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ABSTRACT

A two node tandem queueing system with phase-type servers and Bernoulli arrivals is consid-
ered in discrete-time when servers are subject to blocking and failures. The invariant probability
vector of the the underlying finite state Quasi-Birth-and-Death process is shown to admit a matriz-
geometric representation for all values of the arrival rate A. The corresponding rate matrix is given
explicitly in terms of the model parameters and the resulting closed-form expression provides the
basis for an efficient calculation of the invariant probability vector. The cases A = 1 and X\ < 1
are studied separately and the irreducibilty of the underlying Markov chain is discussed for each
case. The continuous-time formulation is briefly discussed and only major differences with the

discrete-time results are pointed out. Some numerical examples are also provided.
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1. INTRODUCTION

Tandem queueing systems with finite buffers and blocking are an essential modelling compo-
nent of many manufacturing facilities and communication networks. To fix the ideas, consider a
production line where parts sequentially require work from several machines in a specified order.
Each machine is attended by a finite capacity buffer and blocking may thus occur. This blocking
phenomenon affects the performance of the system in an essential way, especially when the various
machines are subject to failures or to various other interruptions, as is often the case in real sys-
tems. Queueing networks with blocking have been studied by researchers from different research
communities, and are typically difficult to analyze. To date strikingly few results are available,
with the bulk of the work focusing on continuous-time models. A brief classification of the blocking
systems discussed in the literature is provided in [8], where an annotated bibliography of some of
these papers has been compiled.

The aim of this paper is to gain understanding of the blocking phenomenon through the study
of simple models for which easily computable analytical results can be obtained. The simple model
with blocking analyzed here is the two node tandem queueing system, depicted in Figure 1.1,
with finite capacity intermediate buffers. Both nodes are attended by single servers which operate
according to the FCFS (first-come-first-served) queueing discipline. The service time distributions
at each node are phase type (PH). Jobs arrive into the system according to a Bernoulli/Poisson
process and some work is performed on a job at the first node. The job is then either passed on
to the second node or is fed back to the first buffer with a certain probability. Upon completion
of the service at the second node, the job is either fed back to the intermediate buffer or is ejected
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Figure 1.1.

from the system.

It is assumed that the server in the second node is never blocked and the immediate blocking
stategy is adopted for the first node server in that the blocking of this server occurs as soon as the
intermediate buffer becomes full. Note that this event occurs necessarily at a service completion.
The server remains blocked until the congestion is reduced at the second node, at which time the
blocked server resumes service and begins to process its next job (if any). The methodology de-
veloped in this paper also applies to two node systems under the non-immediate blocking policy
whereby the first node server is blocked at a service completion time if the job that has just com-
pleted service, cannot proceed to the intermediate buffer due to congestion. When the congestion
is reduced downstream, this job proceeds to the next buffer without receiving any further service,
and the blocked server resumes service and begins processing its next job (if any).

The discussion is given here for the discrete-time model while the results for the continuous-

time formulation are only briefly mentioned for sake of completeness. The modelling of time as a
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discrete parameter is motivated by the fact that service times in manufacturing systems are usually
constant, the only source of randomness being introduced by the possibility of server failures and
random arrivals.

Interest in the simple system of Figure 1.1 is two-fold. Firstly, this simple model can be
used as a building block for generating approximation algorithms to analyze more complex tandem
queueing systems. Indeed, many of the approximation schemes developed for general tandem
queueing systems, say by Altiok [1], Brandwajn and Jow [4], Giin and Makowski[10], Hillier and
Boling [11] and Sheskin [15], to name a few, are based on decomposition and isolation ideas that
reduce the problem to one of simultaneously solving several simpler systems which are special cases
of the model studied here. These ideas clearly motivate a careful study of the general two node
tandem systems with blocking, with a view towards providing exact analytical results in order to
enhance existing and future approximation schemes. Secondly, an efficient analysis of such two
node systems is of independent interest as they can be used to model some practical situations [16].
In an earlier paper, in the case of exponentialy distributed service times, Konheim and Reiser [12]
obtained an algorithmic solution for the joint queue-length distribution of the system depicted in
Figure 1.1 at steady state when K; = oo One of the contributions of this paper is to identify a
class of two node tandem systems with blocking for which this joint queue length distribution can
be obtained in closed-form.

The paper is organized as follows: The model of interest is described precisely in Section 2. In
Section 3, the model is analyzed when the Bernoulli arrival stream has parameter A by making use
of the fact that the underlying Markov chain is a finite state Quasi-Birth-and-Death (QBD) process.
As pointed out by Neuts [14], QBD processes enjoy interesting structural properties which can be
used to advantage in the computations. Indeed, under fairly general assumptions, the stationary
probability vector 7 = (mg,71,...) of a QBD process with countably infinite state space exhibits
the matriz-geometric property [14], i.e., there exists a matrix R such that

Tre1 = TR, k>0 (1.1)
where the matrix R is the minimal nonnegative solution of a matrix quadratic equation.

For finite state QBD processes, the situation is somewhat different owing to the presence of
boundary states, and it is not possible in general to assert that the invariant distribution exhibits a
matrix-geometric property. However, as pointed out by the authors in [7] and [9], it is sometimes
possible to obtain a closed-form solution with a matrix-geometric form similar to (1.1). The prop-
erties that define such QBD processes are present in a number of well-known queueing problems
and can be used to provide an explicit expression for a matrix R in terms of the model parameters.

The solution techniques presented in [7] and [9] apply here to obtain closed-form matrix-
geometric expressions for the invariant probabilities of the system states when A = 1 and A < 1,
respectively. In the case A = 1, the system is effectively reduced to a saturated two node system
in that the input queue in Figure 1.1 contains K jobs at all times, so that the first node server
is never starved. While the Markov chain may have several ergodic classes if A = 1, it is shown to

always have a unique ergodic class for A < 1.



