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Abstract Matrix metalloproteinases (MMPs) degrade and
modify the extracellular matrix (ECM) as well as cell-ECM
and cell-cell contacts, facilitating detachment of epithelial
cells from the surrounding tissue. MMPs play key functions
in embryonic development and mammary gland branching
morphogenesis, but they are also upregulated in breast
cancer, where they stimulate tumorigenesis, cancer cell
invasion and metastasis. MMPs have been investigated as
potential targets for cancer therapy, but clinical trials using
broad-spectrum MMP inhibitors yielded disappointing
results, due in part to lack of specificity toward individual
MMPs and specific stages of tumor development. Epithelial-
mesenchymal transition (EMT) is a developmental process
in which epithelial cells take on the characteristics of
invasive mesenchymal cells, and activation of EMT has
been implicated in tumor progression. Recent findings have
implicated MMPs as promoters and mediators of develop-
mental and pathogenic EMT processes in the breast. In this
review, we will summarize recent studies showing how
MMPs activate EMT in mammary gland development and in
breast cancer, and how MMPs mediate breast cancer cell
motility, invasion, and EMT-driven breast cancer progres-
sion. We also suggest approaches to inhibit these MMP-
mediated malignant processes for therapeutic benefit.
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Abbreviations
EMT epithelial-mesenchymal transition
MMP matrix metalloproteinase
ECM extracellular matrix
TIMP tissue inhibitor of metalloproteinase
PEX hemopexin
TGF-β transforming growth factor-β
LRP lipoprotein receptor-related protein
WAP whey acidic protein
MMTV mouse mammary tumor virus
PyMT polyoma virus middle T-antigen

Matrix Metalloproteinases: Overview

There are 23 human MMPs (Degradome database; http://
degradome.uniovi.es) [1], including 17 soluble, secreted
enzymes and 6 membrane-associated enzymes (Fig. 1);
they differ from each other in their structural domain
architecture, in their substrate specificity, and in their
temporal and tissue specific expression patterns. MMPs
were originally named for their preferred substrates within
the extracellular matrix (ECM): collagen-cleaving MMPs
(MMP-1, -8, and -13) were designated collagenases, gelatin
(denatured collagen)-cleaving MMPs (MMP-2 and -9) were
termed gelatinases, and MMPs that degraded a broad
spectrum of ECM proteins were called stromelysins
(MMP-3, -10, and -11) or matrilysins (MMP-7). As the
MMP family grew with the discovery of additional
paralogs, including the membrane-associated MMPs, of
which MT1-MMP/MMP-14 is the founding member, a
numbering system was adopted, and MMPs are now
grouped according to their domain structure.
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MMPs are modular enzymes (Fig. 1a). The core
functional domain of every MMP is the catalytic domain,
a compact globular domain of 160–170 amino acids
featuring a highly conserved HExxHxxGxxH zinc binding
motif, responsible for chelating the catalytically essential
zinc ion at the enzyme active site [2]. The catalytic zinc and
substrate binding cleft of the catalytic domain comprise the
MMP region targeted for binding and inhibition by the

endogenous tissue inhibitors of metalloproteinases (TIMPs)
[3], and also by the majority of small-molecule, synthetic
pharmaceutical inhibitors of MMPs [4]. MMPs are pro-
duced as latent proenzymes, in which an N-terminal
prodomain of ∼80 amino acids blocks catalytic activity by
physically blocking the active site, through coordination of
a conserved cysteine residue within a PRCGxPD motif
(“the cysteine switch”) to the catalytic zinc [2, 5]. Upon
stepwise interaction with and cleavage by one or more
activating proteases [5, 6], the cleaved MMP prodomain
dissociates from the catalytic domain, releasing the active
enzyme.

