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Abstract: Matrix metalloproteinases (MMPs) are proteolytic enzymes that degrade proteins of the
extracellular matrix and the basement membrane. Thus, these enzymes regulate airway remodeling,
which is a major pathological feature of chronic obstructive pulmonary disease (COPD). Furthermore,
proteolytic destruction in the lungs may lead to loss of elastin and the development of emphysema,
which is associated with poor lung function in COPD patients. In this literature review, we describe
and appraise evidence from the recent literature regarding the role of different MMPs in COPD, as
well as how their activity is regulated by specific tissue inhibitors. Considering the importance of
MMPs in COPD pathogenesis, we also discuss MMPs as potential targets for therapeutic intervention
in COPD and present evidence from recent clinical trials in this regard.

Keywords: matrix metalloproteinases (MMPs); chronic obstructive pulmonary disease (COPD);
tissue inhibitors of MMPs (TIMPs)

1. Matrix Metalloproteinases (MMPs)

Extracellular matrix (ECM) metalloproteinases (MMPs), or matrixins, are the major
proteases in mammals. MMPs, together with astacins, ADAMs/adamalysins and seralysins,
belong to the family of zinc endopeptidases collectively referred to as metzicins [1]. Their
common feature is a highly conserved HEXXHXXGXXH(H/D) domain containing three
histidines that bind to Zn2+ at the catalytic site and a conserved methionine sequence
(XBMX) on the carboxyl side of the active site, forming a Met-turn, which is responsible for
their final conformation [2–5].

MMPs are proteolytic enzymes characterized by their ability to degrade ECM proteins
and the basement membrane. For each of the above components, there is at least one
enzyme of the MMP family capable of degrading it. MMPs play an important role in regu-
lating remodeling of the ECM to facilitate immune cell activity and regulate cell behavior by
influencing biochemical and physical cues [6–9]. Thus, MMPs are involved in physiological
processes such as morphogenesis, tissue regeneration, wound healing and angiogene-
sis [10,11], as well as in pathological processes such as osteolysis, arthritis/osteoarthritis,
invasive cancer and fibrotic diseases [12–14].

In vertebrates, there are 28 different MMPs; however, only 23 MMPs are expressed in
human tissues that are synthesized as pre-proenzymes [15,16]. Their architecture consists
of an N-terminal signal peptide with variable length, a latency-maintaining pro domain,
a catalytic domain with a Zn2+, a linker-“hinge” region and a C-terminal domain [16,17]
(Figure 1). In all MMPs, apart from MMP-7 and MMP-26, there is a hemopexin-like domain
at the C-terminus, which is essential for some of their actions (e.g., collagen cleavage).
Additionally, in transmembrane MMPs, there is a transmembrane domain (TM) and a short
cytoplasmic domain or a glycosylphosphatidylinositol (GPI) anchor that binds them to the
cell surface. The structure of MMP-2 and MMP-9 differs from that of other MMPs, as in
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their catalytic domain, they contain cysteine repeats that resemble collagen binding sites of
type II fibronectin [18,19] (Figure 1).
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membrane domain (TM) and a short cytoplasmic domain or a glycosylphosphatidylinositol (GPI) 
anchor that binds them to the cell surface. Gelatinases differ from the other MMPs, as in their cata-
lytic domain, they contain cysteine repeats that resemble collagen binding sites of type II fibronectin. 
Red dots represent histidines. Blue squares represent Type II fibronectin repeats. MT: membrane-
type. 

There are several ways to categorize MMPs. According to bioinformatic analysis, 
MMPs can be subdivided in five categories [16]: (1) MMPs anchored to the cellular mem-
brane by a C-terminal GPI moiety (MMP-11, MMP-17 and MMP-25), (2) MMPs with a 
transmembrane domain (MMP-14, MMP-15, MMP-16 and MMP-24), (3) MMPs with three 
fibronectin-like inserts in the catalytic domain (MMP-2 and MMP-9), (4) non-furin-regu-
lated MMPs (MMP-1, MMP-3, MMP-7, MMP-8, MMP-10, MMP-12, MMP-13, MMP-20 
and MMP-27) and (5) all other MMPs (MMP-19, MMP-21, MMP-23, MMP-26 and MMP-
28). Based on their sequential similarity and domain organization shown in Figure 1, as 
well as by their substrate specificity, MMPs are classified into six groups: collagenases, 
stromalysins, matrilysins, gelatinases, membrane-type MMPs and other MMPs (Table 1).  

  

Figure 1. The architecture of matrix metalloproteinases (MMPs). MMPs consist of an N-terminal
signal peptide with variable length, a latency-maintaining pro domain, a catalytic domain with
a Zn2+, a linker-“hinge” region and a C-terminal domain. In all MMPs, apart from MMP-7 and
MMP-26, there is a hemopexin-like domain at the C-terminus. In transmembrane MMPs, there is
a transmembrane domain (TM) and a short cytoplasmic domain or a glycosylphosphatidylinositol
(GPI) anchor that binds them to the cell surface. Gelatinases differ from the other MMPs, as in
their catalytic domain, they contain cysteine repeats that resemble collagen binding sites of type II
fibronectin. Red dots represent histidines. Blue squares represent Type II fibronectin repeats. MT:
membrane-type.

There are several ways to categorize MMPs. According to bioinformatic analysis,
MMPs can be subdivided in five categories [16]: (1) MMPs anchored to the cellular mem-
brane by a C-terminal GPI moiety (MMP-11, MMP-17 and MMP-25), (2) MMPs with
a transmembrane domain (MMP-14, MMP-15, MMP-16 and MMP-24), (3) MMPs with
three fibronectin-like inserts in the catalytic domain (MMP-2 and MMP-9), (4) non-furin-
regulated MMPs (MMP-1, MMP-3, MMP-7, MMP-8, MMP-10, MMP-12, MMP-13, MMP-20
and MMP-27) and (5) all other MMPs (MMP-19, MMP-21, MMP-23, MMP-26 and MMP-
28). Based on their sequential similarity and domain organization shown in Figure 1, as
well as by their substrate specificity, MMPs are classified into six groups: collagenases,
stromalysins, matrilysins, gelatinases, membrane-type MMPs and other MMPs (Table 1).