The results are extended in Section 4 to unreliable servers with PH-type service and repair
distributions. The effective service time distribution of such servers is shown to admit a PH-type
represention of higher order so that the methods discussed in Section 3 apply. To illustrate this
point, the case A = 1 is discussed under the assumption that idling servers are allowed to fail; the
case where only operational servers fail is then obtained as a special case. In section 5, the results
are supplemented with several numerical examples. In Section 6, the continuous-time formulation
is briefly discussed and major differences with the discrete-time results are pointed out.

In order to fix the terminology used in the paper, several definitions and results from the theory
of nonnegative matrices are collected in the Appendix.

A word on the notation used hereafter: The r X r identity matrix is denoted by I, and the
r X 1 column vector of ones is denoted by e,, while the » X r matrix and the 1 X r dimensional
row vector with all zero entries are denoted by 0,y, and 0,, respectively. The notation ¥ is used
to denote 1 — z for 0 < z < 1. The notation y > 0 is used if each entry of the 1 x r vector y is
nonnegative and y # 0,. The symbol ® denotes the Kronecker product of matrices.

2. TWO NODE TANDEM SYSTEM WITH PH-TYPE SERVERS AND FEEDBACK

The model consists of two nodes with finite capacity buffers of size I{y and K5 in front of the
first and second node servers, respectively, inclusive of the jobs in service. Each node is attended
by a single server. The service times at each node are assumed to be independent and identically
distributed (i.i.d) with common PH-distribution given by the irreducible representations (o, A) and
(B, B) for the first and second node servers, respectively. The service times at different servers
are also assumed mutually independent. The row vectors & and 3, and the matrices A and B
have dimensions 1 x I, 1 X m, { x I and m X m, respectively, and the corresponding [ x 1 and
m X 1 column vectors of absorption (service completion) probabilities for the first and the second
node server are denoted by a and b, respectively. The reader is refered to [14, Chap. 2] for the
probabilistic interpretation of the notation used here. It is assumed, without loss of generality, that
a1 = Pm+1 = 0. Moreover, the matrices (I; — A) and (I, — B) are both assumed nonsingular or
equivalently, that service completion, from any initial state, is certain [14, p. 45].

A Bernoulli arrival stream with parameter A feeds into the first buffer under the assumption
that an arrival which sees a full buffer is lost. It is also assumed that the second node server is
never blocked, and that the immediate blocking strategy is enforced on the first node server. A
job whose service is completed in the i** node server receives another service from this server with
probability p;, 0 < p; < 1, ¢ = 1,2, i. e., a job serviced at station 1 joins the intermediate buffer
with probability 7, and a job serviced at station 2 leaves the system with probability p,.

Under this feedback mechanism, the effective service time distibutions are again of PH-type
with irreducible representations (a, A) and (8, B) where A = A + pjac and B = B + pybB. The
corresponding effective absorption probability vectors are now given by ¢ = p;a and b= Pyb.
In order to avoid simplify the notation, feedback will be directly incorporated into the PH-type

representation as indicated above, i. e., there is no loss of generality in assuming p; = p, = 0, so
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that A= A, B = B, etc...
The state space of the system is naturally defined to be the set E given by

K,
E= ] E (2.1a)

k1=0
where the sets Fy , 0 < ky < K, are defined by

Fy !-'2{6 el e= (O,kg,j), 1<k < 1(2} U {(0,0)} ,

(k"l,oai)7 k? =0 (2]_b)
Ek1 :Z{EEE: €= (/Cl,kg,i,j), 1<k < K, } ,1Sk‘1SI(1,
(kl,I(%j)’ k2 = 1(2

for1 <i<land 1< j< m. Here, k; and k, represent the numbers of jobs in buffer one and
two, respectively, while ¢ and j represent the service phases at the first and second node servers,
respectively. The phase of the first node server is not defined when it has no job to process or when
it is blocked, while the phase of the second node server is not defined when the second buffer is
empty. Note that the sets Ey,, 0 < ky < K, form a partition of the state space E of the Markov

chain. It will be convenient to use the notation
ri=(Ky—=1)lm+I+m and s:= Kym+ 1

in the forthcoming discussion.

The one-step probability transition matrix of the underlying Markov chain defined on the set
E is denoted by P. The purpose of this paper is to find any invariant probability vector 7 of P in
a computationaly efficient way, i. e., any 1 X (K17 + s) row vector m, which satisfies the equations

T=7nP and weg,,4s= 1. (2.2)

Any such vector 7 is partitioned into K3 +1 blocks of components, say 7 = (7, T1,..., Tk, ),
with my being a 1 X s vector and Tk, 0 < ky < I, being 1 x r row vectors. Each block entry
Tk, 0 < kg < Ky, is of the form 7y, = (7y,0, Tki1y-- -, Tk K, ) Where the vector Tk, k, 15 of dimension

'lm, 13’»‘131&’1, 1Sk2<1(2,

l, 1<k LI, k=0,

)

m, k=0, 1<k <Ky, or
1<k <Ky, ky =K,

\17 k1:07 k2:0’

and the entries of each vector 7y, 4,, 1 < k) < Ky, 1 <ky < K5, are ordered as (1,1), (2, 1),...,
(,1),(1,2)...,(4,7), ..., (I = 1,m), (I, m).
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By ordering the states in this way, the matrix P can be put in the form
/ By By \
By A1 Ao

Ay A A
P= S ; (2.3)

Ay Ay A

Ay Cl/

where the block entries By, B;, and B; are of dimensions s X s, s X r and r X s, respectively, and

the matrices A4;, 0 < ¢ < 2, and C are of dimensions 7 X r. These matrices are given by

«@
ba B®a
®a B®a
By = A . R
bfpRa B®a
bba B
1
b B
_ b3 B
By =X . ,
b3 B
b3 B
0 f®a
®a B®a
By =X . . ,
f®a B®a
b®a B®a
0
A
b A BQRA
A B®RA
A():/\ M 5
A B®A
fPB®a B



AA A8 ® aa)
Ab® A) Aq A(B ® aa)
A8 ® A) Aq A(B ® ac)

Al: . . ’
A(bB R A) Ay MB® a)
A(bB ® ) AB
0 B®ax
b®aa B®aa
Ay =X : ,
b ®aa B ®aa
bfRaac BR®a
0 0
A AMB®aa)
bR A Cy A(B ® aa)
Oy = bﬁ®A Cq A(B@aa)
1= ]

oA  Cy MNB®a)
b ® a B

with the diagonal entries A4 and Cy being defined by

Aj =X (BRA)+ A(bF® aa) ,
Ci=BA+A(bf®ax).

