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Abstract

Members of the matrix metalloproteinase (MMP) family have been identified as poor prognosis 

markers for breast cancer patients and as drivers of many facets of the tumor phenotype in 

experimental models. Early enthusiasm for MMPs as therapeutic targets was tempered following 

disappointing clinical trials that utilized broad spectrum, small molecule catalytic site inhibitors. 

However, subsequent research has continued to define key roles for MMPs as breast cancer 

promoters, to elucidate the complex roles that that these proteins play in breast cancer 

development and progression, and to identify how these roles are linked to specific and unique 

biochemical features of individual members of the MMP family. Here, we provide an overview of 

the structural features of the MMPs, then discuss clinical studies identifying which MMP family 

members are linked with breast cancer development and new experimental studies that reveal how 

these specific MMPs may play unique roles in the breast cancer microenvironment. We conclude 

with a discussion of the most promising avenues for development of therapeutic agents capable of 

targeting the tumor-promoting properties of MMPs.
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2. INTRODUCTION

Breast cancer is the leading cause of cancer death in women worldwide (1). While tumors 

caught at an early, localized stage are effectively treated by neoadjuvant chemotherapy and 

surgery with excellent long term prognosis, regional lymph node involvement is associated 

with more frequent relapse (2), and distant metastasis has much poorer survival (3). Studies 

of the pathological processes involved in tumor progression and metastasis revealed matrix 

metalloproteinases (MMPs) as prominent molecules involved in shaping the tumor 

microenvironment and driving cancer progression and metastasis (4–6). These proteases 

would seem to offer an obvious therapeutic target, and yet in clinical trials, the broad 
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spectrum MMP inhibitor marimastat failed to extend progression-free survival of metastatic 

breast cancer patients (7). Recent studies illuminating the complexities of this family of 

proteases, with respect to structure, molecular function, and mechanisms of involvement in 

tumor progression, offer new insights into context and approaches through which they might 

be more effectively targeted in cancer.

3. THE MATRIX METALLOPROTEINASE FAMILY

3.1. Domain structure of the MMP family

The MMPs form a large family of multi-domain zinc-dependent endopeptidases distributed 

throughout all kingdoms except protozoa; in humans, there are 23 MMPs (MEROPS 

database: http://merops.sanger.ac.uk/) (8). These enzymes each possess a signal peptide to 

direct trafficking through the secretory pathway, a prodomain that functions as an 

intramolecular inhibitor to maintain the zymogen form of the enzyme in an inactive state, 

and a well-conserved compact catalytic domain (Figure 1A). While this most simplified 

example of domain organization can be found in MMP-7 and -26, other MMPs possess 

additional accessory domains that can function to localize MMPs to particular membrane 

structures or multiprotein complexes, and can mediate specificity toward particular protein 

substrates. While most MMPs are soluble extracellular proteins, MMP-14, -15, -16, and -24 

are type I membrane proteins directly tethered through C-terminal transmembrane domains, 

MMP-17 and -25 are membrane localized via C-terminal glycophosphatidylinositol (GPI) 

anchors, and MMP-23 via an N-terminal type II transmembrane domain. The hemopexin-

like (PEX) domains possessed by many MMPs, connected to the catalytic domain by a 

flexible linker of variable length, can function indirectly in localizing MMPs to the 

membrane via protein-protein interactions with cell-surface receptors such as integrins (9–

11). The versatile PEX adaptor modules also mediate interactions including dimerization 

and substrate recognition; as the PEX domains are more divergent in sequence and function 

than catalytic domains, they contribute to distinct patterns of localization and substrate 

specificity (9, 12). More specialized domain modules include three fibronectin type II 

repeats that in MMP-2 and MMP-9 assist in recognition of a subset of extracellular matrix 

substrates including elastin and denatured collagen (13–16). In MMP-23, a unique cysteine 

array domain with homology to potassium channel blocking toxins may possess ion 

channel-modulatory activity (17), while the adjacent immunoglobulin-like domain may 

mediate protein-protein interactions involved in localization or substrate recognition, similar 

to the PEX domain of other MMPs (18).