Most MMPs also possess additional accessory domains
that act to modulate catalytic activity, substrate recognition,
and cellular localization [3, 7]; some accessory domains
may also confer non-catalytic functions of potential
significance for understanding MMP roles in EMT and
tumor progression. The gelatinases MMP-2 and -9 are
assisted in substrate binding of gelatin, collagens, and
laminin by three fibronectin repeats inserted into the
catalytic domain [8]. All human MMPs with the exception
of MMP-7, -23, and -26A possess a C-terminal hemopexin
(PEX) domain, a four-bladed propeller structure that is
connected to the catalytic domain by a flexible linker [9,
10]. PEX domains have been shown to mediate the binding
and unwinding of collagen triple helices by collagenases,
facilitating cleavage by the MMP catalytic domain [11–14],
as well as the recognition of other substrates including
gelatin binding by MMP-9 [15], fibrinogen binding by
MMP-2 [16], and targeting of several chemokines by
MMP-2 [17–19]. Beyond substrate recognition, PEX
domains can mediate interactions with tissue inhibitors of
metalloproteinases (TIMPs), with distinctly different results
for different MMP/TIMP pairs: proMMP-2 is targeted for
MT1-MMP-mediated activation by TIMP-2 [3, 5], while
proMMP-9, by binding to TIMP-1, is protected from
activation [20–22].

In mammary epithelial cells, specific interactions be-
tween PEX domains and integrins or other cell surface
receptors have been found to facilitate MMP activation, to
localize soluble MMPs to sites of pericellular proteolysis,
or to regulate MMP endocytosis and turnover [10]. MMP-9
docking to the hyaluronan receptor CD44 mediates proteo-
lytic activation of TGF-β and promotion of tumor invasion
and angiogenesis in a murine mammary carcinoma model
[23]. Association of the MT1-MMP PEX domain with
CD44H leads to localization of MT1-MMP at the leading
edge of migrating cells [24] and facilitates cell migration
[25]. Interaction between MT1-MMP and CD44 also
stimulated epithelial cell self-sorting in an engineered
model of mammary ductal morphogenesis; this function
did not appear to depend upon MMP catalytic activity [26].

Figure 1 MMP domain structure and protein fold. a The various
domain organizations of human MMPs are illustrated; S, signal
peptide; Pro, propeptide; CAT, catalytic domain; F, fibronectin repeats;
PEX, hemopexin domain; TM, transmembrane domain; GPI, glyco-
phosphatidylinositol membrane anchor; C, cytoplasmic domain; CA,
cysteine array; Ig, immunoglobulin-like domain. The flexible, variable
length linker or hinge region is depicted as a wavy black ribbon. b The
protein structure of the domains of a representative proMMP
(proMMP-2) is shown; the individual domains, colored as in the
cartoon above, have been separated for visual clarity. Dotted lines
indicate the coordination of prodomain cysteine to the catalytic zinc
(gray sphere), as well as the points of covalent attachment between the
catalytic domain and the prodomain, fibronectin repeats, and PEX
domain. Figure was generated with Pymol [155], using coordinates
from Protein Databank entry 1GXD [156].
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MMPs Stimulate Breast Cancer Progression

While a finely tuned array of MMPs is instrumental in
orchestrating tissue development and homeostasis, the
misregulation of MMPs is widespread in many pathological
settings and especially in cancer, where MMP overexpres-
sion contributes to tumorigenesis and tumor progression
through multiple mechanisms. MMP proteolysis serves a
path-clearing role in facilitating the movement of cells or
groups of cells through ECM [27, 28]; in this process,
cleavage of some ECM components unmasks cryptic sites,
generating fragments with new biological activities modu-
lating migration, growth, or angiogenesis [27, 28]. MMPs
also cleave cell-ECM adhesion proteins and cell-cell
junction proteins, releasing individual epithelial cells from
epithelial sheets, initiating outside-in signaling pathways
that lead to widespread changes in gene transcription
patterns, or generating soluble ectodomain fragments with
novel activities. MMP-1 cleaves and activates the protease
activated receptor-1 (PAR-1), leading to increased migra-
tion and invasion of breast cancer cells [29]. Targeting of E-
cadherin by MMP-3 or MMP-7 generates a bioactive
fragment that promotes invasion [30], and contributes to a
cascade of molecular alterations leading to EMT in
mammary epithelial cells [30, 31]. MT1-MMP processing
of αv integrin enhances breast cancer cell migration [32,
33], and MMP shedding of the ectodomain of P-cadherin
facilitates breast cancer cell invasion [34]. MMPs can also
promote breast tumor progression by targeting soluble
molecules. Examples include protease activation cascades
(activation of MMP-9 by MMP-3 [22], activation of MMP-
2 by MT1-MMP [35]), the activation of latent TGF-β by
MMP-2 and MMP-9 [23], and the N-terminal truncation of
interleukin-8 (IL-8) by MMP-9, increasing its neutrophil-
activating potential by an order of magnitude [36].