In the following sections, this model will be analyzed in detail when A = 1 and A < 1. The
results will then be generalized to capture the situation of unreliable servers with PH-type service

and repair time distributions.
3. ANALYSIS OF THE MODEL

3.1. A=1

When A = 1, the block matrices By, By and A are all equal to the identically zero matrix
with appropriate dimensions, and it is easy to see that the subset Ex, of F, given by (2.1b), is an
absorbing set of the Markov chain with one-step transition matrix P. Therefore the system can be
viewed as a two node system with an infinite supply of customers in front of the first node server,
whence the intermediate queue size and the phases of each server suffice to characterize the system
behavior. The vector g, , as defined in Section 2, is an invariant probability vector for the Markov
chain corresponding to this new system with state space Ek, and one-step transition matrix Cj.

The matrix Cy has the same QBD structure as the matrix P. The similarity is emphasized by

denoting its block entries by the same letters as the corresponding ones for the matrix P but in
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calligraphic style, so that

(61 By \
By A1 Ao
Ay A1 Ao

C1 (3.1.1)

Ay A1 Co

\ Cy G

The block entries By, Bi, and By now have dimensions [ X Im, I X [ and Im X [, respectively. The
matrices Ag, A; and As are all of dimensions Im X Im, while the matrices Cp, C; and C, have

dimensions Im X m, m X m and m X Im, respectively, and are given by

Ao = B ® aa, Ai=BR A+ b8 aa, A =b8® A, (3.1.2&)
B() = ﬁ ® aq, Bl = A, BQ =b & A, (3.1.2b)
Co=B®a, Ci1 =18, Co =08 ® a. (3.1.2¢)

When Ky = 1, i. e., there is no intermediate buffer, the matrix C; is always irreducible and

the invariant probability vector mx, is given explicitly by

-1

i 0 = ca(l; — A) and wg,1 =cB({Im—-B)7",

with ¢ = (ES; + ES3)~!. Here ES; denotes the expected service time of server i, i = 1,2.
However, when K, > 1, the matrix C; can have several ergodic classes as pointed out in [6,

Chap. 3] where necessary and sufficient conditions are given for the irreducibility of the matrix Cj.

Necessary conditions for any invariant probability vector of C; are obtained through the solution

technique of [9], provided the properties (P0)-(P2) below hold for the corresponding QBD process.
(P0): The matrices I; — By and I, — Cy are nonsingular.
(P1): There exists lm X Im matrices X and Y such that the equalities

Ao X =AY =0tmxim », BoX =0ixime and C2Y = Onpxim

(Ilm - Al)(Ilm el X)(Ilm - Y) = AO(Ilm - Y) + -AZ(Ilm - X)
By (I = By) ' Bo(lyn = Y) = Ay(I, — X)

and
XY =YX
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hold, and either one of the Im x Im matrices M and N defined by
N = (Ilm—Al)X+‘A0 , M= (Ilm—Al)Y-l—.Az (313)

is invertible.
(P2) : There exists an I X Im matriz V such that B,V = A,.

Property (PO0) is trivially satisfied under the irreducibility assumptions made earlier on the
PH-distributions since By = A and C; = B. Except for the invertibility of the matrices M and N,
it is an easy exercise to check that the properties (P1) and (P2) are also satisfied by choosing

X =1, & - ea), Y=(Un—-exf)®1; and V =8 I,. (3.1.4)

The matrices M and N defined in (3.1.3) can be written in terms of the system parameters as

M=Un—ex)0L+ (enB—B)® A (3.1.50)
N:Im®(II——eza)+B®(ela—A) . (3.1.5b)

The following necessary and suflicient conditions for the invertibility of these matrices follows from
Lemma 2.3.17 and Corollary 2.3.18 of [6] combined to the irreducibility of the PH-representations
(e, A) and (B, B). To that end, let D be the open disc centered at (3, 0) in the complex plane with
radius 3 and let Sp(Z) denote the spectrum of the matrix Z.

Lemma 3.1.1. If Sp(A) C D (resp. Sp(B) C D) then the matriz M (resp. N) defined by (3.1.5)

is nonsingular. However, the matrizx M (resp. N) is singular if the matriz A (resp. B) is singular.

The following theorem, stated for the case when the matrix M is invertible and K, > 1, follows

immediately from Theorem A.13 of the Appendix and from the structural results obtained in [9].
Theorem 3.1.2. Let the 1 X | row vector z be the unique solution to the equation
z(A+ aa) =z, ze; = 1.

