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Abstract

Idiopathic pulmonary fibrosis (IPF) is a restrictive lung disease
that is associated with high morbidity and mortality. Current
medical therapies are not fully effective at limiting mortality in
patients with IPF, and new therapies are urgently needed. Matrix
metalloproteinases (MMPs) are proteinases that, together,
can degrade all components of the extracellular matrix and
numerous nonmatrix proteins.MMPs and their inhibitors, tissue
inhibitors of MMPs (TIMPs), have been implicated in the
pathogenesis of IPF based upon the results of clinical studies
reporting elevated levels of MMPs (including MMP-1, MMP-7,
MMP-8, and MMP-9) in IPF blood and/or lung samples.
Surprisingly, studies of gene-targeted mice in murine models of
pulmonary fibrosis (PF) have demonstrated that most MMPs
promote (rather than inhibit) the development of PF and have
identified diverse mechanisms involved. These mechanisms
include MMPs: (1) promoting epithelial-to-mesenchymal
transition (MMP-3 and MMP-7); (2) increasing lung levels or
activity of profibrotic mediators or reducing lung levels of
antifibrotic mediators (MMP-3, MMP-7, and MMP-8); (3)
promoting abnormal epithelial cell migration and other aberrant
repair processes (MMP-3 and MMP-9); (4) inducing the
switching of lung macrophage phenotypes from M1 to M2
types (MMP-10 and MMP-28); and (5) promoting fibrocyte
migration (MMP-8). Two MMPs, MMP-13 and MMP-19, have

antifibrotic activities in murine models of PF, and two MMPs,
MMP-1 and MMP-10, have the potential to limit fibrotic
responses to injury. Herein, we review what is known about the
contributions of MMPs and TIMPs to the pathogenesis of IPF
and discuss their potential as therapeutic targets for IPF.
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Clinical Relevance

In this Translational Review, we describe the molecular and
cell biology of matrix metalloproteinases (MMPs) and tissue
inhibitors of metalloproteinases, and review the evidence that
links MMPs to idiopathic pulmonary fibrosis (IPF), the
cellular sources of MMPs, and the mechanisms involved.
Although initial studies of randomized clinical trials for
nonselective MMP inhibitors as new therapies for cancer
produced disappointing results, since then, newer approaches
to target metalloproteinases more selectively have been
developed for other diseases. We have included a discussion
of the advantages (and potential limitations) of these new
therapeutic approaches targeting MMPs and their potential as
therapeutics for IPF.

(Received in original form January 14, 2015; accepted in final form June 29, 2015 )

This work was supported by Public Health Service, National Heart, Lung, and Blood Institute grants HL063137, HL086814, HL111835, HL105339,
HL114501, AI111475-01, T32 HL007633, and T32 HL007633, Flight Attendants Medical Research Institute grant CIA123046, and the Brigham and Women’s
Hospital–Lovelace Respiratory Research Institute Consortium.

Author Contributions: Conception and design—V.J.C. and C.A.O.; drafting the manuscript for important intellectual content—V.J.C., L.Z., J.S.H., and
C.A.O.

Correspondence and requests for reprints should be addressed to Caroline A. Owen, M.D., Ph.D., Brigham and Women’s Hospital, 77 Avenue Louis Pasteur,
Room 855B, HIM Building, Boston, MA 02115. E-mail: cowen@rics.bwh.harvard.edu

Am J Respir Cell Mol Biol Vol 53, Iss 5, pp 585–600, Nov 2015

Copyright © 2015 by the American Thoracic Society

Originally Published in Press as DOI: 10.1165/rcmb.2015-0020TR on June 29, 2015

Internet address: www.atsjournals.org

Translational Review 585

mailto:cowen@rics.bwh.harvard.edu
http://dx.doi.org/10.1165/rcmb.2015-0020TR
http://www.atsjournals.org


Idiopathic Pulmonary
Fibrosis

In the United States, approximately 50,000
patients are newly diagnosed with idiopathic
pulmonary fibrosis (IPF) each year. The
median survival of patients with IPF is only
3–5 years (1). Although numerous medical
therapies have been evaluated in patients with
IPF, the only therapies that slow the
progression of this disease, pirfenidone (2)
and nintedanib (3), are associated with side
effects and are not fully effective at reducing
mortality. Thus, there is an urgent need to
identify novel therapeutic targets for IPF.
Herein, we review the evidence linking
members of the matrix metalloproteinase
(MMP) family to the pathogenesis of IPF,
identify knowledge gaps in the field of MMPs
and IPF, and discuss potential approaches to
target MMPs as novel therapeutics for IPF.

IPF is characterized by the deposition
of excessive amounts of extracellular matrix
(ECM) proteins in the lungs, thereby
replacing the normal architecture of the
lung. IPF is the most common type of
idiopathic interstitial pneumonia, and is
characterized pathologically by the pattern
of usual interstitial pneumonitis. Although
the etiology of IPF is still unclear, several
pathogenic mechanisms have been
implicated in its development, including
aberrant repair of injured epithelium,
fibroblast activation, epithelial-to-
mesenchymal transition (EMT), collagen
deposition, and immune cell dysfunction.
MMPs are expressed by most of the cellular
culprits and pathologic processes implicated
in IPF pathogenesis.

MMPs

MMPs are zinc-dependent endopeptidases
that, together, degrade all components of the
ECM. Consequently, it was initially thought
that MMPs would limit lung fibrosis by
degrading ECM proteins in the lung.
However, recent studies have implicated
MMPs in regulating the activities of proteins
other than ECM proteins, including
mediators of inflammation, latent growth
factors, antifibrotic growth factors, and
cleaving cell surface molecules and
receptors. However, most studies of MMP-
deficient mice in pulmonary fibrosis (PF)
models have shown the opposite—that
MMPs promote pulmonary fibrotic
responses to injury.

MMP Structure
MMPs are multidomain proteins (Figure 1).
The signal peptide at the amino terminus
targets the protein to the cell’s secretory
pathway. The propeptide domain,
containing the highly conserved cysteine
switch motif, PRCGXPD, is cleaved during
activation of the latent proenzyme by yet-
to-be identified peptidases. The catalytic
domain contains the highly conserved
Zn21-binding motif, HEXXHXXGXXH, in
which the three histidines (H) bind to the
active site zinc, and the nucleophilic
glutamate (E) attacks the substrate’s peptide
bond. The proline-rich hinge domain
connects the catalytic domain to the
C-terminal domain with a flexible segment
of up to 75 residues. The carboxyterminal
hemopexin-like domain regulates substrate
binding and specificity. Some MMPs
contain additional domains.

MMP Classification
Mice express 23 MMPs, and 24 MMP genes
have been identified in humans, including
two duplicated genes encodingMMP-23 (4).
MMPs are usually classified by their

substrate specificity in vitro into seven main
groups: (1) interstitial collagenases (MMP-1,
-8, -13, and -18 [in Xenopus laevis]),
which cleave types I–III interstitial
collagens; (2) gelatinases (MMP-2 and -9),
which cleave denatured collagens (gelatins)
and basement membrane proteins; (3)
stromelysins (MMP-3, -10, and -11), which
cleave laminin and other basement
membrane proteins; (4) membrane-type
MMPs (MT-MMPs), which are expressed on
cell surfaces and linked to plasma membranes
either by a glycophosphatidylinositol anchor
(MMP-17 and -25) or a transmembrane
domain (MMP-14, -15, -16, and -24); (5)
matrilysins (MMP-7 and -26), which lack
the carboxyterminal domain and cleave
proteoglycans, laminin, elastin, and type
IV collagen; (6) metalloelastase (MMP-12),
which cleaves elastin and some basement
membrane proteins; and (7) other MMPs
(MMP-19, -20, -23, and -28).