Transgenic or knockout mouse models have been used to
establish specific effects of individual MMPs on mammary
tumor development (reviewed in [37]). MMP-3 over-
expression driven by the whey acidic protein (WAP)
promoter, most active in mammary gland epithelial cells
from mid-pregnancy and during lactation, led to widespread
premalignant alterations and spontaneous tumor formation
[38]. Similarly, overexpression of MMP-7 under control of
the mouse mammary tumor virus (MMTV) promoter,
which is active during puberty and greatly enhanced during
pregnancy, resulted in spontaneous formation of premalig-
nant mammary hyperplasias, and accelerated tumor forma-
tion in bitransgenic MMTV-MMP-7/neu mice [39].
MMTV-driven overexpression of MT1-MMP also led to
premalignant mammary gland abnormalities and spontane-
ous adenocarcinoma [40]. In studies with MMP-11 knock-
out mice subjected to 7,12-dimethylbenzanthracene

(DMBA)-induced carcinogenesis, MMP-11 null mice de-
veloped fewer tumors [41]; MMP-11 null mice also
developed fewer spontaneous tumors in the mammary
gland cancer prone MMTV-ras model [42]. One clear
conclusion from these studies is that some MMPs can act as
tumor promoters in mammary carcinogenesis, impacting
neoplastic risk from the very earliest stages of premalignant
change [38, 43].

MMPs can also modulate later stages of cancer progres-
sion in genetic models of breast cancer. For example,
knockout of MMP-9 in the MMTV-polyoma virus middle
T-antigen (PyMT or PyVT) multistage mammary tumori-
genesis model resulted in an 80% reduction in lung
metastatic burden, indicating the importance of MMP-9 in
metastasis and angiogenesis in this model [44]. In another
study employing the MMTV-PyMT tumorigenesis model,
MT1-MMP null mammary glands transplanted into synge-
neic mice developed tumors with a markedly reduced
capacity to metastasize to the lungs, compared with an
MT1-MMP sufficient control group, demonstrating a role
for tumor MT1-MMP in the metastatic process [45]. In a
study investigating the roles of MMPs in recruitment of
stromal bone-resorbing osteoclasts to breast-to-bone metas-
tases, mammary tumor cells implanted into the bones of
MMP-7 null mice formed smaller, slower growing tumors
with recruitment of fewer osteoclasts and less osteolysis,
implicating MMP-7 in this aspect of metastatic progression
[46].

Of course, MMPs do not act as universal tumor
promoters under all circumstances, and the effects observed
can also vary depending upon the model and upon the
genetic background of the mice [43, 44]. In contrast with
the protumorigenic effects of MMP-3 in the WAP promoter
model [38], MMTV-driven MMP-3 expression in a differ-
ent strain of mice did not lead to spontaneous tumorigen-
esis, and in a DMBA chemical carcinogenesis protocol,
MMTV-MMP-e mice were reported to have fewer mam-
mary gland tumors and more apoptotic cells [43, 47]. In
contrast with the tumor promoting effect of MT1-MMP
in mice with mammary-directed overexpression of this
protease [40], MT1-MMP had a growth suppressing effect
in the MMTV-PyMT genetically induced model when
tumorigenesis in MT1-MMP null versus MT1-MMP
sufficient mammary glands were compared [45]. For
MMP-9 promotion of breast-to-lung metastasis as well,
the genetic background of the mice was a determining
factor, as C57BL/6 mice showed MMP-9 dependent
promotion of metastatic growth, whereas no significant
differences were observed between wt and MMP-9 null
mice of the FVB/N background [44]. These observations
underscore the complexity of the process of tumor
development, in which MMPs must interact with many
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other variables; it has been suggested that as in mice,
genetic modifiers present in human patient populations may
distinguish subgroups likely to benefit from therapeutic
intervention in MMP-mediated processes [44].