If the matriz M is invertible, then any invariant probability vector ™ of P is of the form
T = (05,0p,...,00,7x,). The 1 X 7 probability vector nr, = (Tg,0,TK 1, TKK,) has the

matriz-geometric property

T, 05 R~ 1<k < K,
TRk, = (3.1.6)
TR0 SRK_Z(B ® a)(Im - B)_l R ky = Ko
where the Im X lm matriz R and the | X Im matriz S are defined by

R:=NM"! and S:=B([L-A))M™,
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and the 1 X | vector mg o satisfies the linear equation

K-1
=m0 |L+5 Y BRI ®en)+ SRE2Co(Im — C1) ema| . (3.1.7)
k=1

When A = 1, it is shown in [6] that in statistical equilibrium the probability of finding k, jobs
in the intermediate buffer coincides with probability of finding K3 — k2 jobs in the case when the
order of the servers is reversed. Melamed [13] provides a probabilistic interpretation for this kind of
reversibility [13] by viewing the vacant buffer locations (holes) of the original system as “occupied”
by fictitious dual jobs. As regular jobs march through the buffer in one direction, the holes march

in the opposite direction and they both receive identical service times.

3.2.0<A<1
A necessary and sufficient condition for the irreducibility of the Markov chain associated with

the matrix P of one-step transition probabilities, given by (2.3), is first obtained. Here, unlike for
the case A = 1, the uniqueness of the corresponding invariant probability vector is seen to hold.
Since 0 < A < 1, the following three observations are easily verified:
(i) The directed graphs of the matrices A; and C; have the same topological structure by virtue
of Lemma A.3.
(ii) The set Ey, 1 is reachable from every state in the set Ej, and vice versa, for 1 < ky < Kj.
(iii) The state (0,0) is reachable from every state in the set Ej.
The next theorem readily follows from observations (i)-(iii) and the irreducibility of the PH-

representation (3, B).

Theorem 3.2.1. If the matriz Cy given by (3.1.1) is irreducible, so is the matriz P.

Next, even when the matrix P is not irreducible, it is now shown to have a single ergodic class,
whence the invariant probability distribution vector 7 is always unique. Let the Kqr X K7 matrix
P be obtained by deleting the first s rows and columns of P, i. e., P is the submatrix of P that
governs the transition mechanism within the states in the set I¥'\ Ey. Assume the directed graph
G(ﬁ) to induce several ergodic classes and a set of transient states, as would be the case if C; had
several ergodic classes. In view of (ii), the set Fj is reachable from all of the ergodic classes of
E\ Ep, whence by (iii), the state (0,0) is reachable from every ergodic class of the set E\ Ey. On
the other hand, if (0,0) — e for a state e in E, then e will be in the communication path between
the state (0,0) and the other states of the chain to which (0,0) has access, while if (0,0) 4 e, then
e will be a transient state of the chain since e — (0,0) from the argument given above. Therefore,
in the directed graph G(P), the set Eq ) := {e € E : (0,0) — e} U {(0,0)} forms an irreducible
class while the set E \ Eg ) forms a transient class.

The next theorem follows from Theorem A.13 and these remarks.

Theorem 3.2.2. If A < 1, the Markov chain with one-step transition matriz P always has a

single ergodic class, and the invariant probability vector m as defined above is thus unique.

_10_



In order to obtain a closed-form expression for this unique vector =, nonsingularity of the

matrices (I; — By) and Ap is needed. Since

Is - B] =
~Ab8 I, — AB

and A > 0, I, — B; is invertible if and only if the matrix I,, — AB is invertible, a fact easily
established by a direct application of the Gershgorin Circle Theorem [2, p. 500]. This can also be
seen by noting that p(B) < 1 and therefore 0 is not an eigenvalue of the matrix I,, — XB. On the
other hand,

det(Ag) = A" det(A) det(B) [det(B ® A))2~!
= A" det(A)K2=Dm+1 ey py(Ka=Di+1

where the second equality follows from properties of the Kronecker product [5], and the matrix Ag
is invertible if and only if both A and B are invertible.

As a result of this discussion, nonsingularity of both A and B will be assumed for the discrete-
time model. Although this may seem rather restrictive, many well-known discrete PH-type distri-
butions enjoy this property, including the hypergeometric and negative binomial distributions, to
name a few.

Under the invertibility assumption of the matrices A and B, the matrix P is the probability
transition matrix of a QBD process of the type discussed in [7] and when K; > 1, the follow-
ing matrix-geometric form of the solution is an immediate consequence of the grouping technique
discussed in this reference.

Theorem 3.2.3. If the matrices A and B are invertible, then the unique invariant probability

vector ™ = (7o, T1,...,TK,) has the following structural form

To=m B (I, — B1)™t
I,

07‘)(7‘

Tk, = TK, ((IT - C])AO_I,I,«) RKl_kl_l ( > , 1<k < Ky

-1
Tk, = (zw)™ " z,
where the 1 X r vector © satisfies

¢Z =0, , ©>07 (orz<0l)
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with the 2r X 2r and r X r matrices R and Z and the r X 1 vector w being given by

I - ADAY )
R = ( r 1_ 0 r :
( _A2A01 07")(1'

; —o ( Bz(Is ~ B1)"'Bo + A1 — I,
7 = ((I, - C1) Ay L, 1) R z( 2( 1)A2 o+ As ) |

I Ky—1
w = ((Ir_Cl)AO_l,I,,.) RI<1—2 (Or:,,,)B2(Is — Bl)—1€s+ ZRI(I—kl—l (((]3;1)] te,.
k=1 r

Note that the scalar (zw) is a normalization constant and the vector w need not be computed
as the normalization can be performed after computing all the vectors 7, 0 < ky < Ky. Much

simpler expressions can easily be obtained for the case K; = 1.