The different domains of MMPs
generally determine their substrate
specificity. For some subclasses of MMPs,
the contributions of individual domains or
residues to the substrate specificity has been
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Figure 1. Matrix metalloproteinase (MMP) classification by protein domain structure. MMPs can be
categorized according to their protein domain structure. All MMPs share: (1) an N-terminal signal
peptide and (2) a prodomain containing the consensus sequence in which a cysteine residue binds to
the zinc ion in the catalytic domain to maintain enzyme latency. MMPs with the basic/simple domain
structure also have a flexible linker region followed by a hemopexin-like domain (four-bladed
b propeller structure), which helps determine substrate specificity. Minimal MMPs lack this linker and
the hemopexin-like domain. Membrane-type MMPs are anchored to plasma membrane by either
a transmembrane domain or a glycophosphatidyl inositol (GPI) anchor. Gelatin-binding MMPs contain
fibronectin-binding sites in the catalytic domain. Furin-activated MMPs contain a furin cleavage site in
their prodomain, allowing them to be activated intracellularly in the trans-Golgi network. C, carboxy
terminus; Zn, zinc atom.
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determined. For example, for the interstitial
collagenases, the hemopexin-like domains,
hinge regions, and active sites together are
crucial for cleavage of the collagen triple
helix (5–7). Before active site cleavage of the
individual a-chains of collagen can occur,
the triple helical structure must be opened
(a process termed triple helicase activity).
This is mediated by binding of the
C-terminal hemopexin domain (along with
the hinge region and active site) to the
interstitial collagen substrate. This process
induces localized conformational changes
in native collagen that enables the
individual a-chains of collagen to then be
cleaved by the active sites of the MMPs (8).
MMP-2 and -9 have three fibronectin type II
domain repeats inserted into the catalytic
domain just ahead of the zinc-binding region.
These fibronectin repeats facilitate binding
of MMP-2 and-9 to gelatin substrates, and
are required for MMP-9 to cleave types V
and X1 collagens (9). The amino acid at the
S(2) pocket of the substrate-binding cleft
of MMP-2 and -9 (which is highly variable
among the MMP family) also contributes
to substrate selectivity (10).

Regulation of MMPs
MostMMPs are not expressed constitutively
by cells, and most cells (except
polymorphonuclear neutrophils [PMNs])
need to be activated to express MMPs. MMP
activity is tightly regulated at the
transcriptional and post-translational levels,
and by cellular localization.

Transcriptional Regulation
MMP expression is regulated by numerous
transcription factors (Table 1 and Ref. 11).
MMPs have been classified into three main
categories based upon the cis-acting
element binding sites in their promoters:
(1) MMPs with a TATA box located 230
base-pairs (bp) from the transcription start
site, an activator protein (AP) -1 binding
site at 270 bp, and a polyoma enhancer
A binding protein (PEA) -3 site adjacent to
the AP-1 site; (2) MMPs with a TATA box,
but no AP-1 site (MMP-8, -11, and -21);
and (3) MMPs lacking a TATA box that are
largely constitutively expressed (MMP-2,
-14, and -28) (12). However, there is
overlap between these three categories. For
example, MMP-9 (a gelatinase), MMP-13
(an interstitial collagenase), MMP-3 (a
stromelysin), and MMP-12 (an elastase) are
all regulated by both AP-1 and PEA-3
transcription factors (Table 1).

Post-Translational Regulation
MMPs are synthesized as latent proenzymes
that require activation to attain full catalytic
activity. Reactive oxygen and nitrogen
species, proteinases, and organomercurials
can disrupt the bond between the sulfhydryl
group of the conserved cysteine in the
propeptide domain and the active site zinc
ion—the so-called “cysteine switch”
mechanism of pro–MMP activation (13)
in vitro. Various proteinases cleave the
propeptide to expose the active site (e.g.,
active MMPs, serine proteinases, and
proteinases involved in coagulation).
However, activators of pro-MMPs in vivo
are not known.

Cellular Localization
In addition to membrane-type MMPs, other
MMPs lacking transmembrane domains or
glycophosphatidylinositol anchors are
expressed on cell surfaces (MMP-2, -8, and
-9) by binding to adapter proteins or yet-to-
be identified molecules after MMPs are
released by cells (14–16). Localization of
MMPs on cell surfaces prevents widespread
proteolysis and/or protects active MMPs
from inhibition by tissue inhibitors of
MMPs (TIMPs) (14, 15).

MMPs Implicated in the
Pathogenesis of PF by Studies
of Gene-Targeted Mice

MMP expression levels in blood and lung
samples are altered in patients with IPF
compared with normal subjects (Table 2).
Studies of MMP gene–targeted mice have
shown that a number of MMPs regulate
processes implicated in IPF pathogenesis
(Table 3 and Figure 2). Subsequently here,
we outline the expression patterns for
individual MMPs linked to IPF in cells in
fibrotic lungs. We also describe the
potential roles of each MMP in pathologic
processes in IPF lungs based upon: (1)
the phenotypes of mice lacking or
overexpressing individual MMPs in models
of PF; or (2) activities of MMPs that have
been described in human or murine cells
in vitro that are pertinent to IPF. However,
it is important to note that different cell
types have different roles in PF, such
that increased expression of an MMP
(or MMPs) in one cell type might be
“profibrotic,” whereas increased expression
in another cell type might serve an
“antifibrotic” function. Similarly, MMPs

might have one function early during early
wound repair processes and an entirely
different function in the maintenance or
propagation of fibrosis. Accordingly, it is
almost impossible to assign a given MMP
to exclusively a “pro-” or “anti-” fibrotic
category. Nevertheless, for MMP
gene–targeted mice that have been studied
in models of PF, we have divided these
MMPs into those that are “pro-” or “anti-”
fibrotic based upon the overall effect of the
MMP on lung collagen levels 14–21 days
after delivering bleomycin to the lungs
(Table 3 and Figure 2).

MMP-3
MMP-3 (stromelysin-1) is expressed by
epithelial cells, fibroblasts, endothelial cells,
alveolar macrophages, and monocytes, and
cleaves type IV collagen and basement
membrane proteins in vitro. MMP-3 levels
are increased in IPF lungs (17, 18) mainly
in bronchial and alveolar epithelial cells,
interstitial fibroblasts, alveolar
macrophages, and other leukocytes (18).

MMP-3 activities during PF. Mmp32/2

mice are protected from bleomycin-
induced PF, and overexpression of MMP-3
in rat lungs promotes PF (18). Mmp-3
promotes PF by: (1) activating b-catenin
signaling in lung epithelial cells to increase
E-cadherin cleavage and EMT (18); (2)
activating latent transforming growth factor
(TGF)-b by releasing latent TGF-b
homodimer from both latency-associated
peptide and latent TGF-b–binding protein-1
(19); and (3) inhibiting distal epithelial
repair by releasing endostatin bound to
type XVIII collagen, a proteoglycan located
in alveolar capillary and epithelial basement
membranes (20), permitting endostatin to
induce lung epithelial cell apoptosis.
Interestingly, endostatin levels are increased
in IPF plasma and bronchoalveolar lavage
fluid (BALF) samples and inversely
correlate with lung function (21).