3.2. Structural determinants of MMP activity and specificity

The MMP catalytic domain possesses key features characteristic of the larger metzincin clan 

of metallopeptidases, including a conserved HExxHxxGxxH motif which coordinates the 

catalytic zinc ion. The catalytic mechanism of proteolysis involves activation of a water 

molecule by the catalytic zinc and the Glu residue within the zinc binding motif for 

nucleophilic attack on the scissile peptide bond (19, 20). In the zymogen form, access to the 

active site cleft is blocked by the prodomain (Figure 1B), which in all MMPs except 

MMP-26 is held in place by a thiol-zinc interaction involving Cys of a conserved PRCGxPD 

“cysteine switch” motif. This coordination is disrupted upon interaction with and cleavage 
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by an activating protease (20, 21). MMP-26 is also activated proteolytically, although its 

zymogen latency is not well understood since it possesses a mutated and nonfunctional 

cysteine switch motif (22). Some of the MMPs, including all of the membrane-type MMPs, 

are proteolytically activated by furin in the cellular secretory pathway, while others are 

activated extracellularly by serine proteases or other MMPs (20, 23). Proteolytic activation 

of an MMP enables dissociation of the prodomain from the catalytic domain, exposing the 

active site cleft and allowing MMP association with protein substrates.

The catalytic domain of active MMPs features a broad, shallow substrate binding cleft 

capable of accommodating an extended peptide segment of a substrate, positioning a 

particular peptide bond for cleavage. Binding subsites within the catalytic cleft confer a 

degree of substrate sequence specificity, the most important of these being the S1′ subsite, 

responsible for recognition of the P1′ residue proximal to the cleavage site in the direction of 

the substrate protein C-terminus (20). However, recent structural and biochemical 

investigations have revealed additional determinants of specificity located distant from the 

catalytic site, including exosites on the surface of the catalytic domain itself in addition to 

those on adjacent accessory domains (16, 24–27). Intriguingly, separate substrate 

recognition sites on the catalytic and hemopexin domains can work cooperatively to 

orchestrate proteolysis of specific substrates. This has been illustrated for collagenolysis by 

MMP-1, where reorientation of the catalytic and PEX domains relative to each other after 

substrate binding results in a deformation of the collagen helical structure that is required for 

proteolysis to proceed (28, 29). Extensive interdomain flexibility has been documented for 

MMP-9 and MMP-12 as well as MMP-1, and is likely to be a general property of the MMP 

family (30–32). It may be that cooperative motions and reorientation of domains can 

facilitate MMP proteolysis of other highly structured substrates. Interdomain flexibility may 

also be important for other MMP-specific functions; for example, the very long and flexible 

linker of MMP-9 may enable cell surface tethering by the hemopexin domain while allowing 

the catalytic domain to access complex substrate networks in the pericellular environment 

(32). Importantly, ligands that bind to exosites, blocking proteolysis of specific substrates or 

allosterically inhibiting MMP activity, can present novel avenues for pharmacological 

targeting of MMPs, as will be considered further in section 6. Therapeutic approaches 

targeting MMPs.

4. MMPS IN BREAST CANCER AND THEIR CLINICAL SIGNIFICANCE

4.1. MMPs associated with poor prognosis in breast cancer

A subset of the MMPs has been found to be upregulated in breast cancers in association with 

poor outcome. At the level of transcription, analyses of large microarray patient datasets 

have identified MMP-1, -9, -12, -14, and -15 as predictive of adverse outcome in one dataset 

comprised of primary tumors from 295 patients (33, 34), and MMP-9, -11, and -15 as 

associated with poor survival in another dataset of primary tumors from 1500 patients (35, 

36). Neither of these studies identified associations of any MMPs with positive outcomes. In 

a more focused study examining expression of MMP-2 and -14 by mRNA in situ 

hybridization in 539 breast cancers, high MMP-14 expression alone predicted significantly 

shorter overall survival when adjusted for tumor size and lymph node involvement (37). 
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Gene expression in tumors of several MMPs has been incorporated into clinical prognostic 

tests. MMP-9 is one of 70 genes in the Rosetta poor prognosis signature for breast cancer 

patients (38), the basis for the clinically implemented Mammaprint prognostic assay 

(Agendia Inc., Irvine, CA). MMP-11 is included in a 21 gene signature originally developed 

to predict recurrence of tamoxifen-treated node-negative breast cancer (39), implemented as 

the Oncotype DX assay (Genomic Health Inc., Redwood City, CA). MMP-11 is also one of 

50 genes in the PAM50 gene set used as a predictor of breast cancer intrinsic subtypes and 

risk of recurrence (40). Interestingly, while many MMPs are most strongly upregulated in 

association with high grade or advanced invasive cancers, a global gene analysis study 

identified MMP-1 as a marker predictive of progression to cancer in atypical ductal 

hyperplasia, a precancerous breast lesion (41). These data suggest that changes in MMP 

expression can precede and contribute to the development of breast cancer.