4. EXTENSIONS TO SERVERS SUBJECT TO FAILURES

In this section, a class of unreliable servers with PH-type service and repair time distributions is
introduced. The effective service time distribution of such servers is shown to admit a PH-type rep-
resention of higher order so that the methods of the previous section apply. Under the irreducibility
assumption on the service and repair PH-distributions, necessary and sufficient conditions for the
irreducibility of the effective service representation are established. The situation where even idling
servers may be subject to failure is considered. The case when only operational servers can fail is

obtained as a special case of this discussion.
4.1. Representation of The Effective Service Time Distribution

Consider the following model for a PH-type server subject to occasional failures: The service
and repair distributions have irreducible PH-representations (a*, A*) and (a?, A?) of order m and
n, respectively, with corresponding m x 1 and n X 1 column vectors of absorption probabilities a*
and a?, respectively. Again, in order to avoid situations of limited interest, take ¥, ; = afH_l =0.
Let the sets S, R and T be defined by

Si={s;, 1<i<m}, R:={r;, 1<j<n}, T:=5UR,

where s; and r; are the it" service phase and the j'* repair phase, respectively. Let C' and D
be m X n and n X m non-negative matrices with entries C;; and D;;, 1 < ¢ <m, 1 < j < n,
respectively, with the property that Ce, = e, and De,, = e,. Similarly, let the 1 X m column
vector f have non-negative entries f;, 1 <1 < m.

It is assumed that when the server is up and in phase of service 7, it can fail with probability
fi, 1 <1< m, and the repair process is initialized at phase j with probability Ci;, 1 <t <m, 1 <
j < n. Similarly, when the repair is completed, i.e., whenever there is a transition from a transient
phase j to the absorbing phase n + 1 of the repair distribution, the service restarts at a phase ¢

with probability Dj;, 1 < j < n, 1 <4 < m. Moreover, a failure at a repair completion epoch
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is not allowed. In addition to these fairly general transition mechanisms, the server is allowed
to fail at a service completion epoch with probability ¢ and reinitialization of the repair phase is
then done according to the probability distribution vector a®. The natural conditions ¢ < 1 and
fi <1, 1 <1< m,areimposed throughout.

Under these assumptions, it is easy to see that the effective service time distribution of such
a server admits a PH-type distribution. To that end, consider a discrete-time Markov chain on
the state space T'U {841}, Where s,, 41 is interpreted as the instantenous state for the PH-
representation of the (effective) service. The corresponding one-step transition matrix ¢ and the

initialization probability vector are of the form

A a
Q= (0 1) and (o, Cmint1) ,

m+n

respectively, with a = (ai,a2,...,0n4+n), where A, a and o are of dimension

(m+n) X (m+ n),(m+n)x1and 1 X (m+ n), respectively. The equalities

A7 A® A C
A= , (4.1.1a)
Ay D A?
A= a¥
a= ( 6T“ ) , (4.1.1b)
a=(¢a® ,(bad) , (4.1.1¢)
readily follows, where the notation A, := diag(zy,...,;) is used for all z in IR'. The relations

4 easily follows.

Afen = fand Ajae, =a

The effective service distribution of such a server thus has a PH-representation (a, A) of order
n + m. The assumption a3 = afH_l = 0 implies apmynt1 = 0. The irreducibility of the service
and the repair distributions does not guarantee the irreducibility of the effective representation

(a, A). However, the following neccessary and sufficient conditions are given.

Lemma 4.1.1. The PH-representation (a, A) is irreducible if and only if every state r; in the set
R\ R* is reachable from the set R* under the transition mechanism induced by G(A?), where

R* ::{rj € R :r; is reachable from the set S under G(A + aa) } )

Moreover, if a state r; in R\ R* is not reachable from R*, then r; is a transient phase for the
PH-representation (o, A).
Proof. By definition, the irreducibility of the PH-representation (o, A) is equivalent to the
irreducibilty of the (m + n) X (m + n) matrix A + ea, which is readily given by
A}—A“—}-aA?a“a“ AsC+ ¢pAza® al
A+ aa =
Age D Al
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Now, the property s; — sy, 1 < ¢,¢' < m, is a direct consequence of the irreduciblity of the
matrix ATA“ + $A?a“ a*, a fact which follows from Lemma A.3, since by assumption ¢ < 1,
fi <1, 1 < i < m, and the representation (a*, A*) is irreducible. Therefore, every state s in 5
communicates with any other state in S without leaving S. On the other hand, since (I, ~ A%)
is assumed invertible, A% is substochastic and a? # 0. This fact, together with the fact that the
states {r1,...,7,} are all transient for the representation (a?, A?) yields the access relation r; — s;
for every rj in R and s; in §.
(Sufficiency) The sufficiency part of the first assertion of the Lemma now follows from the hypoth-
esis, since every r; in R\ R* is reachable from R*, thus communicating with the set S U R*.
(Necessity) Follows trivally by the definition of irreducibility and the form of the matrix A + aa in
that the transitions within the set R are governed by the matrix A% only, due to the assumption
that failures are not allowed at repair completions.

The second part of Lemma 4.1.1 also follows easily from the above discussion. Since a? # 0T,
the underlying Markov chain will eventually leave the set R and enter the set S. If r; in R\ R* is
not reachable from the set R*, then r; will never be revisited and will be a transient state for the

Markov chain. |

In some applications the server may fail with a positive probability at a service completion
epoch, i. e., ¢ > 0. In that event, since a* # 0L, there exists some i, 1 < i < m, such that a¥ > 0,
whence s; — r; for every 7; in the set R, :={1<j < n: a? > 0} as the repair phase is initialized
according to a?. Since the representation (a?, A%) is irreducible, every state r in R\ R. must be
reachable from the set R, since otherwise r will be a transient state for the matrix A% + a%a® thus
contradicting the irreducibility of (a?, A%?). Therefore, arguments similar to the ones that lead to
the sufliciency part of Lemma 4.1.1 show that the representation (e, A) is irreducible.

Since (a, A) is constructed from basic building blocks and not given from the onset, invertibility

of the matrix Ip,4., — A is not automatically guaranteed. A sufficient condition is obtained in the

following Lemma.

Lemma 4.1.2.  The matriz Iy, — A is invertible whenever the PH-representation (o, A) is
irreducible.