Traditionally, substrate sequencing is viewed as the guiding principle for protease
specificity. However, it has been demonstrated that the substrate specificity of MMPs is not
guided by sequencing alone, but there are other substrate features, such as local triple-helix
instability, possibly in combination with subtle variations in sequence, that may influence
MMP–substrate specificity that needs to be further investigated [20]. For example, it has
been shown that MMP-1 hydrolyzes type III collagen more rapidly than type I. MMP-2,
which is primarily a gelatinase, can act like collagenase, albeit in a weaker manner [21].
MMP-8 and MT1-MMP (MMP-14) show a slight preference for type I collagen compared
with type III. Type V collagen is hydrolyzed by MMP-2 and MMP-9 but not MMP-1, MMP-8
or MMP-13, whereas type XI collagen is cleaved by MMP-1, MMP-2 and MMP-9 but not by
MMP-13 [20].
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Table 1. Members of the matrix metalloproteinase (MMP) family.

Nomenclature MMP Nr Substrate/Action
Collagenases

Intermediate space
collagenase I MMP-1 Type I, II, III, VII and X collagens; entactin; aggrecan; proteoglycans; β-casein;

gelatin; tenascin; myelin basic protein; ovostatin

Collagenase of neutrophils MMP-8 Type I, II and III collagens; aggrecan; proteoglycans; fibronectin; aggrecan; ovostatin

Collagenase 3 MMP-13 Type I, II, III, IV, IX, X and XIV collagens; tenascin C isoform; laminin; plasminogen;
osteonectin; serine protease inhibitors; fibrillin-1; aggrecan core protein

Collagenase 4 MMP-18 Type I collagen, gelatin
Stromalysins

Stromalysin 1 MMP-3 Aggrecan; fibronectin; laminin; gelatins; type III, IV, IX and X collagens; decorin,
myelin; ovastatin; casein; osteonectin; elastin; proteoglycans

Stromalysin 2 MMP-10 Aggrecan; fibronectin; laminin; elastin; type III, IV, V, IX and X collagens; conjugate
protein; proteoglycans; carboxymethyl transferrin

Stromalysin 3 MMP-11 Moderate activity against fibrinogen, laminin, type IV collagen, aggrecan, gelatins,
serpins, a1 proteinases, a1 antitrypsin inhibitors

Matrilysins

Matrilysin MMP-7 Aggrecan; fibronectin; gelatins; type I, II, IV and V collagens; elastin; entactin;
syndecan-1; laminin; tenascin; myelin; Faz ligand; pro-TNF-a; E-cadherin

Matrilysin-2 or endometase MMP-26 (in vitro): type IV collagen, fibronectin, gelatin, vitronectin, a1-antipripsin, b-casein,
a2-macrogloboulin

Gelatinases

Gelatinase A MMP-2 Gelatins; type I, IV, V, VII, X and XI collagens; fibronectin; laminin; aggrecan; elastin;
tenascin; myelin basic protein; vitronectin

Gelatinase B MMP-9 Gelatins; type IV, V and XI collages; entactin; elastin; aggrecan; cytokines; decorin;
casein; chemokines; IL-8; IL-1b; myelin, casein

Membrane-Type

MT1-MMP MMP-14 Fibronectin, laminin-1, vitronectin, cartilage proteoglycans, fibrilin-1, tenascin,
entactin, aggrecan, a1-proteinase inhibitor, a2-macrogloboulin

MT2-MMP MMP-15 Laminin, fibronectin, entactin, aggrecan, gelatin, vitronectin, tenascin

MT3-MMP MMP-16 Gelatin, casein, type III collagen, laminin, fibronectin

MT4-MMP MMP-17 Gelatin, fibrinogen, fibrin

MT5-MMP MMP-24 Fibronectin, gelatin, proteoglycans

MT6-MMP (GPI-anchored) MMP-25 Type IV collagen, fibronectin, gelatin, proteoglycans
Other MMPs

Macrophage metalloelastase MMP-12
Gelatin type I; elastin; fibronectin; laminin; vitronectin; proteoglycans; elastin; type I,

IV and V collagens; entactin; ostentation; aggrecan; myelin; fibrinogen;
a1-antitrypsin

RASI-1 MMP-19 Type I and IV collagens, laminin, nitrogen, tenascin-C isoform, entactin, aggrecan,
fibronectin, gelatin type I

Enamelysin MMP-20 Ameloblasts, aggrecan, odontoblasts, amelogenin

Cysteine array (CA) MMP MMP-23 Gelatin

MMP-27 Gelatin

Epilysin MMP-28 Casein

2. Regulation of MMP Activity

MMPs are expressed by a variety of cell types, such as macrophages, fibroblasts,
endothelial cells, keratinocytes, etc., in response to hormones, cytokines and developmental
factors. However, MMP-2 and MT-1 MMP are ubiquitous in a variety of tissues, and unlike
other MMPs, they are constitutively expressed [22]. Because MMPs are critical enzymes
involved in a variety of cellular processes, their activity is tightly controlled at the level of
transcription and pro-peptide activation and by tissue inhibitors of MMPs (TIMPs).
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The expression of MMPs, apart from polymorphisms, in the promoter of MMP
gene [23], is also regulated by epigenetic modifications at the level of transcription [24,25].
The promoters of at least 14 MMPs and those of all TIMPs contain CpG islands prone
to methylation. The methylation level of certain CpG sites has been associated with the
level of transcription of MMPs and correlated with the incidence and severity of inflam-
matory diseases such as COPD and asthma [26,27]. Additionally, transcriptional control
has been observed via histone modifications and chromatin remodeling, while at the post-
transcriptional level, several microRNAs (miRNAs) have been implicated [28,29]. For
example, in COPD, significantly lower expression of miR-452 has been linked to increased
expression of MMP-12, which is known to be an important effector of smoking-related
diseases [30,31]. Experimental antagonism of miR-452 in differentiated monocytic cells
resulted in increased expression of MMP-12 [31].