MMP-7
MMP-7 (matrilysin) is expressed by lung
epithelial cells, mononuclear phagocytes,
and fibrocytes (22). Plasma and BALF
MMP-7 levels are increased in patients with
IPF, and plasma MMP-7 levels have been
validated as a biomarker for IPF (23).
MMP-7 is expressed by airway epithelial
cells and macrophages in IPF lungs (24).
MMP-7 expression is increased by
osteopontin in A549 cells, and osteopontin
colocalizes with MMP-7 in IPF lung
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epithelium (25). Two single-nucleotide
polymorphisms in the MMP-7 promoter
region (which both increase MMP-7
transcription) have been associated with
IPF (26).

MMP-7 activities during PF. Mmp-7
promotes regeneration of ciliated airway
epithelial cells after epithelial injury in vitro
(27). However, Mmp-7 promotes PF in
mice, as Mmp72/2 mice are protected from
bleomycin-mediated PF (28, 29). MMP-7
may promote PF by cleaving E-cadherin
to activate epithelial cells (30) and/or
proteolytically activating heparin-binding
epidermal growth factor precursor
(pro-HB-EGF) to release active HB-EGF,
which promotes human lung fibroblast
proliferation (31).

MMP-8
MMP-8 (neutrophil collagenase or
collagenase-2) is expressed by PMNs and
at lower levels by activated monocytes,
macrophages, lymphocytes, lung epithelial
cells, fibroblasts, fibrocytes, dendritic cells
(32), natural killer (NK) cells (33), and
mesenchymal stem cells (22, 34–37).
Pro-MMP-8 is stored in PMN-specific
granules and released upon PMN activation.
In other cells, MMP-8 is regulated at the
transcriptional level (Table 1) by TGF-b1 and

TNF-a in fibroblasts (35, 36), and IL-1b
and CD40 ligand in mononuclear
phagocytes (37).

MMP-8 protein levels are increased
in IPF BALF (17, 38–40) and lung
homogenates (38), and MMP-8 is up-
regulated in macrophages and bronchial
epithelial cells, but down-regulated in alveolar
epithelial cells in IPF lungs (38). Plasma
MMP-8 levels are increased in patients with
IPF, and MMP8 steady-state mRNA levels
are increased in IPF peripheral blood
monocytes (38). However, MMP-8 plasma
and BALF levels do not correlate with decline
in lung function or mortality in patients with
IPF (38).

MMP-8 activities in PF. Mmp82/2

mice are protected from bleomycin-
mediated PF (35, 41), but have increased
accumulation of macrophages in the lung
during the acute inflammatory phase of
this model (35, 41). Mmp8’s profibrotic
activities are linked to Mmp-8 reducing
lung levels of macrophage inflammatory
protein-1a and IFN-g–inducible protein-10
(Ip-10 or CXCL10) (35), which are both
chemotactic for mononuclear phagocytes.
In addition, Ip-10 and its receptor, CXCR3,
have antifibrotic activities (42, 43), and
Ip-10 inhibits fibroblast chemotaxis (43).
Another study reported that Mmp-8 cleaves

il-10 in the murine lung to increase PF (41).
MMP-8 may also promote PF by regulating
increasing fibrocyte migration into the
lung. Fibrocytes are circulating bone
marrow–derived cells expressing CD45 and
collagen, and promote fibroproliferative
responses to injury when recruited to the
lungs (44). Fibrocytes express MMP-8 (22),
and incubating fibrocytes with an MMP-8
inhibitor decreased their migration in vitro,
suggesting that MMP-8 promotes
fibrocyte migration (22).

MMP-9
MMP-9 (gelatinase B) is expressed by all
leukocytes, fibroblasts, and epithelial and
endothelial cells (45). Pro-MMP-9 protein
is stored in the tertiary granules of PMNs.
In other cells, MMP-9 expression is
regulated by transcription factors (Table 1).
MMP-9 levels are increased in IPF BALF
samples (39) and localized to alveolar
and interstitial macrophages, metaplastic
airway epithelial cells, and PMNs in IPF
lungs (46, 47).

MMP-9 activities during PF. Although
membrane-bound MMP-9 on tumor cells
activates latent TGF-b1 (48), wild-type
(WT) and Mmp92/2 mice have similar
lung collagen levels when treated with
bleomycin. However, MMP-9 likely

Table 1. Transcriptional Regulation of Matrix Metalloproteinases

MMP
Transcription Factors and

Promoter Regulatory Regions Other Mechanisms of Regulation References

MMP-9 NF-kB, PEA-3, AP-1, TIE mRNA stability, p38, Rac-1 183-186
MMP-8 C/EBP-b TGF-b, TNF-a, IL-1b 35, 36, 187
MMP-13 AP-1, PEA-3, Ets, OSE-2, TIE BMP-2, FGF-2, p38, PTH, vitamin D,

mechanical strain
73, 188-191

MMP-3 AP-1, PEA-3, SPRE p38, EMMPRIN (CD147) 192, 193
MMP-7 AP-1, Tcf-4, PEA-3, TIE b-catenin 194-196
MMP-12 AP-1, TRF, PEA-3, Tcf-4, LBP PAR-1, GM-CSF, IL-1b, MCP-1 197, 198
MMP-19 AP-1, PEA-3 170
MMP-28 SOX-like 199
MMP-2 AP-2, p53/AP-2 UV radiation, EMMPRIN, MAPK 193, 200
MMP-1 SBE, AP-1, PEA-3, TIE, C/EBP-b,

FGF, hyperoxia
UV radiation, EMMPRIN, a2b1 integrin 101, 107, 193, 201

202
MMP-10 AP-1, PEA-3 TGF-a, KGF, IFN-g, TGF-b 203
MMP-11 PEA-3, NF-1, RARE, AP-1–like TSH 143, 204
MT1-MMP SAF-1, HBS, Tcf-4 Fibronectin, soluble E-cadherin 205, 206

Definition of abbreviations: AP-1, activator protein-1; AP-2, activator protein-2; BMP-2, bone morphogenetic protein 2; C/EBP-b, CCAAT/
enhancer-binding protein-b; EMMPRIN, extracellular matrix metalloproteinase inducer; Ets, E26 transformation-specific; FGF, fibroblast growth factor;
GM-CSF, granulocyte/macrophage colony–stimulating factor; HBS, hypoxia-inducible factor–binding site; KGF, keratinocyte growth factor; LBP,
leader-binding protein; MAPK, mitogen-activated protein kineases; MCP-1, monocyte chemoattractant protein-1; MMP, matrix metalloproteinase; MT1,
membrane-type 1; NF-1, nuclear factor-1; OSE-2, osteoblast-specific element-2; p53/AP-2, p53/AP-2 combination binding site; PAR-1, protease-
activated receptor-1; PEA-3, polyoma enhancer A binding protein-3; PTH, parathyroid hormone; Rac-1, Ras-related C3 botulinum toxin substrate 1;
RARE, retinoic acid–responsive element; SAF-1, serum amyloid A activating factor-1; SBE, STAT-binding element; SOX, Sry-related high mobility group
box; SPRE, stromelysin-1 platelet-derived growth factor (PDGF)-responsive element; Tcf-4, T cell factor-4/b-catenin binding site; TGF, transforming
growth factor; TIE, TGF-b inhibitory element; TRF, octamer binding protein; TSH, thyroid stimulating hormone; UV, ultraviolet.
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promotes abnormal epithelial repair
processes in fibrotic lungs, as: (1) MMP-9 is
predominantly expressed in metaplastic
alveolar epithelial cells in IPF lungs
and bleomycin-treated mice; and (2)
bleomycin-treated Mmp92/2 mice are
protected from alveolar bronchiolization
(49), which is the abnormal proliferation of
bronchiolar cells in the alveoli occurring in
experimental PF (50–53), and in areas
of severe fibrosis in IPF lungs (54, 55).
However, the activity of MMP-9 in
regulating lung fibrotic responses is cell
context specific. MMP-9 does not regulate
the lung fibrotic response in transgenic
mice overexpressing profibrotic IL-13
in airway Club cells (56). However,
bleomycin-treated transgenic mice that
overexpress human MMP-9 in
macrophages have reduced PF, and this is
preceded by significant reductions in PMN
and lymphocyte counts in BAL samples
and lower TIMP-1 levels in BALF samples
(57). Overexpressing MMP-9 in alveolar
macrophages limits bleomycin-induced PF
in mice by MMP-9 cleaving insulin-like
growth factor (IGF)–binding protein-3
(IGFBP-3). IGFBPs are carrier proteins
that exert their function through IGFs.
However, IGFBP-3 also has IGF-