4.2. Prognostic implications are linked to the cell type expressing MMPs

One limitation of studies focusing on gene expression is that transcript abundance may not 

fully reflect levels of the protein that is responsible for biological activity. Staining tumor 

specimens for MMPs by immunohistochemistry (IHC) gives a more direct readout of 

protein levels, although this approach may also detect latent zymogen and/or or inhibited 

enzyme complexes in addition to active MMPs, depending on the antibodies employed. An 

additional advantage of IHC is that it can yield spatial information to distinguish, for 

example, among MMPs expressed by stromal versus tumor cells, or at the invasive front 

versus within the central tumor mass. In a particularly comprehensive study, IHC staining of 

MMP-1, -2, -7, -9, -11, -13, and -14 along with tissue inhibitors of metalloproteinases 

(TIMPs) was quantified in 131 invasive ductal breast tumors, and association with 5-year 

risk of relapse examined (42). Among MMPs, this study found that total immunostaining 

scores for MMP-9 and -11 were significantly associated with shorter relapse-free survival. 

Additionally, MMP-9 staining of tumor cells, stromal fibroblasts, and mononuclear 

inflammatory cells were each individually prognostic of shorter relapse-free survival, as 

were fibroblast expression of MMP-1, fibroblast or mononuclear inflammatory cell 

expression of MMP-7, -11, or -13, or mononuclear inflammatory cell expression of 

MMP-14 (42). Further analyses of this data set have demonstrated that coexpression of 

multiple MMPs by tumor-associated fibroblasts and by mononuclear inflammatory cells can 

distinguish groups of patients with increased risk of distant metastasis (43, 44). While other 

studies have for the most part corroborated these findings, there are some notable 

exceptions. For example, a study of 125 patients found high MMP-1 expression to be 

prognostic of poor cancer specific survival; however, in this study it was MMP-1 expression 

by tumor cells rather than stromal cells that showed significant association with outcome 

(45). In another study of 263 patients, high MMP-13 expression by tumor cells and stromal 

fibroblasts were both significantly associated with poorer overall survival (46). One of the 

most extensively studied MMPs implicated in breast cancer is MMP-9. One study of 421 

patients found high MMP-9 expression in stromal cells to be prognostic for poorer 

recurrence-free survival and breast cancer specific survival, while MMP-9 expression in 

tumor cells was associated with smaller tumors and better survival outcomes in this cohort 

(47). A separate study examining MMP-9 and -14 in 175 breast cancers found stromal 

MMP-9 to be significantly associated with poor relapse-free survival and overall survival 
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(48). Yet another study of 270 node-negative breast cancers evaluated MMP-2 and -9 

staining by IHC, finding both to be expressed primarily by tumor cells, and both to be 

prognostic for shorter relapse-free survival (49). MMP-9 is most highly expressed in tumors 

of the basal-like molecular subtype of breast cancer, most of which are triple negative for 

estrogen receptor, progesterone receptor, and HER2 (50, 51). Notably, high MMP-9 

expression (along with MMP-11) was found to be significantly associated with progression 

to distant metastasis specifically in the subset of basal-like breast cancers (52), and to be 

significantly associated with shorter progression-free survival as well as overall survival in 

another cohort of triple-negative breast cancer patients (53). The differences in observed 

endpoints for the studies examining tumor cell-expressing MMP-9 may be due to use of 

different antibodies and histological classifications, where the more recent studies may 

reflect staining improvements, as well as differences in the cohort populations.

4.3. Circulating MMPs as tumor biomarkers

Beyond viewing MMPs as tissue biomarkers, for the secreted MMPs and particularly 

MMP-2 and -9, many studies have examined enzyme levels in circulation as potential 

prognostic serum biomarkers in breast cancer. MMP-2 and -9 activity in serum or plasma, 

measured via quantitative gelatin zymography, has shown potential for discrimination 

among breast cancer subclassifications of varying risk (54, 55), for prediction of lymph node 

metastasis (56), and for assessment of response to therapy in breast cancer patients (57). 