The next level of regulation of MMP activity is post-translational transformation from
pre-proMMP to their active form [32]. It is noteworthy that most MMPs are not stored in
the producing cells but are secreted immediately after their synthesis as latent zymogens,
which are activated in the extracellular environment by proteolytic removal of the pro
peptide [16]. After secretion, they can also accumulate in the cells through re-entry, where
they interact with intracellular molecules to regulate signaling processes [33]. Intracellular
MMPs are activated through oxidative stress, which induces conformational changes that
activate MMPs even in the presence of the pro peptide, post-translational modifications by
phosphorylation and proteolytic cleavage by furins [21]. There are also membrane-type
MMPs (MT-MMPs) that are anchored to the cell surface via a transmembrane domain, a
GPI or an N-terminal signal anchor [21]. MT-MMPs undergo intracellular activation by
furin-like convertases, then proceed to the cell surface, where they can cleave and activate
other pro-MMPs. MT-1 MMP dimer interacts with TIMP-2 to activate pro-MMP-2 on the
cell surface [34].

MMP activity is further controlled by mechanisms such as compartmentalization
(Figure 2). MMPs are classically viewed as extracellularly localized, but they have been
found in every cellular compartment interacting with other proteins, proteoglycan core
proteins and/or their glycosaminoglycan chains, as well as with other molecules [33,35,36].
They may also be subjected to endocytosis following secretion by LDL-related protein 1
receptor binding for MMP-2, MMP-9 and MMP-13 and by caveolae for MT-1 MMP [37]. In
plasma, MMP activity is inhibited by α2-macroglobulin (A2M) [38]. Finally, glycosylation
and other post-translational modifications may also affect the activity of MMPs, as well as
their localization and their interaction with substrates and other proteins [32].

The enzymatic action of activated MMPs in tissues is regulated by endogenous
TIMPs [39]. TIMPs are produced by the same cells that produce MMPs; in addition
to inhibiting active MMPs, they can also behave as growth factors in specific cell types
to mediate cell signaling [40]. To date, four members of the family have been confirmed:
TIMP-1, TIMP-2, TIMP-3 and TIMP-4 [14,41]. All mammalian TIMPs consist of two distinct
domains: an N-terminal domain of about 135 amino acids and a C-terminal domain of
about 65 residues; they show great similarities in the amino acid sequence [41,42].

The presence of Cys at specific positions in the molecule results in the development
of disulfide bonds, which are responsible for both their tertiary structure and molecular
stability [4,43]. TIMPs bind non-covalently to MMPs in a 1:1 ratio and regulate their
activity. Through their N-terminal tail, they bind to the active site of MMPs, rendering
them inactive [39]. Of most importance is the integrity of the TIMP molecules, as even
partial proteolysis renders them ineffective. However, in the process of complexation with
MMPs, TIMPs may interact with several binding sites on MMPs, as well as the catalytic
domain (CAT), forming an inhibitory complex. Although in the process of complexation
with MMPs, the N-terminal region binds the CAT of the enzymes, it is believed that an
interaction between C-terminal end regions of TIMPs and MMPs occurs first [44]. Moreover,
the C terminus of TIMPs may interact with multiple binding sites of MMPs, such as the
hemopexin domain (HPX), to regulate the functional properties of MMPs [45].
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TIMPs play a significant role in inflammatory and cardiovascular diseases, as well as
in cancer, as they can directly modulate ECM turnover and cell behavior [15]. The most
well-studied inhibitors are TIMP-1 and TIMP-2. TIMP-1 is a mannose-rich glycoprotein
with a molecular mass of 23 kDa, while TIMP-2, with a molecular mass of 22 kDa, is not
glycosylated. TIMP-4 is a 22 kDa amino acid polypeptide with several N-glycosylated
sites [46]. The action of TIMP-3, which has a molecular mass of 21 kDa, is not limited
to the dissection of MMPs. TIMP-3 exhibits inhibitory action on a wide spectrum of
substrates (e.g., proteins in the extracellular space), and high levels of TIMP-3 may affect
the surfaceome, identifying deregulated molecular pathways [47,48]. TIMP-1, TIMP-2 and
TIMP-3 interact with low-density lipoprotein receptor-related protein 1 (LRP-1), leading
to TIMP endocytosis. Sulfated glycosaminoglycans antagonize the binding of LRP-1 to
TIMP-3, thus blocking the endocytosis of the enzyme and affecting its activity at high GAG
concentrations [47,49,50]. TIMP-1, TIMP-2 and TIMP-4 are secreted, whereas TIMP-3 is
associated with the ECM [41,51]. Therefore, the four TIMPs vary in their regulation, affinity
and mechanism of action.

3. MMPs in COPD

Chronic obstructive pulmonary disease (COPD) is one of the main causes of human
mortality globally. It is a chronic inflammatory disease characterized by structural remod-
eling of the airways and alveolar destruction. Alveolar damage is the result of excessive,
uncontrolled and persistent proteolysis, leading to the degradation of selective components
of the ECM. Several studies have shown that loss of elastin rather than loss of fibrillar
collagen due to proteolytic destruction is the cause of the disease and the development of
emphysema [52–54]. Elastolysis caused by specific MMPs produced by macrophages leads
to poor lung function in COPD patients [55,56].

Cigarette smoke (CS) exposure is the most commonly encountered risk factor for
COPD. Chronic smoking is associated with continuous recruitment of inflammatory cells
and release of inflammatory mediators, such as MMPs, neutrophil elastase, chemokines,
cytokines and reactive oxygen species. Epithelial cells and macrophages activate fibroblasts
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by releasing mediators, such as TGFβ, leading to airway remodeling. In addition, CS
impairs structural cell function and initiates the EMT, a process that leads to endothelial
cell dysfunction, which hampers tissue repair and eventually leads to fibrosis [57].