independent effects mediated by binding
to TGF-b receptors. IGFBP-3 has been
strongly linked to the pathogenesis of IPF
and other fibrosing conditions (58). TGF-b
increases IGFBP-3 secretion by fibroblasts,
and IGFBP-3 serves as a downstream
modulator of TGF-b by inducing fibroblast
production of syndecan-2 and regulating
TGF-b induction of syndecan in human
fibroblasts (59). Syndecan-2 promotes cell
signaling, proliferation, migration, and
cytoskeletal organization, cell–matrix
interactions, and ECM assembly (60–62).

MMP-12
MMP-12 (macrophage metalloelastase) is
expressed by macrophages, but can also be
expressed by lung stromal cells (63).MMP-12
expression is increased during classical
activation of macrophages with LPS, and
even more so during IL-4–induced alternative
macrophage activation (64).

MMP-12 lung and serum levels are
increased in patients with systemic sclerosis
with interstitial lung disease, and levels
correlate with severity of restriction in
pulmonary function testing (65).
Furthermore, the rs2276109 A/G functional
polymorphism in the MMP12 locus is
associated with the presence of interstitial

lung disease in patients with systemic
sclerosis (66). Mmp-12 expression is also
increased in the lungs of animals with PF
(67, 68).

Mmp-12 activities during PF. There
are conflicting reports on the activities of
Mmp-12 in regulating PF in mice. MMP-12
does not regulate bleomycin-mediated PF
(69), nor does it regulate PF resulting from
overexpression of IL-13 in airway Club
cells in mice (56). However, MMP-12
promotes PF that is induced in mice by
antibody-mediated cluster of differentiation
95 (CD95) or apoptosis antigen-1 (FAS)
activation in the lung, as Mmp122/2

mice are protected in this model (70).
Mmp122/2 mice with antibody-mediated
FAS activation in their lungs have decreased
expression of early growth response factor-1
(a zinc-finger transcription factor involved
in pulmonary responses to TGF-b) and
Cyr-61 (a cysteine-rich ECM protein involved
in fibroblast adherence to ECM). Transgenic
mice overexpressing TGF-b have increased
lung levels of Mmp-12, and TGF-b–driven
PF is dependent upon Mmp-12, as
genetic deletion of Mmp12 in these mice
ameliorates PF (67). In a model of
pulmonary and hepatic fibrosis induced
by Schistosoma mansoni infection, Mmp-12

Table 2. Matrix Metalloproteinases That Are Up-Regulated in Patients with Idiopathic Pulmonary Fibrosis

MMP Peripheral Blood Samples* Lung Samples*

MMP-9 d Increased protein in plasma (23) d Increased protein levels in BALF and alveolar macrophages (39)
MMP-8 d Increased protein in plasma (23) d Increased protein levels in BALF (17, 39, 40)

d Increased steady-state mRNA in
peripheral blood monocytes (38)

d Increased protein levels in BALF, whole lung, lung macrophages, and
epithelial cells (38)

MMP-13 d Not known d Increased protein levels in whole lung (75)
d Protein levels not increased in BALF (39)

MMP-3 d Increased protein in plasma (23) d Increased protein levels in BALF (17)
d Increased protein and steady-state mRNA levels in whole lung (18)
d Increased protein levels in lung macrophages, epithelial cells, and
intravascular leukocytes (18)

MMP-7 d Increased protein in plasma (23) d Increased protein levels in BALF and lung tissue (23)
d Increased steady-state mRNA levels in whole lung (29)
d Increased protein levels in lung epithelial cells (29)

MMP-19 d Not known d Increased protein levels in BALF, whole lung, and dysplastic lung
epithelial cells overlying fibrosis (83)

MMP-2 d Not known d Increased protein levels in whole lung and reactive epithelium and
myofibroblasts (105, 112, 113)

MMP-1 d Increased protein in plasma (23) d Increased protein in BALF and whole lung (23)
MT1, 2, 3, 5-MMP d Not known d Increased protein and mRNA levels in whole lung (146)

d MT1- and MT2-MMPs expressed in alveolar epithelial cells (146)
d MT3-MMP expressed in fibroblasts in fibrotic foci and alveolar
epithelial cells (146)

d MT5-MMP expressed in basal bronchiolar epithelial cells and areas
of squamous metaplasia (146)

Definition of abbreviations: BALF, bronchoalveolar lavage fluid; MMP, matrix metalloproteinase; MT, membrane-type.
*Expression of MMPs (either at the protein or steady-state mRNA level) was measured and found to be increased in peripheral blood samples, BALF, or
whole-lung tissue from patients with idiopathic pulmonary fibrosis versus control subjects.
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has profibrotic activities in the lung and
liver (71). MMP-12 may also contribute
to IPF pathogenesis by cleaving ECM
proteins, as BALF levels of a type IV
collagen fragment generated by MMP-12
are increased in patients with IPF (72), and
human MMP-12 can cleave a number of
human ECM proteins in vitro (45).

MMP-13
MMP-13 (collagenase-3) is expressed by
fibroblasts (73) and regulated at the
transcriptional level by TGF-b, IL-1b, IL-6,
and TNF-a (Table 1). MMP-2 and MT1-
MMP (MMP-14) cleave and activate
pro–MMP-13 (74). MMP-13 protein levels
are increased in IPF lung samples (75), but
not in IPF BALF samples (39).

MMP-13 activities in PF. MMP-13 has
varying effects on lung fibrotic response to
injury. Mmp132/2 mice have increased
bleomycin-mediated PF associated with an
increased early inflammatory response in
the lung (75), but reduced pulmonary
inflammation and fibrosis when irradiated
(76). Thus, the effects of MMP-13 on the
pulmonary inflammatory response to the
inciting agent may determine the extent to
which PF develops. However, Mmp-13 does
not regulate PF during hyperoxic lung
injury (77). In a murine model of hepatic
fibrosis, MMP-13 promotes fibrosis (78),
but macrophage expression of MMP-13 in
this model contributes to resolution of
hepatic fibrosis (79).

MMP-19
MMP-19 has a unique stretch of residues in
the linker region between the pro domain
and the Zn21-binding domain, and was
initially thought to represent a new
subfamily of MMPs (80). MMP-19 is
expressed by monocytes, macrophages,
fibroblasts, and endothelial cells. MMP-19
associates noncovalently via its hemopexin
domain with the cell surface of
macrophages, and this process is dependent
upon cell adhesion (81). MMP-19
expression in fibroblasts depends on the
ERK1/2 and p38 signaling pathways (82).