MMPs and Physiological EMT

EMT is a process integral to the formation of many tissues
and organs during development [48–51]. Activation of
developmental EMT has been found to follow a defined
sequence of events: morphogenesis of the epithelial tissue
and specification of the cells that will undergo EMT,
disruption or degradation of the basement membrane,
breakdown of the epithelial tissue structure followed by
ingression of the separated cells, and differentiation to the
motile mesenchymal phenotype [49]. While MMPs have
long been suspected to play roles in many different EMT-
related tissue morphogenesis and cell migration processes,
direct evidence of MMP involvement has been best
characterized for neural crest delamination, endocardial
cushion invasion, and mammary gland branching morpho-
genesis. EMT of the neural crest during embryogenesis
releases mesenchymal cells that migrate through the body,
giving rise to a wide variety of tissue types, including glial
and neuronal cells, adrenal glandular tissues, melanocytes,
and skeletal and connective tissues [49, 52] (Fig. 2a).
MMP-2 becomes activated in the neural cells as they are
undergoing EMT, but inactivated as the cells begin to
disperse [53–56]; blocking MMP-2 inhibits EMT without
affecting the migration of the detached neural crest cells
[53]. EMT of embryonic endocardial cells into the
endocardial cushion creates precursors of the valvular and

septal structures (Fig. 2b) [57], and also is dependent upon
expression of MMP-2, as treatment with MMP inhibitors
blocks mesenchyme formation [58, 59]. Studies using
endocardial cushion explants grown on collagen gels
revealed that MMP-2-dependent EMT involves degradation
of collagen-IV [58], and requires specific association of
MMP-2 with integrin αvβ3 [60].

Unlike many other tissues, the majority of mammary
gland development occurs postnatally. During puberty, the
rudimentary mammary gland grows into the fat pad through
ductal extension and branching morphogenesis [61–63].
Extension of the ducts into the fat pad occurs at the
endbuds, invasive structures that express high levels of
EMT-associated transcription factors, including Snail and
Twist [64] as well as MMP-2 and MT1-MMP [65].
Mammary branching morphogenesis occurs by two distinct
mechanisms: primary branching through endbud bifurca-
tion, and secondary branching, a process strikingly similar
to developmental EMT, in which differentiated, ductal
epithelium dedifferentiates, detaches from the adjacent
epithelial cells, penetrates the basement membrane, and
invades into the surrounding tissue (Fig. 2c). MMP-3 is a
key mediator of secondary branch formation, as transgenic
mice lacking MMP-3 expression have significantly reduced
secondary branching, while the WAP-MMP-3 mice have
increased secondary branching and ductal complexity [65,
66]. Upregulation of MMP-3 has also been implicated in
the increased side-branching observed in transgenic mice in
which retinoic acid signaling pathways are inhibited [67].
The mechanism by which MMP-3 induces branching
morphogenesis has been investigated in 3D culture models
in which mouse mammary epithelial cell clusters are grown
in collagen I gels. These studies have shown that

Figure 2 MMP-induced EMT
in development. a. Neural crest
delamination is facilitated by
expression of MMP-2 in the
cells undergoing EMT. b. EMT
of endocardial cushions during
early stages of heart develop-
ment depends upon expression
of MMP-2 in the endocardial
cells. c. Secondary (2°) branch-
ing of the mammary ductal tree
involves breakdown of epithelial
structure, acquisition of invasive
characteristics, and degradation
of the basement membrane,
processes shown to be depen-
dent upon MMP-3, which is
produced locally in response to
morphogenic signals by the sur-
rounding stromal cells.
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epimorphin, a stromal cell-produced morphogen, induces
expression of MMP-3, and that this is both necessary and
sufficient for activation of the branching process [68–71].
Activation of the fibroblast growth receptor signaling
pathway, which has also been implicated in mammary
branching morphogenesis, also induced MMP-3 expression
and branch initiation in mammary epithelial cells grown in
3D collagen [72].

MMPs and EMT in Breast Cancer

MMPs have been associated with EMT in cancer progres-
sion through three distinct mechanisms: (a) elevated levels
of MMPs in the tumor microenvironment can directly
induce EMT in epithelial cells, (b) cancer cells that undergo
EMT can produce more MMPs, facilitating cell invasion
and metastasis, and (c) EMT can generate activated stromal-
like cells that drive cancer progression via further MMP
production. The most dramatic of these is MMP-dependent
activation of the EMT program (Fig. 3a), seen in a variety
of epithelial cell types, including kidney [73–76], ovary
[77], lens [78], lung [79], and prostate [80], although
MMP-induced EMT has been best characterized in
mammary epithelial cells. Tumors that developed in the
WAP-MMP-3 mice showed mesenchymal characteristics
[38, 81, 82], and dissection of this process revealed that
exposure of cultured mouse mammary epithelial cells to
MMP-3 directly activates EMT [31, 83]. MMP-3 mediates
these effects by stimulating increased expression of Rac1b
[84], a constitutively activated splice variant of Rac1 found
in breast and colorectal cancer cells [85–89], which in turn
triggers EMT by increasing levels of cellular reactive