The number of macrophages appears to be upregulated in lungs of smokers compared
to non-smokers [58], while increased macrophage influx has been associated with COPD
severity [59]. However, the exact role of macrophages in COPD remains elusive due to
their functional heterogeneity [60]. M1 macrophage phenotype seems rather harmful,
contributing to ECM deposition by producing profibrotic cytokines that promote myofi-
broblast formation [61,62], while M2 macrophages provide benefits by clearing excess ECM
deposition [63]. Nonetheless, in long-term inflammatory conditions, such as the causatives
of COPD, macrophages promote persistent ECM degradation. For example, macrophages
in bronchoalveolar lavage (BAL) of COPD smokers are more prone to degrade elastin than
macrophages from healthy individuals due to increased MMP activity [56,64]. Accordingly,
in several studies in humans and mice, MMPs, particularly macrophage-derived MMPs,
have been associated with the pathogenesis of COPD. MMPs (Table 1) were shown to pro-
mote inflammation and disease progression by influencing macrophage activation rather
than acting directly to degrade elastin [56,65]. The primary role of MMPs is to degrade the
ECM; however, they can act on many more substrates than the ECM and have multiple
modes of action. Therefore, MMPs can lead to alveolar destruction either by directly de-
grading the ECM or indirectly by tuning the proteolytic phenotype of macrophages, as may
be the role of MMP-10 and MMP-28 [33]. Furthermore, MMPs, through their exosites, bind
to different macromolecules and are able to control cellular activities without functioning
as proteinases, as demonstrated for MMP-12 [33].

Regulation of MMP production in COPD may occur at a transcriptional level; it has
been shown that several proteins, including early-growth response gene product 1 (EGR1),
nuclear factor kappa B (NFκB), globin transcription factor 1 (GATA1), activator protein 1
family members (AP-1) and signal transducer and activator of transcription 3 (STAT3C),
affect the MMP gene family. CS extract induced Egr-1 protein expression and increased
Egr-1 DNA-binding activity in human lung fibroblasts [66]. Treatment with a mixture of
tumor necrosis factor (TNF)-α, interleukin (IL)-1β and interferon (IFN)-γ resulted in an
increase in the activity of MMP-2 in lung fibroblasts from EGR1 control (+/+) mice but was
not detected in that of EGR1 null (−/−) mice, whereas MMP-9 was regulated by EGR1 in
a reverse manner [66].

A summary of the role of MMPs in COPD is shown in Table 2.

Table 2. Role of MMPs and TIMPs in COPD.

A. Collagenases in COPD

MMP-1 Elevated in serum of COPD patients and corelates with disease severity sputum levels are increased in smokers and patients with
more advanced COPD.

MMP-8

Elevated in sputum of COPD patients; high levels of mRNA and protein expression in PBMCs and plasma from COPD patients and
higher expression during exacerbations; detected in exhaled breath condensate of COPD patients; increased in serum of patients with
atopic COPD compared with non-atopic COPD; mediates the inflammatory response by inducing neutrophil apoptosis, making COPD

patients more susceptible to acute exacerbation due to the effect of allergens.

MMP-13
Upregulated in patients with COPD; involved in COPD exacerbations and elevated in smokers after viral infections;

MMP-13-mediated cleavage of α-1 antitrypsin reduce sMMP-13 activity and protects against lung damage; targeting MMP-13 through
specific inhibitors or AAT therapies seems beneficial for the treatment of COPD.

B. Stromalysins in COPD

MMP-3
Elevated in COPD patients; high levels contribute to excessive extracellular matrix degradation and worse lung function; serum levels
were not found to be elevated in smokers; concentration in BAL is associated with CT markers of small airway disease and related to

the severity of emphysema.

MMP-10

Elevated in the lungs of COPD patients; expressed by macrophages and CD68-positive cells in the lungs and, to a lesser extent, by
epithelial cells in response to acute inflammatory conditions; macrophage-derived MMP-10 mitigates the proinflammatory response by

controlling macrophage activation by restraining M1 polarization and promoting the ability of M2 macrophages to control the
expression of gelatinolytic MMPs, particularly MMP-13; its expression is associated with small airway disease and the severity of

emphysema.
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Table 2. Cont.

C. Matrilysins in COPD

MMP-7
Expressed by the mucosal epithelium and macrophages; increased in the blood of COPD patients compared to healthy subjects and
associated with deterioration of lung function; an SNP in the promoter of the MMP-7 gene (rs1156818) is associated with a high risk of

COPD; serum levels are elevated in patients with emphysema and correlated with GOLD stages.
D. Gelatinases in COPD

MMP-2

Elevated in serum of stable COPD patients compared with asthmatic patients and controls, suggesting MMP-2 as a potential biomarker
for COPD; a positive fold change in MMP-2 expression was detected by mass spectrometric analysis of the COPD proteome; local
expression of MMP-2, as well as MMP-9 and TIMP-1, was associated with pathological changes in the pulmonary interstitium and

lung function of COPD patients, suggesting their involvement in COPD progression; expression and activity were significantly
increased in lung tissues after injury and in rats with pulmonary fibrosis; a suitable therapeutic target for COPD pathogenesis

MMP-9

Its expression did not vary in different lung compartments of COPD patients; there was no association either between increased blood
MMP-9 expression and progression of emphysema or between MMP-9 mRNA levels in macrophages and markers of ongoing lung

injury; COPD patients are prone to produce higher levels of MMP-9 and MMP-9/TIMP-1 complex than healthy individuals, which is
correlated with decreased FEV1% levels in patients with COPD compared to controls; the levels of MMP-9 and its ratio relative to