MMP-19 activities in PF. MMP-19 is
highly expressed in dysplastic epithelium
overlying fibrotic areas in IPF lungs (83).
MMP-19 has antifibrotic activities, as
Mmp192/2 mice have greater bleomycin-
mediated PF than WT mice (83). MMP-19
mediates its antifibrotic activities, in part
by inducing expression of prostaglandin-
endoperoxide synthase 2 (83), a key
regulatory enzyme in the synthetic pathway
of prostaglandin E2, an antifibrotic
mediator (84–87). MMP-19 may also
mediate its protective activities by
regulating adaptive immune responses, as:
(1) unchallenged Mmp192/2 mice have
impaired thymocyte maturation and
T cell–mediated contact hypersensitivity
(88); and (2) reduced expression of T cell
costimulatory molecules predicts decreased
transplant-free survival in patients with IPF
(89). However, MMP-19 has profibrotic

activities in mice with hepatic fibrosis (90).
Thus, the activities of MMP-19 in
regulating fibrotic responses to injury
depend on the site of injury and the inciting
agent.

MMP-28
MMP-28 (epilysin) is unusual among
MMPs as it: (1) contains a furin activation
sequence and is activated intracellularly
by a furin-like proprotein convertase (91);
and (2) is expressed constitutively in the
lung and other organs (92). In the adult
murine lung, MMP-28 is predominantly
expressed in airway Club cells and lung
macrophages. MMP-28 gene expression
is increased in IPF lungs (93).

MMP-28 activities during PF. MMP-28
promotes PF in bleomycin-treated mice
by inducing macrophages to switch from
a classically-activated (M1) phenotype to
an alternatively-activated (M2) phenotype
(94). Macrophage phenotype has been
strongly implicated in regulating fibro-
proliferative responses, as the M2-
macrophage phenotype promotes
fibroblast proliferation and collagen
synthesis (95). In bleomycin-treated mice,
depletion of M2 macrophages during the
fibrogenic phase reduces PF (96). PF
developing in TGF-b1 over-expressing
transgenic mice is also dependent upon
activation of M2 macrophages (97).
Although MMP-28 induces TGF-
b–mediated EMT in cancer cells (98),

Table 3. Studies of Matrix Metalloproteinase Gene–Targeted Mice in Models of Pulmonary Fibrosis

MMP*
Pulmonary Fibrosis

Model Studied
Pulmonary Fibrosis
versus WT mice Other Pulmonary Phenotype versus WT Mice*

Mmp32/2 Bleomycin ↓ Overexpression of MMP-3 promotes fibrosis (18)
Mmp72/2 Bleomycin ↓ Decreased pulmonary inflammation after 14 days (29)
Mmp82/2 Bleomycin ↓ Increased accumulation of lung macrophages (35, 41)
Mmp92/2 Bleomycin No change Protected from alveolar bronchiolization (49)
Transgenic mice
overexpressing
MMP-9 in alveolar
macrophages

Bleomycin ↓ Reduced neutrophil and lymphocyte counts in
bronchoalveolar lavage and lower lung levels of Timp-1

Mmp122/2 Bleomycin No change Similar pulmonary inflammation (69)
Mmp122/2 FAS Antibody ↓ Similar pulmonary inflammation (70)
Mmp132/2 Bleomycin ↑ Increased pulmonary inflammation (75)
Mmp132/2 Radiation ↓ Decreased pulmonary inflammation (76)
Mmp192/2 Bleomycin ↑ Associated with decreased PTGS2 (83)
Mmp282/2 Bleomycin ↓ Decreased macrophage transition to the M2 phenotype (94)

Definition of abbreviations: FAS, cluster of differentiation 95 [CD95] or apoptosis antigen-1; MMP, matrix metalloproteinase; PTGS2,
prostaglandin-endoperoxide synthase 2; Timp, tissue inhibitors of MMP; WT, wild type.
*Mice genetically deficient in MMPs by gene targeting (or mice overexpressing MMP-9) were evaluated in different models of pulmonary fibrosis
(bleomycin-, radiation-, or FAS-activating antibody–mediated pulmonary fibrosis). Pulmonary fibrosis was measured (usually as total lung collagen levels)
and compared with that in WT mice.
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whether this is the case during the
development of PF is not known.

MMPs Having Potential to
Contribute to PF, but Has Not
Yet Been Studied in Animal
Models of PF

For MMPs that have not been evaluated
using gene-targeted mice in PF models, we
have speculated on their potential activities
based upon what is known about their
activities in other diseases or in in vitro
systems.

MMP-1
MMP-1 (collagenase-1 or fibroblast
collagenase in humans) degrades type I–III
collagens in vitro. Initially, it was thought
that there was no murine homolog of
MMP-1, but subsequently the McolA
(Mmp1A) and McolB (Mmp1B) genes were

identified, and are now thought to be the
murine homologs of MMP-1 (99). Mmp1a
and Mmp1b proteins are 82% identical to
each other. They resemble human MMP-1
with 74% identity at the nucleotide level,
and Mmp1a has 58% amino acid similarity
with MMP-1, making it the least
homologous of any mammalian MMP-1
homolog. MMP-1 is expressed by
fibroblasts, macrophages, bronchial
epithelial cells, and endothelial cells. MMP-1
binds to a2b1-integrin on cell surfaces
(100), which induces signaling via a2b1-
integrin to increase MMP-1 expression
(101). Activation of pro–MMP-1 is
mediated by interactions between a serine
proteinase (urokinase-type plasminogen
activator) and MMP-3 (102).

A single-nucleotide polymorphism in
the MMP1 promoter region at the AP-1
binding site (which increases MMP-1
transcription) has been associated with IPF
(103). In addition, MMP-1 levels are

elevated in plasma samples from patients
with IPF (104), MMP-1 expression in IPF
lung is increased, and MMP-1 is localized
mainly in dysplastic epithelial cells
overlying fibrotic interstitium (105).

MMP-1 activities during PF. The
activities of MMP-1 in regulating lung
fibrotic responses are not clear. Mmp1A2/2

mice have been generated (106), but, to our
knowledge, have not yet been studied in
models of PF. In vitro studies suggest that
MMP-1 has protective activities in IPF.
First, overexpression of human MMP-1
in lung epithelial cells increases their
proliferation, migration, and expression of
hypoxia-inducible factor-1a, and inhibits
their oxidant production and apoptosis
(107). Second, MMP-1 promotes normal
re-epithelialization of acute wounds (108).
Third, osteopontin, a mediator that is
significantly up-regulated in IPF lungs,
reduces MMP-1 expression by lung
fibroblasts and increases their migration
and proliferation in vitro (25). In addition,
one in vivo study reported that MMP-1 has
antifibrotic activities, as plasmid-mediated
expression of human MMP-1 in the livers
of rats with hepatic fibrosis reversed the
fibrosis (109). Whether MMP-1 limited
collagen accumulation in rat livers by
degrading interstitial collagens was not
determined in this study.