oxygen species [84, 90]. While the process by which
MMP-3 initiates these effects has not been completely
defined, MMP-3 has been shown to cleave E-cadherin,
promoting dissolution of epithelial cells and releasing a
bioactive fragment of E-cadherin that induces cell motility
[30, 31]. It is likely that many studies in which MMPs have
been seen to stimulate cancer cell motility and invasion,
although not directly investigating these phenomena in the
context of EMT, have in fact been observing the cellular
consequences of an incomplete activation of the EMT
program. Unlike developmental EMT, where MMPs are a
component of an organized morphogenic program, the
chaotic andMMP-enriched tumor microenvironment induces
an uncoordinated and incomplete EMT. As a consequence,
these EMT-activated cells may acquire significant tumor-
promoting abilities even as they retain many of their original
characteristics, making it difficult to distinguish them from
the original tumor mass from which they are derived.

Breast cancer cells which have undergone EMT also
show increased expression of MMPs, facilitating their
invasive, metastatic characteristics (Fig. 3b; as this topic
was comprehensively reviewed in 2005 [91], only high-
lights and more recent studies will be covered here). Early
investigations revealed that breast cancer cell lines express-
ing mesenchymal markers often expressed MMPs, and that
suppression of these MMPs blocked their invasive and
migratory characteristics [92–94]. Subsequent investiga-
tions have identified MMP upregulation associated with a
variety of EMT processes, although the specific MMPs
induced seem to depend upon the nature of the EMT-
inducing agent and the model system used. Transcriptional
profiling studies of Ras-transformed mouse mammary
epithelial cells induced to undergo EMT by treatment with

Figure 3 MMPs facilitate
EMT-associated tumor progres-
sion. a. Exposure of epithelial
cells to MMPs can directly
induce EMT. b. Increased ex-
pression of MMPs in cells
which have undergone EMT
facilitates cancer cell invasion.
c. EMT can produce nonmalig-
nant stromal cells which drive
tumor initiation and progression
through production of MMPs.
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TGFβ revealed MMP-2, MMP-12, and MMP-13 among
the most upregulated transcripts [95, 96]. Culture of
MCF10A cells at low density activated EMT-like changes
associated with increased expression of MT1-MMP [97,
98], while induction of EMT in MCF10A cells by exposure
to TGFβ or expression of ErbB2 stimulated expression of
MMP-2 and MMP-9, respectively [99, 100]. Decreased
expression of singleminded-2s in mouse mammary epithe-
lial cells or in MCF-7 breast cancer cells activated EMT and
expression of MMP-2 [101], while expression of Snail in
MCF-7 cells induced an MT1-MMP and MT2-MMP-
dependent invasion program [102]. Activation of EMT in
NMuMg cells by treatment with hydrogen peroxide led to
activation of MMP-3, MMP-10, and MMP-13 [103], while
induction of EMT by the Abl tyrosine kinase in the same
cell line led to MMP-3 and MMP-9 expression [104]. As
breast cancer progression is a complex process, it may be
unsurprising that distinct profiles of MMPs are activated in
systems that model different breast cancer stages and
disease subtypes.

EMT of cancer cells may produce stromal-like deriva-
tives that, while not intrinsically malignant, act to facilitate
tumor progression through production of MMPs (Fig. 3c).
Myofibroblasts are principal components of the reactive
stroma surrounding breast cancers, and these cells have
been found to have powerful tumor-promoting character-
istics [105–108]. While myofibroblasts can be produced
through activation of stromal fibroblasts or circulating
fibrocytes, recent studies using mouse models have shown
that myofibroblasts can be derived from epithelial cells by
EMT [107, 109–113]. EMT functions in human breast
cancer as well: stromal-like and myofibroblast-like cells
surrounding breast tumors have been found to be derived
from the epithelial cancer cells [107, 114]. It is further
known that mammographic density, an established risk
factor for and potential precursor of breast cancer [115,
116], is associated with fibroblast accumulation [117–122].
Studies of MMP localization in human tumors have shown
that stromal fibroblasts are a major contributor to the
production of many MMPs [123–125], and tumor progres-
sion and poor prognosis is associated with stromal
expression of MMP-1, MMP-7, and MMP-12 [126], and
with fibroblast-specific production of MMP-9, MMP-11,
and MT1-MMP [124, 125]. Further defining which MMPs
are produced by breast cancer-associated myofibroblasts,
and how these MMPs act in tumor progression, will
provide insight into how EMT-driven tumor progression
can best be targeted therapeutically.