TIMP-1 have been associated with increased risk of death; increased levels of MMP-9, TIMP-1 and TIMP-2 were also observed in BAL
during acute exacerbations of COPD and were negatively correlated with predicted FEV1%, indicating that MMP-9 and TIMPs may be

persistent aggravating factors associated with airway remodeling and obstruction, suggesting a pathway connecting frequent
exacerbations to lung function decline; in COPD, it is linked to inflammation and lung remodeling, as it uniquely mediates pulmonary
inflammation through ECM degradation, neutrophil chemotaxis and augmentation of inflammation; serum levels, along with PGE2
and COX-2 levels, were found to be enhanced in COPD patients relative to healthy subjects and correlated with GOLD grade, CAT

score and clinical history; candidate as a prognostic biomarker for COPD.
E. Membrane-type MMPs in COPD

MMP-14 Cigarette and tobacco smoke extract (TSE) can promote the release of MMP-14; it is involved in emphysema.
F. Other MMPs in COPD

MMP-12

Involvement in alveolar destruction and in the pathogenesis of COPD, acting either as an elastase or affecting macrophage activation;
increased expression levels in BAL, in PBMCs and in serum from patients with COPD compared to healthy subjects; the presence of an
SNP in the promoter of MMP-12, such as the (-82) A/G allele of SNP rs2276109 or Asn357Ser (A/G) of rs652438, has been associated

with reduced risk of developing COPD and better prognosis; acts on elastin degradation.

MMP-28
Plays a causative role in cigarette-smoke-induced emphysema; it is expressed in human COPD lung tissue, while

cigarette-smoke-exposed mice have been shown to present increased MMP-28 mRNA levels in both alveolar lung tissue and
macrophages; it is associated with stimulation of chemokine expression.

TIMPS in COPD

TIMP-1

A critical regulator of extracellular matrix degradation; plays a key role in limiting inflammation after injury; has the ability to
moderate ECM degradation both in healthy tissues and under pathological conditions; preferentially inhibits MMP-9 and may exert
protection, while the levels of MMP-9 and the MMP-9/TIMP-1 ratio are reliable predictors of emphysema; TIMP-1 levels were found to
be elevated in COPD patients, and plasma TIMP-1 levels were associated with disease severity; TIMP-1 was found to be enhanced in
PH, a very common and lethal comorbidity of COPD, compared to COPD patients, suggesting that TIMP-1 levels could be used as a

biomarker to identify high-risk patients.

TIMP-2

Involved in abnormal ECM accumulation either directly or indirectly through inhibition of MMP-14 or activation of MMP-2; was
found in the bronchial epithelium and connective tissue, along with apparently large numbers of immunoreactive TIMP-2 endothelial
cells in COPD patients; plasma levels in COPD patients were higher compared to controls and correlated with plasma MMP-2 levels;

the MMP-2/TIMP-2 ratio was elevated in COPD patients and was representative of tobacco use.

TIMP-3
A major inhibitor of ECM remodeling that mediates fibrosis; a comparison of tissues from healthy control subjects and severe cases of

COPD GOLD stage IV and end-stage IPF showed that TIMP-3 levels were significantly elevated; a COPD regulator that strongly
influences tissue homeostasis.

TIMP-4 Protein levels are significantly upregulated in the serum of COPD patients, along with increased expression of TIMP-4 mRNA in
PBMCs.

3.1. Collagenases in COPD
3.1.1. MMP-1

Matrix metalloproteinase-1 (MMP-1) is a collagenase that degrades collagen, which is
significantly associated with COPD [67] and is a potential biomarker to better understand
the course of COPD in patients [68]. Serum and plasma levels of MMP-1 were found to
be elevated in COPD patients and correlated with COPD severity, whereas serum MMP-1
levels were found to be significantly elevated in smokers [69]. Sputum analysis showed
increased MMP-1 levels in both smokers and patients with more advanced COPD [70]. In
addition, a functional variant of MMP-1, rs1799750 G/GG, was associated with a high risk
of COPD [71].
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3.1.2. MMP-8

MMP-8 is a metalloendopeptidase localized in neutrophils and macrophages known to
be involved in COPD [72]. Enhanced levels of MMP-8 were identified in induced sputum
of COPD patients [73]. In addition, PBMCs and plasma from COPD patients showed
high levels of mRNA and protein expression for MMP-8, respectively, and expression
was higher during exacerbations compared to steady state, suggesting a role of MMP-8 in
COPD [74,75]. MMP-8 protein, although suppressed, was also detected in exhaled breath
condensate of COPD patients, suggesting its association with excessive inflammation [74].
In mice deficient in MMP-8, there is increased neutrophilic inflammation in the BAL and
peri bronchial region [76], whereas serum levels of MMP-8 in patients with atopic COPD
were significantly higher than those determined in patients with non-atopic COPD [77].
Thus, MMP-8 mediates the inflammatory response by potentially inducing neutrophil
apoptosis, making COPD patients more susceptible to acute exacerbation due to the effect
of allergens [78]. Furthermore, MMP-8 levels were associated with acute dyspnea attacks
in patients with atopic COPD, suggesting that MMP-8 may be a potential advisory tool for
clinical practice [77].

3.1.3. MMP-13

MMP-13, which is both a collagenase and an elastase, is another critical metallopro-
teinase in lung destruction during the development of COPD [79]. Collagenase-3 levels
were found to be upregulated in mice after long-term exposure to cigarette smoke and in
patients with COPD [72,80,81]. MMP-13 expression in α1,6-fucosyltransferase-deficient
mice and Zntb7 knockout mice was associated with the development of airspace enlarge-
ment and therefore with an emphysema-like phenotype [82,83]. In humans, MMP-13 has
been shown to be involved in COPD exacerbations, as its levels remain elevated in smokers
after viral infections [84]. Furthermore, MMP-13-mediated cleavage of α-1 antitrypsin has
been reported to reduce MMP-13 activity and protect against lung damage [85]. Therefore,
targeting MMP-13 through specific inhibitors or AAT therapies may be beneficial for the
treatment of COPD [86].