MMP-2
MMP-2 (or gelatinase A) cleaves denatured
collagens and basement membranes in vitro,
and is expressed by airway epithelial cells,
macrophages, endothelial cells, lung
fibroblasts, and fibrocytes (22). Pro–MMP-2
is activated by forming ternary complexes
with members of the MT-MMP subfamily
and TIMP-2 on the surfaces of fibroblasts
and macrophages (16, 110). Pro–MMP-2
binds by its hemopexin domain to the
COOH terminus of TIMP-2, which, in
turn, binds via its NH2-terminal inhibitory
domain to a member of the MT-MMP
subfamily. The pro domain of MMP-2 is
then cleaved by an adjacent TIMP-free
MT-MMP molecule, generating active
MMP-2 anchored to the cell surface (111).
MMP-2 expression is increased in IPF
lungs mainly in reactive airway epithelial
cells and myofibroblasts (105, 112, 113),
and close to fibroblastic foci.

MMP-2 potential activities during PF.
Mmp22/2 mice are abnormal in the
unchallenged state, having a 15% slower
growth rate from Postnatal Day 3 to
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Figure 2. Cells that express MMPs and mechanisms or potential mechanisms by which MMPs
regulate pulmonary fibrosis (PF) in murine model systems. MMPs are highly expressed in lung tissues
during fibrosis but vary in their dominant cellular expression (epithelial cell, fibroblast, macrophage,
fibrocyte, or peripheral blood leukocyte), compartmentalization in the lung (airway and airway/alveolar
epithelium, lung interstitium, or blood), and their activity (profibrotic or antifibrotic). MMPs having
overall profibrotic activities (assessed as increased total lung collagen levels) in murine models of PF
include MMP-3, -7, -8, -9, -12, -13, and -28 (shown in the left panel). Based upon their in vitro

activities or activities in other organs, MMP-1, -2, and -11 have potential to promote PF. MMPs having
overall antifibrotic activities (assessed as decreased total lung collagen levels) in models of PF include
MMP-13 and -19. Based upon its in vitro activities or activities in other organs, MMP-1 and -10 have
potential to inhibit PF. Antifibrotic MMPs (or potentially antifibrotic MMPs) are shown in the right panel.
The mechanisms by which MMPs promote or inhibit PF are illustrated in the middle panel. EMT,
epithelial mesenchymal transition; MT1, membrane type 1 metalloprotease.
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adulthood (114). To date, Mmp22/2 mice
have not been studied in models of PF.
However, MMP-2 has potential to promote
IPF pathogenesis by: (1) degrading lung
ECM proteins; (2) promoting EMT; and (3)
regulating Wnt/b-catenin signaling.

MMP-2 is localized close to breaks in
epithelial basement membranes in IPF
lungs, and has been linked to degradation
of basement membranes (115), which
induces angiogenesis (116, 117) and
thereby promotes lung fibroproliferative
responses (118, 119). Fibrotic responses
are linked to endothelial-derived MMP-2.
Vascular endothelial growth factor, an
endothelial cell growth factor and
profibrotic mediator contributing to
bleomycin-mediated PF in mice (120),
induces endothelial release of MMP-2
(121). Endothelial cells shed plasma
membrane–derived vesicles (z300–600
nm in diameter) containing pro- and
active MMP-2 (along with MMP-9,
MT1-MMP, TIMP-1, and TIMP-2) (122).
In a model of canine renal fibrosis,
endothelial-derived extracellular vesicles
expressing MMP-2 degraded renal
basement membranes (123).

Several studies link MMP-2 to EMT.
Transgenic mice overexpressing MMP-2 in
kidney proximal tubular epithelium develop
glomerulosclerosis, largely due to EMT
(124). MMP-2 also promotes EMT in
lens epithelial cells (125) and cardiac
endocardial cushion–derived cells (126).

MMP-2 expression has been linked to
aberrant activation of the Wnt/b-catenin
signaling pathway (127), and Wnt
signaling has been implicated in IPF
pathogenesis (128–130). Silencing of
b-catenin in mice using small interfering
RNA decreases bleomycin-mediated PF,
and reduces pulmonary TGF-b and Mmp-
2 levels (131). It is also noteworthy that
IPF typically develops in aging patients.
Old mice have higher baseline lung levels
of MMP-2 (and MMP-9) and are more
susceptible to bleomycin-mediated PF
than young mice (132). Whether age-
related changes in lung levels of MMP-2
(and MMP-9) contribute to IPF is not
known. There is one report suggesting that
MMP-2 may have protective activities
during fibrotic responses, as bleomycin-
treated mice that received human
umbilical cord endothelial cells
intravenously were protected from PF and
this was associated with increased lung
levels of MMP-2 (133).

MMP-10
MMP-10 (stromelysin-2) is expressed
by endothelial cells, fibroblasts, and
macrophages. MMP-10 expression is
increased in IPF lungs, but the cell types
expressing MMP-10 were not identified
(134). However, in vitro studies show that
human lung fibroblast MMP-10 expression
is up-regulated in human lung fibroblasts
by their binding to type I collagen (135),
but down-regulated as the stiffness of ECM
to which they adhere increases (85).
MMP-10 expression increases during
endothelial cell activation (136, 137).

MMP-10 potential activities in IPF.
Mmp102/2 mice are normal in the
unchallenged state (138), but have not yet
been studied in the bleomycin PF model.
However, MMP-10 expression is increased
in the fibrotic areas of the lungs of rats
treated with cerium oxide (component of
diesel exhaust) (139). MMP-10 promotes
macrophage migration in vitro (140), and
induces polarization of macrophages
toward an M2 phenotype associated with
increased collagenase activity in a skin
wound-healing model (141). Thus, MMP-
10 may have antifibrotic activities in the
lung by increasing macrophage-mediated
collagen degradation.

MMP-11
MMP-11 (stromelysin-3) is expressed by
fibroblasts and activated intracellularly by
a furin-like proconvertase enzyme. The
promoter region of the MMP-11 gene is
organized differently from that of other
MMPs (Table 1). MMP-11 expression has
not been assessed in IPF.

Mmp-11 potential activities during PF.
Mmp112/2 mice have been generated
(142), but have not yet been evaluated in
models of PF. However, MMP-11 has
potential to contribute to IPF, as MMP-11
activates Notch signaling (143), and Notch
activation promotes myofibroblast
differentiation (144).

MT-MMPs
MT1-MMP (MMP-14) is responsible for
most of the cleavage of type I collagen that
is associated with human and murine
pulmonary fibroblasts (145). Whether this
is the most important type I collagenase
produced by pulmonary fibroblasts in the
setting of IPF is not known.

MT-MMP expression in patients with
IPF. MT1-MMP (MMP-14) is the most
highly expressed MT-MMP in IPF lungs

(146). MT1-MMP (MMP-14) and MT2-
MMP (MMP-15) are localized in alveolar
epithelial cells, MT3-MMP (MMP-16) in
fibroblastic foci and alveolar epithelial cells,
and MT5-MMP (MMP-24) in basal
bronchiolar epithelial cells and areas of
squamous metaplasia in IPF lungs (146).

Potential activities of MT-MMPs in
IPF. MT1-Mmp2/2 mice develop severe
skeletal abnormalities and have impaired
alveolar development at 1 month of age
with an approximately 40% decreases in
alveolar surface area, and increased mortality,
which precludes their analysis in models of
PF (147, 148). However, MT1-MMP has the
potential to limit the development or
progression of PF as MT1-MMP is a potent
collagenase in other organs (149) and the
dominant collagenase expressed by fibroblasts
(145). MT1-MMP may also lead to reduced
bleomycin-mediated PF and promote lung
repair by increasing the recruitment and
engraftment of mesenchymal stem cells in
the murine lung (150). Alternatively, MT1-
MMP may promote fibrotic responses to
injury by activating latent TGF-b by
cleaving latency-associated peptide (151)
and/or inhibiting normal repair processes
in the injured lung.