Some studies have shown measurement of MMP-9 protein in serum by ELISA (56, 58–60) 

or by Luminex multiplexed protein assays (61, 62) to provide an effective alternative 

measure of similar prognostic value, and high serum MMP-2 measured by ELISA has also 

been associated with poor prognosis (63, 64). By contrast, one recent large study of 465 

breast cancer patients specifically examining the concentration of MMP-9/TIMP-1 

complexes in plasma by ELISA and by in-solution proximity ligation assay found no 

correlation of this complex with disease-free survival (65). It is worth noting that many 

studies have implicated high levels of TIMPs as well as MMPs, both in tumor tissues and in 

serum, as associated with poor prognosis. Although this is counterintuitive when considering 

their function in quenching MMP activity, associations of TIMPs with poor outcome may 

relate to MMP-independent signaling functions that have been ascribed to TIMPs (66–68).

5. TUMORIGENIC PROCESSES ACTIVATED BY MMPS IN BREAST CANCER

MMPs can directly facilitate cancer progression by degrading the basement membrane, 

allowing cancer cells to invade into the surrounding stroma, but MMPs can also act directly 

on the tumor cells, releasing factors that promote growth or suppress apoptosis (69). 

Imbalances in MMPs activate cellular processes that cause DNA damage and stimulate 

genomic instability (70). MMPs play critical roles in the tumor microenvironment: 

providing nutrients and oxygen to the growing tumor as well as avenues for metastasis 

through MMP-mediated blood and lymph vessel formation, generating tissue disruptive 

fibrotic stroma through MMP-induced activation of stromal fibroblasts, and stimulation of 

tumor-promoting metabolic switches by action of MMPs on adipocytes (4). Finally, MMPs 

can directly induce phenotypic changes associated with the epithelial-mesenchymal 

transition (EMT), a developmental process that becomes activated during tumor progression 
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(6, 71). Here, we will describe how MMPs facilitate these activities, emphasizing some of 

the most recent findings in this area.

5.1. MMPs promote tumor growth by regulating proliferation and apoptosis

It is almost axiomatic that tumor expansion requires a combination of increased proliferation 

and decreased apoptosis. One of the most well-studied regulators of cellular proliferation 

and apoptosis is TGFβ, which can inhibit cell cycle progression in nonmalignant normal 

cells and early malignant tumor cells, but which can also stimulate proliferation through 

poorly understood processes in more progressed cancer cells; TGFβ can also inhibit 

apoptosis in a variety of cell types (72). Most TGFβ is produced as an inactive complex; 

cleavage of this complex by MMPs is an important mechanism for release of the active 

cytokine (73–75). MMPs (and members of the ADAM protein family of related 

metalloproteinases) can activate the epidermal growth factor (EGF) receptor through release 

of cell membrane-associated ligands, such as HB-EGF, TGFβ, and amphiregulin (4, 69). 

Studies more than a decade ago revealed that MMPs could stimulate resistance to 

chemotherapeutics and drive tumor progression through proteolytic inactivation of the cell 

death receptor Fas and consequent inhibition of the intrinsic apoptosis pathway (76, 77); 

blocking Fas cleavage by MMPs is a potential avenue for therapeutic intervention (78).

5.2. Stromal MMPs create a tumor-promoting microenvironment

MMPs have been implicated in tumor angiogenesis, the penetration of the tumor by new 

vessels sprouting from existing ones (4, 79). Release of heparan sulphate-sequestered 

vascular endothelial growth factor (VEGF) by MMP-9 triggers the angiogenic switch in 

pancreatic and colorectal cancer models (80, 81); in these models, the tumor-promoting 

MMP-9 was provided by circulating macrophages and neutrophils. MMP-14 and MMP-2 

have been implicated in vasculogenic mimicry (82), a process in which blood and nutrients 

can reach deep into the tumor through channels that link to new vessels closer to the tumor 

surface (83). Macrophage-derived MMP-9 was also found to be specifically required for 

induction of vasculogenesis in animal models, the production of new vessels from 

progenitor cells derived from the bone marrow (84).