3.2. Stromalysins in COPD
3.2.1. MMP-3

MMP-3 levels have been found to be elevated in patients with COPD, particularly
among patients carrying the 6A6A genotype. High levels of MMP-3 are thought to poten-
tially contribute to excessive ECM degradation and worse lung function [87]. Interestingly,
although smoking has been widely associated with upregulation of MMPs in serum, MMP-
3 levels were not found to be elevated in smokers [69]. On the other hand, in another study,
MMP-3 concentration in BAL was associated with CT markers of small airway disease
and appeared to be related to the severity of emphysema [88]. Further studies need to be
conducted to determine the role of MMP-3 in the pathogenesis of COPD in terms of risk
and severity.

3.2.2. MMP-10

MMP-10 is expressed by macrophages and CD68-positive cells in the lungs and, to a lesser
extent, by epithelial cells in response to acute inflammatory conditions [56,89]. Macrophage-
derived MMP-10 mitigates the proinflammatory response by controlling macrophage activa-
tion through restraint of M1 polarization and promoting the ability of M2 macrophages to
control the expression of gelatinolytic MMPs, particularly MMP-13 [90,91].

Smoking and tobacco consumption have been shown to affect MMP-10 levels, and
MMP-10 has been found to be elevated in the lungs of COPD patients [69]. More im-
portantly, its expression is associated with small airway disease and the severity of em-
physema [88]. Furthermore, MMP-10 in mice appeared to contribute to the development
of cigarette-smoke-induced disease by directing macrophage–ECM macrophage remod-
eling [83]. Thus, MMP-10 appears to play an important role within the ECM assembly,
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suggesting that this proteinase is a relevant target for disease control. However, the lack of a
selective inhibitor has prevented researchers from understanding whether targeting MMP-
10 is favorable for the treatment of COPD. A potent inhibitor with no obvious zinc-binding
moiety was developed that can simultaneously inhibit MMP-10 and MMP-13 [4,92]. Still,
main goal of researchers remains to obtain an inhibitor that selectively inhibits MMP-10
against its close counterparts.

3.3. Matrilysins in COPD
MMP-7

MMP-7, or matrilysin, is a potent elastase in humans but not in mice that is expressed
by the mucosal epithelium and macrophages in humans but only by epithelial cells in
mice [56,93]. MMP-7 expression has been found to be increased in the blood of COPD
patients compared to healthy subjects and is associated with deterioration of lung func-
tion [94]. In addition, an SNP in the promoter of the MMP-7 gene (rs1156818) is associated
with a high risk of COPD [95]. In another study, MMP-7 serum levels were reported to be
elevated in patients with emphysema and correlated with GOLD stages [67,69].

3.4. Gelatinases in COPD
3.4.1. MMP-2

Serum levels of MMP-2 (gelatinase A) are significantly elevated in stable COPD
patients compared with asthmatic patients and controls, suggesting MMP-2 as a potential
biomarker for COPD [96]. These data were also confirmed by mass spectrometric analysis of
the COPD proteome, where a positive fold change in MMP-2 expression was detected [96].
In another study, local expression of MMP-2, as well as MMP-9 and TIMP-1, was associated
with pathological changes in the pulmonary interstitium and lung function of COPD
patients, suggesting their involvement in COPD progression [97]. Although MMP-2 levels
are elevated in patients with COPD, the functional role of MMP-2 in COPD has not yet
been established. However, it was discovered that MMP-2 expression and activity were
significantly increased in lung tissues in humans after injury and in rats with pulmonary
fibrosis [98,99]. Therefore, considering the increased expression of MMP-2 and TIMP-1
in COPD patients and their association with collagen and elastic fiber formation, MMP-2
appears to be involved in ECM remodeling and interstitial fibrosis and to be a suitable
therapeutic target for COPD pathogenesis [100].

3.4.2. MMP-9

MMP-9 (gelatinase B) is an elastase expressed in both mice and humans. Although
its expression in COPD is increased [101], its role remains questionable, mainly due to
controversial data on its involvement in COPD. In mice, the absence of MMP-9 did not
protect them from developing emphysema in response to LPS-induced inflammation [102].
On the other hand, transgenic overexpression of MMP-9 in macrophages led to impulsive
emphysema in mice [101]. In another transgenic model, MMP-9 deficiency protected
against alveolar expansion in response to IL-13-induced inflammation [103]. However,
MMP-9 may have triggered IL-13-mediated alveolar remodeling. In COPD patients, MMP-
9 expression did not vary in different lung compartments, and there was no association
either between increased blood MMP-9 expression and progression of emphysema or
between MMP-9 mRNA levels in macrophages and markers of ongoing lung injury [104].
However, a polymorphism of MMP-9, C1562T, was associated with disease susceptibility
in middle-aged and elderly people [105].

It was shown that COPD patients are prone to produce higher levels of MMP-9 and
MMP-9/TIMP-1 complex than healthy individuals, which is correlated with decreased
FEV1% levels in patients with COPD compared to controls [106]. Moreover, the levels of
MMP-9 and the ratio with TIMP1 have been associated with increased risk of death [107].
Increased levels of MMP-9, TIMP-1 and TIMP-2 were also observed in BAL during acute
exacerbations of COPD and were negatively correlated with predicted FEV1%, indicating
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that MMP-9 and TIMPs may be persistent aggravating factors associated with airway re-
modeling and obstruction, suggesting a pathway connecting frequent exacerbations to lung
function decline [108]. MMP-9 in COPD is linked to inflammation and lung remodeling,
as it uniquely mediates pulmonary inflammation through ECM degradation, neutrophil
chemotaxis and augmentation of inflammation. Elevated MMP-9 was independently as-
sociated with the risk of acute exacerbations in COPD in two well-characterized COPD
cohorts of the SPIROMICS and COPDGene studies, indicating that MMP-9 may serve as
a prognostic biomarker and potential therapeutic target in COPD [109]. In a recent study,
MMP-9 serum levels, along with PGE2 and COX-2 levels, were found to be enhanced in
COPD patients relative to healthy subjects and correlated with GOLD grade, CAT score and
clinical history [110]. Furthermore, MMP-9 could also serve as a therapeutic target in COPD,
as novel interventions targeting MMP-9 modulation are being investigated. In human
and mouse models, cigarette smoke has been shown to enhance MMP-9 production [111]
via p38 MAPK/ERK [102] and RANKL [112], respectively. These findings elucidate the
molecular mechanisms involved in MMP-9 induction in COPD and suggest potential new
targets for intervention.