MT2-Mmp2/2, MT3-Mmp2/2, MT4-
Mmp2/2, and MT5-Mmp2/2 mice (152)
have been generated, but there are currently
no published reports on their phenotype
in PF models. To our knowledge, MT6-
Mmp2/2 mice (Mmp252/2 mice) have not
yet been generated.

TIMPs
The four members of the TIMP family
(TIMPs 1–4) are the most important
endogenous inhibitors of MMPs. The
aminoterminal domain of TIMPs binds to
and inhibits the active site of MMPs. Each
TIMP inhibits most MMPs, suggesting
redundancy in their function. However, the
MT-MMPs are inhibited predominantly by
TIMP-2 and TIMP-3. In addition, the
carboxyterminus of TIMP-1 forms a
complex with the hemopexin domain of
pro–MMP-9 to prevent pro–MMP-9
activation by stromelysin (153).

Timp-12/2, Timp-22/2, and Timp32/2

mice have similar pulmonary fibrotic
responses to bleomycin as WT mice (154).
Although Timp42/2 mice are normal in the
unchallenged state (155), there are no
published studies of their phenotype in PF
models. Studies of TIMP compound–null
mice in PF models are needed to better
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understand the contributions of these
inhibitors to lung fibrotic responses to injury.

Caveats of Interpreting
Results of Studies of MMP
Gene–Targeted Mice

There are caveats when interpreting results
of studies of MMP gene–targeted mice in
models of PF. The most commonly studied
model of PF in mice (instillation of
bleomycin into the lungs) has limitations as
a model system for IPF. In particular,
bleomycin induces a robust acute
pulmonary inflammatory response in mice
(35) whereas most patients with IPF do not
have substantial pulmonary inflammation.
Thus, the lack of a specific MMP might
influence the results of the bleomycin model
due to its role in the acute inflammatory
phase of the model. In addition, unlike
human IPF, bleomycin-mediated PF is
self-limiting and/or resolves over time in
some strains of mice (141). Ideally, MMP
gene–targeted mice should be studied in
other models of PF (156) and better models
of IPF when these are developed.

The results of studies of MMP
gene–targeted mice in murine models
should be interpreted with caution as some
MMPs that have been shown to be pro-
fibrotic in mice have antifibrotic activities
when tested in human cell culture systems.
Also, given the functional redundancy that
might exist within the MMP family (157)
studies of MMP-deficient mice in models of
PF must also consider the possibility that
functional compensation occurs and that
this could hinder our understanding of the
roles of individual MMPs during PF. To
address these issues, studies will need to
alter the expression of individual MMPs in
a cell-type and temporally-conditional
manner. Also, in contrast to MMP-deficient
mice, complete loss of expression of an
MMP gene in humans is unlikely. Similarly,
studying transgenic mice that over express
an MMP also has limitations as an IPF
model system as the expression level
achieved may be higher or lower than that
occurring in IPF lungs and/or in a different
cell type from the main MMP-expressing
cell(s) in IPF lungs. The response of an
MMP gene–targeted mouse to a profibrotic
stimulus may depend on how the animal
was generated, other functions of the MMP
that contribute to the observed phenotype,
and potentially different expression

patterns or functions of murine versus
human MMPs. Thus, the functions of
MMPs in injury processes may be cell,
organ, and species specific.

Therapeutic Targeting of
MMPs for IPF

The evidence from studies of MMP
gene–targeted mice in animal models of PF
indicates that many MMPs have potential
as new therapeutic targets for IPF.
Although relatively nonselective MMP
inhibitors (MMPIs) had efficacy at limiting
PF in murine models (158, 159), MMPIs
had poor efficacy in randomized clinical
trials for various cancers, and were
associated with limiting side effects (160). In
particular, dose-limiting musculoskeletal pain
was a problematic off-target effect, although
this was partly due to inhibition of other
metalloproteinases, including proteinases
with a disintegrin and a metalloproteinase
domain (ADAMs) and ADAMs with
a thrombospondin domain (ADAMTSs)
(161). Thus, the development of more
selective MMPIs, selective lung targeting, or
other approaches to reduce MMP levels or
activity in the lung might be a more effective
therapeutic approach for IPF (162).

Inhibition of Profibrotic MMPs in
the Lung
Potential rational targets for specific MMP
inhibition based upon studies of gene-
targeted mice in PF models include MMP-3,
-7, -8, and -28. However, the beneficial
activities of MMP-7 in host defense (163)
and MMP-8 in inhibiting the growth of
experimental tumors in mice (164) may
make direct systemic inhibition of these
two MMPs problematic as a therapeutic
strategy for IPF. Direct MMP inhibition
options include small-molecule
hydroxymate inhibitors that chelate the
Zn21 ion at the active site. However, thus
far, the specificity of many of these analogs
is limited. Monoclonal antibodies blocking
MMP activity are very specific and well
tolerated (165, 166), but expensive and
require parenteral administration. Using
antisense nucleic acids that bind and silence
mRNA molecules or ribosomes are another
potential approach to inhibiting MMPs.
Other approaches having potential as IPF
therapeutics include: (1) activity-based
probes that bind and only inhibit active
MMPs (167); (2) novel biomaterials, such

as injectable hydrogels that release specific
inhibitors upon proteolytic release by the
specific active MMP being targeted (168);
and (3) interfering with upstream inducers
of MMP activity.

Augmenting the Expression of
Antifibrotic MMPs in the Lung
Augmenting the expression of antifibrotic
MMP-13 and -19 may have therapeutic
potential in IPF. In chondrocytes, two
transcription factors, the CCAAT enhancer
binding protein and runt-related
transcription factor 2 induce MMP-13
promoter activity (169). It may be possible
to inhibit lung fibrosis by increasing
expression of CCAAT enhancer binding
protein b and runt-related transcription
factor 2 to increase MMP-13 expression in
pulmonary cells. The MMP-19 promoter
region is very similar to that of other
MMPs, as it contains a TATA box, an AP-1
binding site, and a putative PEA-3 site.
However, a region further upstream in the
MMP-19 promoter has a large effect on
transcriptional activity (170), and, unlike
other MMPs, many cytokines (e.g., TNF-a,
IL-6, TGF-b, IL-8, IL-15, IL-8, and CCL5)
do not increase transcription of MMP19
in keratinocytes. Thus, increasing the activity
of the as-yet-unidentified transcription
factors that bind to this upstream promoter
element could selectively up-regulate the
expression of MMP-19 and limit the
progression of fibrotic responses to injury.

Epigenetic Approaches
Mechanisms of epigenetic regulation of gene
expression include DNA methylation,
histone acetylation or methylation, RNA
methylation, and microRNA regulation.
MMP expression is regulated by epigenetic
mechanisms in cells and also in organs in
diseases other than IPF. IPF is a disease
associated with aging and a history of
cigarette smoke exposure, which both
influence epigenetic modifications of genes.
There is a growing body of evidence that
epigenetic regulation of genes contributes to
IPF (171–177). DNA methylation occurs at
CpG sites (in which cytosine nucleotide
occurs next to a guanine nucleotide) in
promoter regions, leading to silencing of
gene expression. However, MMPs that are
clustered in the 11q22.3 chromosomal
region (MMP-1, -3, -7, -8, -10, -12, -13, and
-20) have relatively few CpG islands, and
DNA methylation is unlikely to play a large
role in regulation of their expression.
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Nonetheless, analysis of global changes
in DNA methylation in IPF tissue
demonstrated hypomethylation of the
MMP7 promoter, associated with increased
MMP-7 expression (176).