Proof. The directed graph G(A) may in general induce several ergodic classes. However, the
irreducibility of the representation (e, A) implies that all of these classes communicate with each
other through s,,+1 in the access relation induced by G(A + aa), and therefore, the states in T
are all transient for the Markov chain with one-step probability transition matrix ¢J. On the other
hand, if G(A) induces a single ergodic class, the states in T' are again all transient since sp,41 is
indeed an absorbing state for @, i. e., a # Ogl_m from (4.1.1b), owing to the assumption that
a* # 0L and f; < 1, 1 < i < m. The invertibility of (Im4n — A) is now immediate since it is
equivalent to the statement that the states in T are transient for the Markov chain with one-step

probability transition matrix @ [14, Lemma 2.1.1. p. 45]. |

The representation of the effective service time given above for such a faliure type server
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subsumes the case when the server is reliable,i. e., ¢ = 0 and f = 05, in which case, the matrix
AY + a‘at Om)(n
Age D Al

for the representation (a, A) not to be irreducible, although the representation (a¥, A*) for the

A + ao takes the form ( ) This special case also provides a trivial example

service duration is. If the representation (a, A) is not irreducible, Lemma 4.1.1 provides general
guidelines for identifying the corresponding irreducible representation. In the following section, the
representation (a, A) is assumed irreducible so that the matrix (1,4, — A) is invertible.

To conclude, it should be kept in mind that the matrices C' and D, corresponding to transition
probabilities between the service and repair phases, take special forms depending on the assumptions
made. For instance, if upon completion of a repair, the phase of service is reinitialized according
to a*, and similarly if upon a failure the phase of repair is initialized according to o, then C' and
D take the special forms C = e,, @ and D = e, a*. When C = e,, o?, it is an easy exercise to see

that the representation (o, A) given by (4.1.1) is irreducible regardless of the form of the matrix D.

4.2. Two Node System With PH-Type Failure Servers

The model of Section 2 is considered for the case when A = 1. The case 0 < A < 1 is
straightforward and omitted to avoid an already lengthy manuscript. Feedback is again ignored
in order not to further complicate the notation as it can easily be incorporated as mentioned in
Section 2. The servers are assumed subject to failures even when they are idling. The first and
second node servers have irreducible PH-representations of the form (4.1.1), denoted by (e, A) and
(8, B), respectively, by using the notation of Section 2. The service and repair PH-representations
of the first and the second node server are of order m; and n;, ¢ = 1,2, respectively. They are
again denoted by the same letters as the effective representations but with superscripts » and d.
It is assumed that an idling server fails with probability ¢g;, ¢ = 1,2, and upon failure the phase
of repair is initialized according to the initialization vector a? and 3¢ for the first and the second
node server, respectively. For sake of compactness, set

ry =my;+mng, t=1,2, h =ry7rg,
hi =71 (14 ny), hy =ro(1+ny).

Dropping the index for the first queue, the state set E of the system contains

|E| = (K2 — 1)h + hy + hy states with

((Oai)a k2:0a 1<i<ry,
(O’iaj)’ k2=0,1SiS7‘1&ndm2+1§jS7‘2,
E = (k,‘g,i,j), 0<k2<Kg,1§i§r1and1§j§r2,

(I(Z7i3j), k2:I(27 ml‘*‘lSiSTl a'nd]-SjSTZa

 (K2,7),  ke=K,y, 1<j5<r,.

Here, k again indicates the intermediate buffer size, while 7 and j represent the service or repair

phase in the first and the second node server, respectively. The phase of service of the second node
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server is not defined when it has no jobs to process and the phase of service of the first node server
is not defined when the intermediate buffer is full as it is blocked. The pairs (0,¢), 1 < ¢ < ry,
and (K2,j5), 1 < j < ry, correspond to the states where the second and the first node server,

respectively, are functional but idle.
By ordering the states as in Section 2, the one-step state transition matrix C; of the underlying
Markov chain can be obtained in the same block tridiagonal form as in equation (3.1.1). Since the

effective service time distribution is still PH-type, the intermediate block entries of the matrix Cy

are still given by
Ao=B®aa, A1 =BA+bRQax and A =bd8R® A,

where now each block is an h X h matrix. For the boundary states the entries are given by

—= [ d

By = (Aq:dli)g 9236 ) ® aa h1 X h matrix,
- d
By = (‘Zﬁ giﬁ > ®RA hy X hy matrix,
By =b (52 , P2 ﬂd) ® A h X hy matrix,
Co = 5 B®a, B®aad) h X hy matrix,
B ® a* .

= (B@a ng ®6?4§¥ ) hy X hy matrix.
Cy = bp® (gla“,glad) hga X h matrix
2=\ 8@ (Aga Dy, A%) 2 :

Since the effective service representations (o, A) and (8, B) are both assumed irreducible, the
results of [6] can be used to characterize the irreducibility of the Markov chain studied here.
Except for the invertibility of the matrices M and N, it is a straightforward exercise to show

that the properties (P1) and (P2) are again satisfied, by choosing
X=1I,0(, —e, ), Y=(0,—-€e,)®I, and V=8Q1I,,.

The matrices M and N are again given by (3.1.5), with the subscripts [ and m of I and e now

replaced with r; and rq, respectively.
The invertibility of the matrices I, — By and I, — C; is needed in order for the property (P0)

= d
to hold. To see this for I, — Cy, note that the stochastic matrix (Z}i gilofi ) has eigenvalues in

the closed unit disc, while the matrix B has eigenvalues in the open unit disc of the complex plane.

It is an easy exercise to show that if (A, «) and (p,v) are right eigenpairs for the matrices B and

a? A4
of Cy are therefore all in the open unit disc, or equivalently the eigenvalues of I, — C; have strictly

- d
(gl g > , respectively, then (A, v ®v) is a right eigenpair for the matrix C;. The eigenvalues
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positive real parts, and the matrix Iy, —C; is invertible. The nonsingularity of the matrix I}, — B;
can be shown in a similar way.