Unfortunately, there have been very few studies that
assess histological correlates of EMT with expression of
MMPs in human breast tissues. Studies with metaplastic
breast carcinoma, a relatively uncommon subtype for which
ongoing EMT processes are evident, have found that

stromelysin-3/MMP-11 expression in epithelial cells is a
prognostic factor for disease progression—patients who
expressed more MMP-11 in epithelial carcinoma cells had
significantly shorter disease-free survival [127]. More
recently, profiling studies of metaplastic breast carcinoma
have found that altered expression of MMPs and TIMPS
were found in patients with more rapid disease progression
[128]. However, a direct connection between MMPs and
EMT that can be assessed by histological characteristics
awaits future research.

Therapeutic Targeting of MMP-promoted EMT

An obvious point for intervention in MMP-induced or
mediated EMT is the catalytic inhibition of MMPs
themselves. Unfortunately, clinical trials of first- and
second-generation small molecule MMP-inhibiting drugs
in breast cancer and other cancers proved disappointing
[129]. A phase III trial of the MMP inhibitor marimastat in
patients with metastatic breast cancer found no therapeutic
benefit [130], while phase II trials of marimastat and
rebimastat in patients with early-stage breast cancer
concluded that large adjuvant trials with these agents were
not feasible due to musculoskeletal toxicity and failure to
achieve therapeutic plasma levels [131, 132]. Many of the
problems with the MMP inhibitors tested to date appear to
stem in large part from a lack of specificity; the drugs
employed simply target too many enzymes. This is a
critical problem, because some MMPs appear to protect
against tumor progression at certain stages of breast cancer
development, and inhibition of these MMPs at the wrong
time can lead to increased tumor aggressiveness [27, 133–
135]. For example, high levels of MMP-8 have been shown
to suppress breast cancer metastasis [136], potentially by
increasing tumor cell adhesion to ECM and diminishing
cellular invasive potential [137]; significantly, ribozyme-
mediated knockdown of MMP-8 in a nonmetastatic, high
MMP-8 breast cancer cell line conferred metastatic compe-
tence [136]. Thus, pharmacological inhibition of MMP-
8 along with invasion- and metastasis-promoting MMPs
would be anticipated to reduce or limit the potential benefit
of the therapy.

As another consequence of poor specificity, clinical trials
of MMP inhibitors were plagued by the serious side effect
of musculoskeletal syndrome (MSS). This dose-limiting
toxicity frequently resulted in failure to achieve targeted
plasma levels, and in patients withdrawing from treatment,
further compromising the statistical significance of trial
outcomes [138]. The specific molecular target responsible
for these side effects has not been conclusively identified;
early candidates included MMP-1 and the ADAM family of
metalloproteases, but synthetic inhibitors developed to
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minimize inhibition of these targets still produced MSS
symptoms [138]. Remaining candidate mediators of MSS
include MT1-MMP [135], metalloproteases outside of the
MMP and ADAM families [139], or nonprotease metal-
loproteins [138]. To minimize off-target effects, well-
tolerated MMP-directed therapeutics will need to achieve
selectivity for the MMP family in preference to other
metalloenzymes, as well as the ability to distinguish among
MMPs.