Histone acetylation/deactetylation and
microRNA regulation are linked to MMP
regulation. Histone deacetylase 2 reduces
histone-3 and -4 acetylation in cell lines,
thereby reducing MMP-9 expression (178).
Hepatic stellate cells (a source of
myofibroblasts during hepatic fibrosis)
suppress MMP-9 and -13 expression by up-
regulating histone deacetylase-4 during their
differentiation (179). In aortic smooth
muscle cells, oxidized low density
lipoprotein up-regulates microRNA 29b
expression, which inhibits transcription of
DNA methyltransferase 3B to increase
MMP-2 and -9 expression (180). If MMP
expression is shown to be regulated by
epigenetic mechanisms in IPF lungs,
manipulating the epigenetic control of MMP
gene expression (increasing the expression of
protective MMPs or silencing the expression
of profibrotic MMPs) could be another
promising therapeutic avenue for IPF.

Exosite Targeting
Exosite-masking therapies bind and protect
the cleavage site of the specific MMP

substrate being targeted. For example, the
recombinant hemopexin domain of MT1-
MMP efficiently competes with full-length
MT1-MMP for exosite binding, and thereby
inhibits collagen cleavage by full-length
MT1-MMP (181). By altering the
noncatalytic domains of ADAMTS, the
capacity of ADAMTS to recognize and
cleave exosites can be modified (182). It
is also possible to block the interaction
of a specific MMP with a key substrate
that promotes IPF pathogenesis while
preserving its capacity to cleave other
substrates. This may be an important
approach, as individual MMPs generally
have several key substrates, and MMP-
mediated cleavage of some of these
substrates may have beneficial activities for
the host (including antitumor and host
defense activities). However, many of the
crucial substrates for many MMPs
implicated in IPF have yet to identified, and
this information is needed before exosite
targeting can advance as a therapeutic
approach for IPF.

Future Directions

Because of the complexity of the expression
and regulation of MMPs, there is still much

to learn about MMP activity during
pulmonary fibrotic responses to injury.
MMPs are expressed in different tissues and
various cell types, and can have beneficial
and/or deleterious activities in different
organs. Future investigations should focus
on tissue-specific regulation of MMP
expression. The crucial activators of most
pro-MMPs are not known, and these
activators may also prove to be important
therapeutic targets. Activation of MMPs
in vivo often involves cell surface adapter
proteins that bring together an MMP and
its substrate to increase their effective
concentration. In many cases, these adapter
proteins are unknown and may also prove
to be highly specific therapeutic targets. The
mechanism of epigenetic changes in MMP
expression and activity in humans is
another important area ripe for future
investigation. The development of more
specific MMPIs is also crucial for
developing effective therapies lacking
unwanted off-target effects. However, the
tight regulation of MMP expression and
minimal contribution to normal tissue
homeostasis make MMPs promising targets
for manipulation in IPF. n

Author disclosures are available with the text
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Zardi L, Murphy G. The role of the C-terminal domain of human
collagenase-3 (MMP-13) in the activation of procollagenase-3,
substrate specificity, and tissue inhibitor of metalloproteinase
interaction. J Biol Chem 1997;272:7608–7616.

8. Chung L, Dinakarpandian D, Yoshida N, Lauer-Fields JL, Fields GB,
Visse R, Nagase H. Collagenase unwinds triple-helical collagen prior
to peptide bond hydrolysis. EMBO J 2004;23:3020–3030.

9. O’Farrell TJ, Pourmotabbed T. The fibronectin-like domain is required for
the type V and XI collagenolytic activity of gelatinase B. Arch Biochem
Biophys 1998;354:24–30.

10. Chen EI, Li W, Godzik A, Howard EW, Smith JW. A residue in the S2
subsite controls substrate selectivity of matrix metalloproteinase-2
and matrix metalloproteinase-9. J Biol Chem 2003;278:
17158–17163.

11. Haas TL, Stitelman D, Davis SJ, Apte SS, Madri JA. Egr-1 mediates
extracellular matrix-driven transcription of membrane type 1 matrix
metalloproteinase in endothelium. J Biol Chem 1999;274:22679–22685.

12. Yan C, Boyd DD. Regulation of matrix metalloproteinase gene
expression. J Cell Physiol 2007;211:19–26.

13. Van Wart HE, Birkedal-Hansen H. The cysteine switch: a principle of
regulation of metalloproteinase activity with potential applicability to
the entire matrix metalloproteinase gene family. Proc Natl Acad Sci
USA 1990;87:5578–5582.

14. Owen CA, Hu Z, Barrick B, Shapiro SD. Inducible expression of tissue
inhibitor of metalloproteinases-resistant matrix metalloproteinase-9
on the cell surface of neutrophils. Am J Respir Cell Mol Biol 2003;29:
283–294.

15. Owen CA, Hu Z, Lopez-Otin C, Shapiro SD. Membrane-bound matrix
metalloproteinase-8 on activated polymorphonuclear cells is
a potent, tissue inhibitor of metalloproteinase-resistant collagenase
and serpinase. J Immunol 2004;172:7791–7803.

16. Strongin AY, Collier I, Bannikov G, Marmer BL, Grant GA, Goldberg GI.
Mechanism of cell surface activation of 72-kDa type IV collagenase:
isolation of the activated form of the membrane metalloprotease.
J Biol Chem 1995;270:5331–5338.

17. McKeown S, Richter AG, O’Kane C, McAuley DF, Thickett DR.
MMP expression and abnormal lung permeability are important
determinants of outcome in IPF. Eur Respir J 2009;33:77–84.

TRANSLATIONAL REVIEW

594 American Journal of Respiratory Cell and Molecular Biology Volume 53 Number 5 | November 2015

http://www.atsjournals.org/doi/suppl/10.1165/rcmb.2015-0020TR/suppl_file/disclosures.pdf
http://www.atsjournals.org


18. Yamashita CM, Dolgonos L, Zemans RL, Young SK, Robertson J,
Briones N, Suzuki T, Campbell MN, Gauldie J, Radisky DC, et al.
Matrix metalloproteinase 3 is a mediator of pulmonary fibrosis.
Am J Pathol 2011;179:1733–1745.

19. Maeda S, Dean DD, Gomez R, Schwartz Z, Boyan BD. The first stage of
transforming growth factor beta1 activation is release of the large
latent complex from the extracellular matrix of growth plate
chondrocytes by matrix vesicle stromelysin-1 (MMP-3). Calcif Tissue
Int 2002;70:54–65.

20. Heljasvaara R, Nyberg P, Luostarinen J, Parikka M, Heikkilä P, Rehn M,
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190. Anglard P, Melot T, Guérin E, Thomas G, Basset P. Structure and
promoter characterization of the human stromelysin-3 gene. J Biol
Chem 1995;270:20337–20344.

191. Hess J, Porte D, Munz C, Angel P. AP-1 and Cbfa/runt physically
interact and regulate parathyroid hormone–dependent MMP13
expression in osteoblasts through a new osteoblast-specific
element 2/AP-1 composite element. J Biol Chem 2001;276:
20029–20038.

192. Reunanen N, Li SP, Ahonen M, Foschi M, Han J, Kähäri VM.
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