominant spatial location of
instabilities. The global spectrum of T#T determines the short-time
growth/decay of disturbances and the spatial structure of the most
dangerous disturbances. This knowledge is indispensable for
actuator and sensor placements. Sensors are placed where the flow
energy is large, and actuators are placed where the flow sensitivity is
large, to minimize the input effort. Because the relation between a
few inputs and outputs has much simpler dynamics than the
instability, a reduced-order model can be constructed by solving a
third eigenvalue problem involving the inputs, outputs, and
evolution operator. This results in the balanced modes. The
computation of the three sets, global eigenmodes, optimal
disturbances, and balanced modes is performed only with a time
stepper and without storing large matrices. When the entire flow
dynamics are of interest, the high dimensions of the state require
iterative techniques.When the I/O behavior is of interest, on the other
hand, computational tractability depends on the number of inputs and
outputs. Therefore, the snapshot method can be employed in the case
of few inputs and outputs. The results of this Lecture also enhance
our previous work [4] by incorporating actuation and sensing at the
wall. The next step toward applying the controller in experiments is
to design a similar control strategy for three-dimensional
disturbances in the Blasius flow. Rows of localized actuators and
sensors at the wall in the spanwise direction and more realistic
disturbance environments such as freestream turbulence will be
modeled.

Appendix A: Inputs And Outputs

The expression of inputs B1 and uw and outputs C1 and C2 are
given in this Appendix. For clarity, we denote the streamwise
coordinate with x and the wall-normal component with y. The input
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Fig. 12 The rms values of the uncontrolled system (thick solid line),
inexpensive controller (solid black line), intermediate controller (dashed-
dotted line) and expensive controller (dashed line).

Table 1 Overview of the eigenvalue problems
discussed in this Lecture

Modes Eigenvalue problem Method

Global modes T$ U"U&1 Arnoldi
Optimal disturbances T#T$ U"U# Arnoldi
Balanced modes PQ$ U"U&1 Snapshot
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B1 is modeled by a Gaussian type of volume forcing:

$w;x)w;y
&$w;y)w;x

$ %

exp!&)2
w;x & )2

w;y" )w;x $
x & xw

$w;x

)w;y $
y & yw

$w;y

where $w;x $ 4 and $w;y $ 0:25 determine the width and height of
the function of the function centered around xw $ 35 and yw $ 1.
The actuator in this case is a localized zero-mass-flux actuation on the
wall-normal velocity uw $ !0; vw"

T at the lower wall given by

vw!x" $

!

1 &

!

x & xu

$u;x

"

2
"

exp

!

&
!x & xu"

2

2$2
u;x

"

with the width $u;x $ 2:5 and centered at xu $ 400. Finally, both
measurements extract approximately the wall-normal derivative of
the streamwise velocity component (wall shear stress) in limited
regions at the wall:

Z

"

! )s;x)s;yDy 0 "
u

v

! "

d" )s;x $ exp

!

&
!x & xs"

2

$2
s;x

"

)s;y $
1

$s;y
exp

!

&
y2

$2
s;y

"

where xe $ 300 for the outputC2 and xe $ 750 forC1. The width of
the regions are determined by $s;x $ 5 for both sensors. The operator
Dy denotes the y derivative. The y-dependent weighting relies on a
width parameter $s;y $ 0:05. Note that in the limit $s;y ! 0, the
function approaches the delta function so that Eq. (B1) defines the
exact wall shear stress at the wall. The reason for using an
approximation to thewall shear stress is the need for an adjoint sensor
C# (see Sec. III.C), which is derived with the respect to the signal to
state inner product [4]

!r;Cu"s $ !C#r;u""

These inner products are defined as

!r; s"s $ sTr !p;q"" $

Z

"

pTqd"

for the scalars s and k and the states q and p. The adjoint sensor
obtained from this definition is, in other words,

!r;Cu"s $

Z

"

rT! )s;x)s;yDy 0 "ud"$

Z

"

rT
!

2y)s;x)s;y
$2s;y

0

"

( ud"$ !C#r;u"
"̂

wherewe have used integration by parts and the boundary conditions
in y. This leads to the recognition of the adjoint sensor in the
definition of the observability Gramian (14) as
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2
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Appendix B: Lifting Procedure

In the same manner as [13], the solution u is split into a
homogeneous part uh and a particular part up, so that u$ uh % up.
The particular solution fulfills the boundary conditions

_u p $Aup up!t" $ !0; vw"
T’!t" at x2 $ 0 (B1)

and the homogeneous part satisfies homogeneous boundary
conditions. In principle, we can seek any solution up of the
preceding system, but one suitable choice is to use the steady state
Aup $ 0. This is obtained by marching the DNS in time subject to
steady (’$ 1) wall blowing vw until a stationary state _up $ 0 is
obtained. In the following, we denote this solution as Z. The

inhomogeneous boundary condition is satisfied by this solution,
enabling us to write the particular solution for all times as
up $ Z’!t", implying that the total field is given by
u$ uh % Z’!t". Again, expressing the equation for u in terms of
the homogeneous and particular solution, we get

_u h $Auh %AZ’ & Z _’$Auh %B2 _’ (B2)

where AZ$ 0. Further, we have defined the input operator B2 $
&Z for the homogeneous system. The evolution of state and ’ can be
written as an augmented system for û$ !uh; ’"

T as

_̂u$ Â û%B̂2&

where

Â$
A 0

0 0

! "

B̂2 $
B2

1

! "

&$ _’

Note that in the lifted system (B2) the control signal is given by the
time derivative of the boundary control signal, &$ _’. Similarly, the
input operator B1 is extended to B̂1 $ !B1; 0"

T and the outputs are
augmented to Ĉ1 $ !C1;C1Z" and Ĉ2 $ !C2;C2Z".
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