The key challenges yet to be surmounted to bring MMP
inhibitors to the clinic as an approach to combat MMP-
mediated EMT and resulting cancer progression are (1)
identification of the individual MMP targets implicated as
primary drivers of EMT-promoted malignancy at specific
points in tumor progression, and (2) development of
therapeutic molecules capable of targeting these cancer-
driving MMPs with exquisite selectivity. An attempt has
already been made to synthesize existing data from current
models into a master list of MMP drug targets versus “anti-
targets”, for which pharmacological intervention would be
presumed counterproductive [135]. However, the data
currently available are insufficient to support definitive
classification of most MMPs, particularly as questions
remain regarding the extent to which various animal cancer
models fully and faithfully reproduce the functional
diversity of individual MMPs in cancer progression in
humans. In particular, MMP-3, MMP-9, and MT1-MMP
have all been suggested as drug anti-targets due to reports
of antitumor effects associated with these MMPs in some
model systems [135]; yet, the bulk of the literature supports
the view that these are among the MMPs most directly
implicated in promoting EMT, motility, invasion, and
metastasis in cancer models. Rather than eliminating these
MMPs from the drug target lineup, it would instead be
prudent to cautiously pursue them, keeping in mind that
further basic research into their functions in tumor
development is necessary, and that their effective targeting
for therapeutic benefit will require careful definition of the
patient populations most likely to benefit, with regard to
disease stage, pathological characteristics, and potential
genetic modifiers. As an example of stage-specific consid-
erations of potential importance in targeting MMP-induced
EMT, it has been observed that MMP-3-induced EMT of
breast epithelial cells is initially reversible upon withdrawal
of the MMP, but eventually becomes permanent [31, 38],
suggesting that therapeutic intervention with MMP inhib-
itors may be most effective at early stages of breast cancer
development.

In the arena of more highly selective small molecule
MMP inhibitors, slow progress is being made. These
synthetic compounds typically feature a zinc-chelating
group such as hydroxamate derivitized with peptidic or
nonpeptidic groups designed to mimic a peptide substrate;

they target the MMP active site zinc and substrate binding
site [4, 140, 141]. Structure-based design of selective
inhibitors has been hampered by the close structural
homology of active sites and overlapping substrate specif-
icities among the MMPs, and by the elastic and flexible
nature of the MMP active site, which further complicates
computational drug design even when high resolution crystal
structures are available [141–144]. Current approaches to
small molecule MMP inhibitors include optimization of
compounds based on an array of different zinc-binding
groups to yield more selective inhibitors toward a variety
of MMPs [4, 145], as well as the development of non-
zinc-binding inhibitors that selectively target unique
aspects of the MMP-13 active site [145]. A less conven-
tional approach has pursued development of irreversible
mechanism-based inhibitors, selective for gelatinases
MMP-2 and MMP-9, that covalently modify the catalytic
glutamate residue of the MMP active site [145, 146]. In
yet another approach, several groups have attempted to
exploit the selective substrate binding exosites present on
MMP accessory domains to develop selective allosteric
inhibitors of MMPs; while a promising concept, this
approach has yet to yield highly potent and selective drug
leads [7].

An alternative to small molecule MMP inhibitors is
presented by macromolecular protein therapeutics. Promis-
ing candidates for development include engineered variants
of the natural MMP-inhibiting TIMPs, and MMP-targeting
therapeutic antibodies. TIMPs offer the advantage of an
extensive contact surface ideally evolved for high affinity
interaction with MMP targets. Although the four native
TIMPs possess only a limited ability to differentiate
between the many members of the MMP family, mutational
studies have established the potential for modulating
binding specificity by alteration of key residues at the
MMP-TIMP interface [147–152]. A recombinant triple
mutant variant of the TIMP-1N-terminal domain, optimized
for selectivity to MT1-MMP, was recently found to potently
block MT1-MMP collagenase activity and CD44 shedding
in breast cancer and fibrosarcoma cell culture models [153].
In another approach to selective MMP inhibition, several
function blocking antibodies have been reported that
selectively target individual MMPs [7]. In one recent and
promising example, phage display technology was used to
identify an MT1-MMP-selective human monoclonal anti-
body that blocked the proteolytic activity of the enzyme;
this protein therapeutic was found to slow tumor progres-
sion and metastasis in an orthotopic xenograft model of
breast cancer [154].

Thus, the challenges are clear: while some MMPs
facilitate breast cancer development and could potentially
be targeted for therapeutic benefit, others are essential for
basic physiological processes, interference with which can
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have serious negative consequences. We need methods to
target specific MMPs, as well as a much better understand-
ing of which MMPs to target and when. Furthermore, while
much has been learned about how to target the catalytic
activities of MMPs, recent research has revealed that their
noncatalytic accessory functions must also be considered.
The efforts of chemists, biologists, bioengineers, and
physicians must now be combined to discover selective
drugs and reagents, to create the most informative exper-
imental models in which to dissect the roles of MMPs in
EMT-driven breast cancer progression, to develop and test
optimal intervention strategies, and to effect the translation
of these therapies into the clinic.
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