MMPs can also affect the tumor microenvironment by stimulating the development of 

activated stromal cells. Fibrosis, the excess deposition of collagen and fibroblast 

proliferation that is associated with most types of cancer, is largely the product of 

myofibroblasts (85). These cells accumulate through activation of stromal fibroblasts or 

circulating fibrocytes, or directly from epithelial cells by EMT (85). Myofibroblasts are 

significant sources of breast cancer MMPs (42, 86, 87), and tumor progression and poor 

prognosis is associated with stromal expression of MMP-1, MMP-7, and MMP-12 (88), and 

with fibroblast-specific production of MMP-9, MMP-11, and MMP-14 (42, 87). Cancer 

cells can also directly secrete variant isoforms of collagen that are resistant to cleavage by 

MMPs and that can thus function as tracks for guiding cancer cell invasion in MMP-rich 

microenvironments (89, 90). Another key source of MMPs in the breast cancer 

microenvironment is the tumor-associated adipocyte (91). Tumor cell-produced factors 

stimulate de-differentiation of the adipocytes, abundant in the tissue surrounding the 
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developing breast cancer, to a phenotype associated with increased expression of cytokines 

and MMP-11, driving breast cancer invasion and metastasis in animal models (92).

5.3. MMPs promote invasion and metastasis

MMPs have long been known to facilitate cancer cell invasion through degradation of the 

ECM, but MMPs can act directly on the tumor cells to induce invasive cellular 

characteristics, and new players in this process are still being discovered. Recent findings 

reveal that MMP-14 directs cancer cell invasion and metastasis in part through cleavage of 

the Wnt/planar cell polarity protein-tyrosine kinase-7 (PTK7), (93–95). MMPs can also 

directly stimulate an invasive and metastatic phenotype in epithelial cells through activation 

of the EMT program (96). MMP-induced EMT has been observed in a variety of epithelial 

cell types, including kidney (97–100), ovary (101), lens (102), lung (103–105), pancreas 

(50), and prostate (106), although MMP-induced EMT has been best characterized in breast 

epithelial cells (107). MMP-3 stimulates spontaneous tumor formation in mouse mammary 

glands (108–110), and dissection of this process revealed that exposure of cultured mouse 

mammary epithelial cells to MMP-3 directly activates EMT (111, 112). MMP-3 mediates 

these effects by stimulating increased expression of Rac1b (113, 114), a splice variant of 

Rac1 with activated characteristics (115), which in turn stimulates EMT by increasing levels 

of cellular reactive oxygen species (113, 116, 117), through a process that depends upon 

cell-ECM interactions (118–120). It may be that many studies in which MMPs have been 

seen to stimulate cancer cell motility and invasion, although not directly investigating these 

phenomena in the context of EMT, have in fact been observing the cellular consequences of 

an incomplete or dysregulated activation of the EMT program.

5.4. MMPs as signaling molecules: noncatalytic functions of MMPs

While most studies of processes involving MMPs in tumor progression have focused on 

their role as catalytic enzymes, recent studies have found that MMPs can also act as 

signaling molecules independent of their proteolytic activity. Interactions of MMP substrates 

with noncatalytic domains of the MMPs are well known to affect selectivity for particular 

substrates and for individual target sites within those substrates (121), as discussed further 

above in section 3.2. Structural determinants of MMP activity and specificity. These exosite 

interactions can also drive signaling functions: interaction of the MMP-2 or MMP-9 

hemopexin domains with integrins or CD44 can stimulate cell survival, migration, and 

angiogenesis (122). Recent studies have identified two novel functions for the MMP-3 

hemopexin domain: interaction with extracellular heat shock protein 90-β (HSP90β) can 

stimulate mammary epithelial cell invasion and morphogenesis (123), while binding of the 

MMP-3 hemopexin domain to Wnt5b inhibits canonical Wnt signaling and regulates 

mammary stem cell formation (124). Interactions of cell surface proteins with regions of 

TIMP-1 distinct from its MMP inhibitory domain have also been implicated in tumor 

development: MMP-independent association of TIMP-1 with CD63 drives resistance to 

apoptosis, induction of EMT, and stem cell differentiation (125–127). Effective inhibition of 

protumorigenic activities of MMPs and TIMPs will likely have to target both catalytic and 

noncatalytic functions of these molecules.
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6. THERAPEUTIC APPROACHES TARGETING MMPS

6.1. Poor performance of broad spectrum MMP inhibitors in clinical trials

Abundant data showing association of MMPs with poor prognosis in breast cancer, as 

overviewed in section 4. MMPs in breast cancer and their clinical significance, along with 

multiple mechanisms by which MMPs are found to drive breast cancer development and 

progression as overviewed in section 5. Tumorigenic processes activated by MMPs in breast 

cancer, suggest that these molecules should offer promising targets for therapy. However, 

intensive efforts to develop and translate pharmacological MMP inhibitors for cancer 

treatment culminated a decade ago in disappointing results in multiple clinical trials (128). 