3.5. Membrane-Type MMPs in COPD
MMP-14

It has been shown that cigarette smoke and tobacco smoke extract (TSE) can promote
the secretion of extracellular vehicles (EVs) by both macrophages and bronchial epithelial
cells, which contribute to the release of MMP-14 [113]. Thus, MMP-14 may be involved in
emphysema [114]. This view is supported by the increased MMP-14 activity and protein
found in the airway epithelium in a mouse model exposed to cigarette smoke [115]. How-
ever, decreased MMP-14 activity and protein reduce transcripts of mucin 5AC that play an
important role in the development of COPD [116] Although Mmp14 −/−mice have an
emphysema-like phenotype, this was not associated with abnormalities in collagen and
elastin deposition or increased inflammation [117]. Therefore, the role of MMP-14 in COPD
remains unclear.

3.6. Other MMPs in COPD
3.6.1. MMP-12

MMP-12 has been shown to have a proinflammatory function since after its secre-
tion, it is internalized and translocated to the nucleus, leading to enhanced NF-kB sig-
naling [118,119]. In addition, its non-catalytic C-terminal end has potent antibacterial
activity [120]. However, the role of these non-proteolytic actions of MMP-12 has not been
correlated with COPD. Nevertheless, a number of studies support the involvement of
MMP-12 in alveolar destruction and the pathogenesis of COPD, acting either as an elastase
or affecting macrophage activation [121]. The expression levels of MMP-12 were found to
be enhanced in BAL, in peripheral blood mononuclear cells (PBMCs) and in serum from
patients with COPD compared to healthy subjects [46,88], while there is plenty of data
supporting that MMP-12 is required for the development of emphysema in mice [122].
On the other hand, the presence of single-nucleotide polymorphisms in the promoter of
MMP-12, such as the (-82) A/G allele of SNP rs2276109 or Asn357Ser (A/G) of rs652438, has
been associated with reduced risk of developing COPD and better prognosis [46]. However,
other studies have associated these SNPs with severe and very severe COPD (GOLD stages
III and IV) [123]. In mouse models exposed to cigarette smoke, it has been proposed that
macrophage influx is dependent on MMP-12, indicating that MMP-12 acts on elastin degra-
dation [33]. This notion is supported by the fact that MMP-12 is required for the generation
of a potent macrophage chemoattractant, which is a six-amino-acid fragment of elastin-
VGVAPG [124,125]. On the other hand, it is tempting to hypothesize that this proteinase
affects macrophage activation by regulating the proinflammatory activity of macrophages,
as well as their ability to express other MMPs that may be implicated in ECM degradation.
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3.6.2. MMP-28

MMP-28, like MMP-10, plays a causative role in cigarette-smoke-induced emphy-
sema [56]. The most recently discovered MMP is constitutively expressed in many human
and animal tissues in the epithelium, as well as in monocytes and macrophages. In ad-
dition, it is expressed in human COPD lung tissue, while cigarette-smoke-exposed mice
have been shown to present increased MMP-28 mRNA levels in both alveolar lung tissue
and macrophages [126]. This suggests a role and contribution of MMP-18 in emphysema.
MMP-28 is neither an elastase nor a matrix-degrading proteinase. Nevertheless, MMP-28 in-
fluences the inflammatory response by affecting the inflammatory activity of macrophages.
In contrast to MMP-10, which promotes a shift in the M1 phenotype to the M2 phenotype
of macrophages with subsequent functional changes, MMP-28 is associated with stimula-
tion of chemokine expression [56]. Thus, MMP-28 appears to promote the inflammatory
response in the pathogenesis of emphysema, although its specific contribution and mode
of action remain to be elucidated.

4. TIMPs in COPD

Chronic inflammation is one of the main aspects of COPD pathogenesis leading to exces-
sive remodeling of the extracellular space and inevitable deterioration of airflow function [127].
In addition to genetic factors, which account for only 1–5% of COPD patients, proteases and
their specific inhibitors play a crucial role in pathogenesis [79,128], while the balance between
MMPs and TIMPs is essential for ECM homeostasis [15]. AS mentioned above TIMPs are a
group of low-weight glycoproteins that regulate the activity of MMPs by binding the zinc
ion to the catalytic center of MMPs to form stable complexes. However, increased inflam-
mation or demand in remodeling activities may cause an imbalance of MMP and TIMP
levels [39]. TIMPs are expressed by a variety of cells in the lungs, including macrophages,
activated fibroblasts, and airway smooth muscle and epithelial cells [129]. Whether they
are secreted into the ECM in soluble form or localized to the cell membrane through inter-
action with other proteins, they exert a direct or indirect effect on the regulation of ECM
turnover [130].

4.1. TIMP-1

TIMP-1 is a critical regulator of extracellular matrix degradation [131] and plays a key role
in limiting inflammation after injury [132,133]. Impaired protease–anti-protease imbalance
in COPD patients is associated with the presence of airway injury [79,134–137]. In particular,
TIMP-1 has the ability to moderate ECM degradation both in healthy tissues and under
pathological conditions [40,42,138,139]. For example, the presence of circulating TIMP-1 has
been shown to control proteolysis in the cardiovascular system [140,141]. Furthermore, TIMP-
1 preferentially inhibits MMP-9, a key metalloproteinase in the pathogenesis of emphysema;
therefore, TIMP-1 may exert protection, while the levels of MMP-9 and the MMP-9/TIMP-1
ratio are reliable predictors of emphysema [142,143]. On the other hand, TIMP-1 levels were
found to be elevated in COPD patients, and plasma TIMP-1 levels were associated with
disease severity [106,135,138]. Furthermore, TIMP-1 was found to be enhanced in PH, a very
common and lethal comorbidity of COPD, compared to COPD patients, suggesting that
TIMP-1 levels could be used as a biomarker to identify high-risk patients [138].