Therefore, if one of the matrices M or N is invertible, the properties (P0)-(P2) are again
satisfied and the same structural result of Theorem 3.1.2 also holds true for the case when servers

are subject to breakdowns. However, this time the 1 X hy vector mk,o satisfies the equation
TK,0 Z = Oh and TK0 W= 1, (4.2.1)

where the A1 X h matrix Z and the hy X 1 vector w are given by

Ks-1
Z=5> RP(I, - (B+b8)®(A+aa))— Ao+ SAz + SR¥2=2( Ay — Co(In, — C1)71Cy)
k2=1
Ky-1
w=en +85 Y B2 7Vep+ SR T2Co(In, — C1) Men,
ko=1

Equation (4.2.1) is obtained by summing the balance equations corresponding to the block

entries Ti,k,, 1 < k < K3, and using the normalization condition Tk, eg| = 1.

Special Case — When only operational failures are allowed

The solution for the case when idling servers do not fail can be obtained as a special case
of the discussion given above. In this case, even if the servers do not fail when idling, the same
state description has to be used as a server can still fail at the time epoch of a service completion.
Therefore, the results of this case can be obtained by setting g3 = 0 in C; and C; and by setting
g2 = 0in By and B;.

5. NUMERICAL EXAMPLES

In this section, the effects of failures on the invariant probabilities of the model of Section 2
are illustrated through several numerical examples. For a buffer size of K = 5, the following three
situations are considered when A = 1:

(i) The case when both servers are reliable and have Negative Binomial service time distributions
with PH-representations (a*, A*) and (8%, BY).

(ii) The case when both servers are subject to failures and have service distributions as in (i), and
the first server has a geometric down time distribution with parameter 0.8, while the second
server has hypergeometric down time distribution with PH-representation (8¢, B%). In this
case the idling servers are allowed to fail with probabilities gy = 0.2 and g, = 0.3.

(iii) In this case both servers are subject to failures and have service and repair distributions as in
(ii), but idling servers are not allowed to fail.

The following numerical values are considered.

«_ (08 0.2 w
A "(0 0.3> ’ o —'(170)7
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e {06 04 .
B - ( 0 0.5) ) ﬂ _(1,0),

0.5 0
B¢ = ( 0 0.6> , 8% = (0.4,0.6),

The matrices Ay,, C; and D;, i =,1,2, are given by

and

1 u u
Clz(l), C2:62ﬂd, D]ZCY , D2:€2ﬂ ,

while the probabilities of a failure at a service completion are ¢; = 0.2 and ¢ = 0.3. Therefore

the effective service time representations («, A) and (8, B) are given by

0.48 0.32 0.08 0.12

0.72 0.18 0.1 0 04 0.08 0.12
A= 0 027 0.1 , B = ,
0.8 0 0.2 0.5 0 0.5 0
) ’ 0.4 0 0 0.6
and
a=(0.8,0,0.2), 8 =(0.7,0,0.12,0.18) .

If the random variables §;, R; and Sfff, 1 = 1,2, denote the service time, repair time and the
effective service time of the i*" server for i = 1,2, respectively, then the above numerical values lead
to the following expected values: E[S)] = 7, E[Sq] = 4, E[Ry] = 1.25, E[R;] = 2.3, E[STT] =
9.28, and E[S:/] = 11.18. Note that although E[S; + R;] > E[Sz + R], the average effective
service time of the second node server is greater then the average effective service time of the first
node server since the second node server is more likely to breakdown. The effect of breakdowns can
easily be seen from the queue size probabilities in Table 5.1. As expected, in the first case, there
are fewer than three jobs in the buffer for most of the time whereas in cases II and III there are
more than three jobs in the buffer for most of the time. On the other hand, although the second
server has a higher probability of failure when it is idle, the probability of having zero or one job in
the buffer is sligthly less in case II then in case III. The reason for this is that the idling probability
of the first node server is high enough to offset this difference, so that, relative to the second node

server, the first node server is slightly slower in case II.
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Steady state queue size probabilities

Queue size Case 1 Case 2 Case 3
0 0.3042 0.0619 0.0672
1 0.3950 0.1131 0.1143
2 0.1904 0.1495 0.1483
3 0.0758 0.1952 0.1936
4 0.0286 0.2513 0.2492
5 0.0059 0.2290 0.2275
Table 5.1.

6. THE CONTINUOUS-TIME FORMULATION

In this section, the solution to the continuous-time formulation of the model of Section 2
is briefly discussed. Although the same solution techniques can be used, the continuous-time
formulation has two advantages: (i) The matrix C; is irreducible and so is, by Theorem 3.2.1,
the matrix P given by equations (3.1.1) and (2.2), respectively, are both irreducible. The reader
is referred to [6, p. 51] for a proof of the irreducibility of the matrix C; in this case. (ii) No
invertibility assumptions are needed for all values of A. For the case A = oo, both matrices M
and N are invertible [9]. For the case A < oo, A9 = Al,, and no matrix inversion is required to
obtain the R matrix. Similar extensions to systems with failure servers are available [6]. Feedback
from the second node server to the first buffer can also be incorporated into the solution since the

underlying QBD process will have a similar structure, while for the discrete-time formulation this

type of feedback does not yield a QBD process.
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APPENDIX
In this Appendix, several definitions and results from the theory of nonnegative matrices are
presented for sake of easy reference. The reader is referred to Berman and Plemmons [3] for a general
reference on the theory of nonnegative matrices. Throughout the discussion, all the matrices have
real entries unless otherwise mentioned.
Definition A.1. Ann X n nonnegative matriz A is cogredient to an n x n matriz E if for some

permutation matriz P, PAPT = E. The matriz A is said to be reducible if it is cogredient to
B 0
FE =
(¢ b)
where B and D are square matrices, otherwise, A is said to be irreducible.