Of relevance to breast cancer, a phase III trial of the broad spectrum MMP inhibitor 

marimastat in metastatic breast cancer found no therapeutic benefit (7). Phase II pilot trials 

of adjuvant marimastat and rebimastat in early stage breast cancer concluded that large scale 

studies were not feasible in this setting given the high incidence of musculoskeletal toxicity 

and failure of chronic dose levels to maintain plasma levels within the target range for these 

drugs (129, 130). While the pharmaceutical industry has been reluctant to invest further in 

MMP inhibitors in the aftermath of these trials, basic research supports the idea that more 

selective inhibitors with lower toxicity may succeed where earlier generation drugs failed.

6.2. Improving the selectivity of small molecule MMP inhibitors

Initial efforts toward improving small molecule inhibitor selectivity focused on tailoring 

drugs to the size and shape of the variable S1′ pocket of the catalytic domain, and exploring 

alternatives to the strong zinc-binding functionalities of early inhibitors (131–133). For 

MMP-12 in particular, enhanced understanding of the molecular determinants of drug 

affinity have been aided by numerous very high resolution crystal structures (134, 135). 

Novel and selective inhibitors of MMP-12 have resulted from further optimization of S1′ 

pocket fit for this enzyme (136), as well as from incorporating P2′ glutamate into pseudo-

dipeptides, which in the absence of a traditional zinc-chelating group, can take on a non-

canonical binding conformation in which it interacts with the catalytic zinc (137). Recently, 

diverse approaches have emerged that take advantage of increasing knowledge of MMP 

exosites, allosteric regulatory mechanisms, and domain interactions of the MMPs (12, 138), 

that may ultimately pave the way to clinically useful agents. To identify hidden allosteric 

regulatory sites on the surface of MMP catalytic domains that may offer new opportunities 

for targeted drug development, a recent study used a series of branched amphiphilic 

polymers to probe MMP-12 and MMP-14 for binding and effects on substrate hydrolysis 

(139). MMP catalytic domains are known to be highly flexible and dynamic molecules 

(140), and the identified polymers inhibited MMP-12 and -14 by association with unique 

surface patches that in the free enzymes are known to have substantial mobility, the damping 

of which compromised catalytic function. Intriguingly, computational analyses of 13 MMP 

family members predicted that similar but distinct allosteric regulatory sites exist in each 

MMP catalytic domain (139); these sites offer new opportunities for selective drug 

development.

Other efforts to develop selective inhibitors have focused beyond the catalytic domain, 

targeting exosites of accessory domains (exclusively or in addition to the catalytic domain) 
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that are important for proteolysis of specific substrates, for receptor recognition, or for other 

specific biological functions. Many such inhibitors are peptides that mimic natural substrates 

or that compete with binding epitopes on binding partner proteins. Although as peptides they 

possess challenges relating to stability that may preclude direct development as drugs, 

studies using these peptides as probes help to define the relevant MMP exosites, and can 

provide proof of principle for the concept of selectively inhibiting a subset of MMP 

biological activities (141). Triple helical peptides (THPs) that mimic the structure of triple 

helical collagen substrates, along with THP derivatives that mimic transition states in 

proteolysis, represent one such class of peptide inhibitors (141). THP substrate and 

transition state analogues targeting exosites on fibronectin domains along with the catalytic 

domain show high affinity and selectivity for MMP-2 and -9 (142), and can be designed 

using exosite affinity to inhibit only a subset of proteolytic activities, in one example 

blocking cleavage of type V collagen but not interstitial collagen (143). THP substrates and 

inhibitors have also been used in mapping exosites that are important for proteolysis of a 

subset of substrates to the catalytic domain of MMP-12 (144) and the PEX domain of 