4.2. TIMP-2

TIMP-2 is known to be involved in abnormal ECM accumulation either directly or
indirectly through inhibition of MMP-14 or activation of MMP-2 [144–146]. TIMP-2 in
COPD subjects was found in the bronchial epithelium and connective tissue, along with
apparently large numbers of immunoreactive TIMP-2 endothelial cells [146]. In another
study, Tacheva T. et al. showed that plasma levels of TIMP-2 in COPD patients were higher
compared to controls with levels correlated with plasma MMP-2 levels [147]. In addition,
the MMP-2/TIMP-2 ratio was elevated in COPD patients and representative of tobacco
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use [147]. Although TIMP-2 may be a potential biomarker for COPD, it cannot be correlated
with disease severity.

4.3. TIMP-3

TIMP-3 has many different functions in terms of regulating inflammation. TIMP-3 is a
major inhibitor of ECM remodeling; however, it has been found to mediate fibrosis [47].
In a study comparing tissues from healthy control subjects with severe cases of tissue
remodeling caused by diseases such as COPD GOLD stage IV and end-stage IPF, TIMP-3
levels were found to be significantly elevated [148]. Hence, TIMP-3 was identified as a
disease regulator for COPD, strongly influencing tissue homeostasis.

4.4. TIMP-4

There is a lack of existing literature on TIMP-4; nevertheless, some data support its dual
role in both protecting the ECM from proteolysis and limiting fibrosis [149,150]. In COPD,
TIMP-4 protein levels have been found to be significantly upregulated in the serum of patients,
along with increased expression of TIMP-4 mRNA in PBMCs [46]. Although these data
demonstrate the involvement of TIMP-4 in COPD, they fail to correlate its expression with
pulmonary lung function and to unveil its clinical significance. Therefore, further studies
should be conducted to clarify the role of TIMP-4 in the pathogenesis of COPD.

5. MMPs as Targets for Therapeutic Intervention in COPD

Currently, there are only a few disease-modifying therapies for COPD treatment. Con-
sidering the importance of MMPs in COPD pathogenesis, the development of agents that
could target the action of MMPs may have beneficial effects on disease progression [151,152].
In recent years, many studies have been conducted focusing on the discovery of small
molecules as potent and selective inhibitors of MMPs [153,154]. Previous studies have
shown that simvastatin modulates the expression of MMP-2 and MMP-9 in lung cancer
tissue [155], as well as in a human lung adenocarcinoma cell line [156], indicating that
simvastatin may play a role in in the prevention and treatment of lung cancer. As men-
tioned above, MMP-12 regulates the inflammatory response in mice, and its expression
has been associated with disease severity in humans. Preclinical studies in COPD and
emphysematous lungs support the notion that targeting MMP-12 could be a very promising
therapeutic approach [122,157]. A specific inhibitor of MMP-9/MMP-12, AZ11557272, has
been shown to protect mice against an increase in small airway thickness. When tested
in smoke-exposed guinea pigs, the same inhibitor increased total lung capacity, residual
volume and vital capacity [81,158]. Furthermore, AS111793, a specific inhibitor of MMP-12
has been shown to reduce the inflammatory processes associated with cigarette smoke
exposure in mice [159]. Another selective inhibitor of MMP-12, MMP-408, has been shown
to block rhMMP-12-induced lung inflammation in a mouse model [160]. Furthermore, mice
exposed to porcine pancreatic elastase but treated with MMP-408 exhibited a significant
decrease in emphysema-like pathology compared to vehicle-treated mice [161]. In addition,
the dual MMP-9/MMP-12 inhibitor AZD1236 has been tested in phase II clinical trials,
reaching permissible safety levels, although its therapeutic potential has not been estab-
lished [162]. The endolysosomal mucolipid cation channel 3 (TRPML3) has been proposed
as a potential drug for the treatment of COPD and emphysema. TRPML3 is uniquely
expressed in alveolar macrophages and thus regulates the clearance of MMP-12 [163]. In
another study, two agents with single-digit nanomolar affinity (compounds 25 and 26)
resembling the structure of the proteasome inhibitor carfilzomib exhibited selectivity for
MMP-12 [161]. Compounds 25 and 26 led to an improved emphysema phenotype in mice
compared to those treated with vehicle; therefore they can be considered as potential novel
therapeutic agents for the treatment of COPD (Figure 3).
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6. Future Perspectives

Given the proven role of MMPs in the pathophysiology of COPD it is of utmost
importance to identify prognostic or diagnostic indicators for the risk, prevalence and stage
of MMP-induced COPD. Such an approach would require large clinical trials including
cohorts of well-characterized COPD patients and assessments of MMPs in sputum, BAL,
blood and in tissues in association with demographic characteristics, as well as results
from questionnaires, clinical assessments and quantitative CT (QCT). The results from such
studies may reveal novel targets for interventions targeting MMP-associated pathways.

As COPD is a disease triggered by various risk factors, the Lancet Commission to-
wards the elimination of COPD has recently suggested that the disease should be classified
into five types on the basis of the predominant risk factor driving the disease: (1) genetics,
(2) early-life events, (3) respiratory infections, (4) tobacco exposure or (5) other environ-
mental exposures [164]. Investigation of MMPs in large cohorts including patients from
all the above types would highlight the impact of MMPs/TIMPs in pathophysiological
mechanisms related to each of these risk factors, which could be translated into distinct
diagnostic, prognostic and therapeutic considerations (Figure 3).
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