Definition A.2. The directed graph G(A) associated with an n X n nonnegative matriz A is
the graph made up of n vertices, say Py, P,,...P,, with an edge leading from P; to P; if and only
if Ai; >0, 1<4,7< n.

It is well known [3, p. 30] that a matrix A is irreducible if and only if G(A) is strongly connected,
that is, for every ordered pair (P;, P;) of vertices of G(A), there exists a path (i. e., a sequence of
edges) which leads from P; to P;. The following Lemma is a simple application of the Definition
A.2 and will be useful in the proofs of Theorems 3.2.1 and Lemma 4.1.1.

Lemma A.3. For any two nonnegative square matrices A and B, the matriz (A+B) ts irreducible
if and only if the matric (c1 A+ c2B) is irreducible for all scalars ¢1,¢5 > 0.

Proof. Owing to the nonnegativity of the matrices A and B, (A + B);; > 0 if and only if
(c1 A 4 ¢2 B)i; > 0, whenever ¢y,c; > 0, while (A + B);; = 0 if and only if A;; = B;j = ¢1 4;5 +
c2 Bij = (c1 A+ ¢y B);; = 0 . The directed graphs G(A + B) and G(¢1 A + ¢3 B), ¢1, ¢ > 0, thus
have exactly the same topology, and the result follows by Definition A.1, |

When a nonnegative matrix is stochastic, the notion of irreducibility in the Definition A.1

is related to the probabilistic one in that every stochastic matrix can be viewed as the one-step
transition matrix of a Markov chain. In order to clarify the terminology, it is necessary to classify
the states of a Markov chain. Thus consider a finite state Markov chain on the state space S =
{815---,8n}-
Definition A.4. If in the state transition diagram of the Markov chain S there exists a path from
state s; in S to state s; in S, then the state s; is said to have access to state sj, written s; — s;.
If s; has access to s; and s; has access to s;, then s; and s; are said to communicate, written as
8; <> 85,

Implicit in Definition A.4 is that every state in .S communicates with itself, and with this
convention, the communication relation is an equivalence relation on the set of states and thus

partitions S into equivalence classes. With this in mind, the following definition is given.

Definition A.5. A state s; in S is called transient if there exists some s; # s; in S with the
property that s; — s; but s; /4 s;, i. e., s; has access to some other state which does not have

access to s;. Otherwise, the state s; is called ergodic.
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Thus, s; is ergodic if and only if s; — s; implies s; — s; for some s; # s; in §. It follows
that if one state in an equivalence class of states associated with a Markov chain is transient (resp.
ergodic), then each state in that class is transient (resp. ergodic). This leads to the next definition.
Definition A.8. A class induced by the communication relation on the set S is called transient

if it contains a transient state and ergodic otherwise.
Definition A.7. A Markov chain is called irreducible if it consists of a single ergodic class.
In view of the above definitions, the following Lemma can easily be proved.

Lemma A.8. A finite state Markov chain is irreducible if and only if the corresponding one-step
transition matriz is irreducible.

Therefore, these two concepts of irreducibility are used interchangeably in this paper. The
following notion of reachability is used repeateadly.
Definition A.9 Let U and V be subsets of the state space of a Markov chain with corresponding

one-step probability transition matriz T. The set U is reachable from the set V if there is a path
from some state in V to a state in U in the directed graph G(T') of the matriz T.

The following theorem is a basic result in the Perron-Frobenius theory of nonnegative matrices.
Theorem A.10. If A is an n X n nonnegative matriz, then

(i) The spectral radius p(A) of A is an eigenvalue of A, and

(ii) There always exists left and right eigenvectors with nonnegative components which corre-
sponds to p(A).

The invariant probability vector 7 of an n-state Markov chain with one-step probability tran-

sition matrix A is defined as the 1 X n vector © that satisfies
TA=7 |, Ten, =1

The following results investigate the existence and uniqueness of the invariant probability vector of
a finite state Markov chain.
Theorem A.11. Fuvery finite state Markov chain has an invariant probability vector.

Proof. Let the » Xx n matrix A be the state transition matrix associated with the chain. It is well

known [3] that for any n x n nonnegative matrix A, the following bounds
min{)  Ai;} < p(A) < max{)_ Ai;}
b=t b=t

hold true for its spectral radius. Since the matrix A is stochastic, each one of its rows sum to
1, whence p(A) = 1. Therefore by Theorem A.10 there exists a row vector z > 0 with z4 = z.
Normalizing z gives 7 = (ze,)~' & with 74 = 7 and me, = 1, i.e., 7 is an invariant probability

vector of the chain. |
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Although Theorem A.11 guarantees the existence of an invariant probability vector, it is not

unique in general. The next result gives the general form of an invariant probability vector.

Theorem A.13. Let S;, 1 < i < r, be the ergodic classes of a finite state Markov chain. For
each S; there is a unique invariant probability vector w(3) with the property that the entries of m (i)
corresponding to the states of S; are positive whereas all other eniries are zero. Moreover, any
invariant probability vector = of the chain can be expressed as a linear convexr combination of the

vectors w(i), 1 <i<r, i e,

W:i)\iﬂ'(i), /\,'20, Z)\izl.
i=1

Proof. See Berman and Plemnons [3, pp. 224-225].

In view of Theorem A.13, even when the Markov chain is not irreducible, if it has a single
ergodic class, then the invariant probability vector is unique with positive entries for positions cor-
responding to the ergodic class and zero entries for positions corresponding to the transient states.
Note that the ergodic classes are defined as equivalence classes induced by the communication rela-
tion as defined above, with no assumptions made on the periodicity of the Markov chain. Therefore,
in cases where there is a single ergodic class, the unique invariant probability vector will coincide

with the long-run average probability vector of the Markov chain (defined in the Cesaro sense).
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