MMP-1 (145). Another study focusing on PEX domain exosites has identified an epitope on 

MMP-9 PEX blade IV that is critical for homodimerization, and another epitope on MMP-9 

PEX blade I that is critical for CD44 binding; both epitopes are essential for cell migration 

(146). Short peptides that mimic these linear epitopes were shown to interrupt the molecular 

association and to interfere with cellular migration (146). Using similar approaches, 

MMP-14 PEX domain epitopes on blade IV and blade I were found to be necessary for 

homodimerization and for heterodimerization with CD44, respectively; peptide mimics were 

able to block cellular migration and to interfere with metastasis in an orthotopic xenograft 

model of breast cancer (147). Given increasing structural, biochemical and biological 

information about PEX domains and their role in cancer-driving processes, it has been 

possible in some instances to employ a structure-based in silico approach to identify small 

molecule inhibitors that target PEX domain exosites. One such study identified a small 

molecule inhibitor that selectively blocked MMP-9 dimerization by targeting the PEX 

domain without affecting catalytic activity; the inhibitor was found to block MMP-9-

mediated cellular migration and mammary tumor growth and metastasis in an orthotopic 

xenograft model (148). Another study identified a small molecule inhibitor that targets 

MMP-14 PEX; this molecule was shown to block MMP-14 dimerization and to repress 

tumor growth and collagen degradation in an orthotopic mammary tumor model (149).

6.3. MMP-targeting antibodies as therapeutic inhibitors

MMP-targeting opportunities are not limited to small molecule drugs, and macromolecular 

function-blocking inhibitors may offer advantages in terms of superior potential for 

selectivity and reduced toxicity. One option is therapeutic antibodies, a well-established 

approach to development and translation of highly selective macromolecular drugs. A 

function blocking monoclonal antibody has been reported that selectively binds human 

MMP-9 with a Kd of 2.1. nM (150), recognizing an epitope on the surface of the catalytic 

domain (151). A fully human monoclonal antibody against MMP-14, developed using a 

phage display platform, was able to inhibit tumor growth and metastasis in an orthotopic 

xenograft model of breast cancer (152). Another monoclonal antibody was shown to inhibit 

MMP-14 activation of proMMP-2, and consequently to inhibit lymphangiogenesis, while 
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other catalytic functions were unaffected (153). Mutagenesis and modeling studies revealed 

that the antibody targets a loop on the MMP-14 catalytic domain surface far from the active 

site, blocking an interaction with TIMP-2 that is required for formation of the trimolecular 

MMP-14·TIMP-2·MMP-14 complex that is responsible for proMMP-2 activation (154). 

Finally, in a novel approach to antibody generation, mice immunized with a synthetic mimic 

of the zinc-centered MMP active site structure produced antibodies capable of inhibiting 

MMP-2 and -9 with a binding mechanism reminiscent of the TIMP mechanism (155). The 

therapeutic potential of these antibodies was demonstrated in mouse models of inflammatory 

bowel disease.

6.4. Therapeutic potential of TIMPs and variants

An alternative to therapeutic antibodies is presented by the natural human TIMPs, a family 

of four protein inhibitors of MMPs and other metalloproteinases, and by recombinant 

engineered proteins based on the TIMPs. TIMPs are essential anticancer molecules: a recent 

study found that simultaneous knockout of all four TIMPs conferred powerful cancer-

promoting properties on fibroblasts (156). TIMPs bind to MMP catalytic domains using a 

central core epitope comprised of the N-terminal strand of the TIMP, which coordinates to 

the active site zinc, and adjacent loops of the TIMP connected to the N-terminal strand by 

disulfide bonds (157, 158). Additional flanking loops further removed from the core epitope 

can form additional adventitious interactions with exosites on the surface of the MMP 

catalytic domain (157, 159). While the core epitope is highly conserved and structural 

differences in core interactions among different MMP/TIMP complexes are very subtle, the 

peripheral exosite interactions involve protein regions that are less conserved among both 

TIMPs and MMPs, and likely account for much of the broad spectrum of affinities among 

MMP/TIMP complexes, which range from sub-picomolar to high nanomolar (157, 159, 

160). The broad interface involving in total more than 20 residues of the TIMP protein 

further offers opportunities to optimize selectivity toward individual MMPs through 

mutagenesis (161, 162). Many previous studies have identified sites of mutation capable of 

modulating TIMP selectivity (163–169), and a recent computational and experimental 

analysis of TIMP-2 has demonstrated that as a protein evolved for broad inhibition of many 

MMPs, its sequence lies far from the fitness maximum for optimal affinity toward any 

individual MMP, and therefore specificity enhancing mutations are common (170). While 

the simplest approaches to such optimization may involve designed improvements in steric 

and charge complementarity, a more sophisticated approach taking into account the 

extensive flexibility of the TIMP molecule may be required. For example, a point mutation 

of TIMP-1 that improved affinity toward MMP-14 by more than an order of magnitude 

(166) was subsequently found to enhance affinity solely by reducing flexibility of the 

binding interface, apparently leading to a lower entropy cost upon formation of the complex 

(171). Demonstrating potential for engineered TIMPs in therapeutic applications, a designer 

TIMP developed for selective MMP-14 inhibition was shown to block collagenase activity 

and CD44 shedding in cell culture models of breast cancer and fibrosarcoma (172). 

Importantly, as MMP-independent activities of TIMPs have also been described (66–68), it 

will be important to define the sequence and structural epitopes responsible for these 

activities, to ascertain the feasibility of developing designer TIMPs selectively targeting 

individual MMPs yet devoid of unwanted off-target activities. Another challenge will be 
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developing formulations suitable for therapeutic use; early steps in this direction have 

recently been taken, exploring the potential of PEGylation, fusion to serum albumin, or 

nanoparticle delivery to enhance recombinant TIMP availability and efficacy in vivo (173–

178).

7. SUMMARY AND PERSPECTIVES

MMP family members have been extensively identified in animal models and in human 

cohort studies as key mediators of tumor progression. However, MMPs are a large and 

diverse family composed of complex macromolecular proteins, with correspondingly 

complex functions in cancer development. It would be very unfortunate if the prior 

disappointing performance of broad spectrum, small molecule catalytic site inhibitors in 

clinical trials precluded future attempts to implement MMP inhibition as a therapeutic 

strategy for breast cancer, particularly when considering the exciting new developments in 

small molecule and macromolecular MMP inhibitors. Ongoing research should focus on 

fully dissecting the intricate pathways and processes affected by MMPs in breast cancer 

development, particularly with regard to how these processes may differ between tumor 

development in model systems and breast cancer progression in humans.
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Figure 1. MMP domain structure and protein fold
(A) The various domain organizations of human MMPs are illustrated; S, signal peptide; 

Pro, propeptide; CAT, catalytic domain; F, fibronectin type II repeats; PEX, hemopexin 

domain; TM, transmembrane domain; GPI, glycophosphatidylinositol membrane anchor; C, 

cytoplasmic domain; CA, cysteine array; Ig, immunoglobulin-like domain. The flexible, 

variable length linker or hinge region is depicted as a wavy black ribbon. (B) The protein 

structure of the domains of a representative proMMP (proMMP-2) is shown, with individual 

domains colored as in the cartoon in panel A. The PEX domain has been separated from 

other domains for visual clarity; the linker connecting CAT and PEX domains, represented 

by a black dashed line, is flexible, of variable length in different MMPs, and allows for 

multiple orientations of the PEX domain relative to other domains. The prodomain (gray) 

blocks the active site by coordination to the catalytic zinc (yellow sphere); activation 

involves proteolysis near the site indicated by the orange arrow, allowing removal of the 

prodomain. Figure was generated with PyMOL (Schrodinger, LLC), using coordinates from 

Protein Databank entry 1GXD (179).
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Figure 2. Role of MMPs in breast cancer progression
A. In the normal/premalignant state, lobular acini are embedded in stromal collagen, with 

rare immune cell infiltrates. Not shown: adipocytes, which in normal human breast tissue are 

usually separated from the lobular structures by stromal ECM. B. In ductal carcinoma in 

situ, MMP production by activated fibroblasts, infiltrating macrophages and other immune 

cells, and the tumor cells themselves (as well as by adipocytes) promote epithelial cell 

proliferation and suppression of apoptosis. C. Progression to invasive breast cancer is 

associated with increasing abundance of stromal collagen, degradation of the basement 

membrane, and invasion of cancer cells into the surrounding stromal ECM and the 

vasculature to begin the process of metastatic dissemination.
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