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The metabolic control theory developed by Kacser, Burns, 
Heinrich, and Rapoport is briefly outlined, extended, and 
transformed so as optimally to address some biotech- 
nological questions. The extensions include (i) a new 
theorem that relates the control of metabolite concentra- 
tions by enzyme activities to flux ratios at branches in 
metabolic pathways; (ii) a new theorem that does the 
same for the control of the distribution of the flux over 
two branches; (iii) a method that expresses these controls 
into properties (the so-called elasticity coefficients) of the 
enzymes in the pathway; and (iv) a theorem that relates 
the effects of changes in metabolite concentrations on 
reaction rates to the effects of changes in enzyme prop- 
erties on the same rates. Matrix equations relating the 
flux control and concentration control coefficients to the 
elasticity coefficients of enzymes in simple linear and 
branched pathways incorporating feedback are given, to- 
gether with their general solutions and a numerical ex- 
ample. These equations allow one to  develop rigorous 
criteria by which to decide the optimal strategy for the 
improvement of a microbial process. We show how this 
could be used in deciding which property of which en- 
zyme should be changed in order to obtain the maximal 
concentration of a metabolite or the maximal metabolic 
flux. 

INTRODUCTION 

The engineering of microbial cells to improve the 
production of desirable primary or secondary metab- 
olites is nowadays commonplace, and given the rela- 
tively extensive knowledge of the biochemistry of the 
organisms, it might seem that decisions as to the 
expression of which gene or  genes should be amplified 
could always be made quite rationally. In practice, the 
complexity of the relationship between how enzymes 

behave individually (i.e., enzyme kinetics) and how a 
system of enzymes behaves is sufficient severely to 
hinder such rational approaches. 

Although mathematical modeling1.2.6 has provided 
some help, most such models have remained too phe- 
nomenological to be able to employ the detailed kinetic 
knowledge of microbial enzymes that may exist for 
particular cases. Thus, in seeking to improve or inten- 
sify a particular fermentation process, it would be most 
useful to have or to develop simple theorems that might 
be used to relate the properties of individual enzymes 
to the steady-state fluxes through metabolic pathways 
for which they are the catalysts. 

To give an adequate answer to many o f  the questions 
that might be asked when devising a strategy for op- 
timizing a microbial fermentation, however, may re- 
quire a less than complete mathematical model. Such 
questions tend to take the form: To what extent will 
the rate at which the microorganism produces a certain 
product increase if the concentration of a certain en- 
zyme is increased somewhat? Recently.' we noted that 
it is exactly this type of question that is being answered 
with greatly increased effectiveness in the field of in- 
termediary metabolism. The reason for  this increased 
effectiveness lies in the application of the principles of 
the metabolic control theory of Kacser and Burns' and 
Heinrich and R a p ~ p o r t . ~  

In this article, we demonstrate algorithms that may 
be used to deduce from the kinetic properties of en- 
zymes within metabolic pathways which of those en- 
zymes should be increased by genetic manipulation so 
as most effectively to increase a metabolic flux or the 
steady-state concentration of a particular metabolite. 
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SURVEY OF PRINCIPLES OF METABOLIC 
CONTROL THEORY 

Because the metabolic control theory has been re- 
viewed we shall only briefly summarize 
its major tenets. It considers a metabolic system con- 
sisting of enzymes (e )  and metabolites (X) .  Except for 
pathway substrates (S) and pathway products ( P ) ,  the 
concentrations of the metabolites are freely variable 
(see refs. 2 and 9). In the steady state, however, they 
and the reaction rates and pathway fluxes take a value 
determined by the so-called parameters (i.e., the time- 
invariant properties of the system). Among these pa- 
rameters we find the concentrations and kinetic con- 
stants of the enzymes and the concentrations of path- 
way substrates, pathway products, and (unmetabolized) 
external effectors (e.g., added inhibitors). The extent 
to which a steady state flux J is controlled by any 
parameter p is parameterized by the flux control coef- 
ficient Ci:  

where ss refers to the fact that one considers transitions 
between steady states (differing in only one parameter 
value, p). Similarly, a concentration control coefficient 
for metabolite X is defined as 

There are two summation theorems: 
n c c:z = 1 

i =  1 

n 

(3) 

(4) 
1 - 1  

where the summation is over all enzymes in the system. 
In these theorems the parameters p are the e,'s,  i.e., 
the concentrations or activities of the rz enzymes of the 
pathway. 

If one of the variable metabolite concentrations, say 
[ X I ,  is altered, there is an instantaneous effect on the 
rates of any reaction in which X i s  involved. Such an 
effect on a reaction rate, u,, at constant values of all 
other variables is parameterized by the elasticity coef- 
ficients of enzyme e, with respect to metabolite X: 

Also a change in any parameter p may have an in- 
stantaneous effect on reaction rate ui, the elasticity 
coefficient of the enzyme, ei, with respect to parameter 
p being defined by 

The control coefficients are related to the elasticity 
coefficients through connectivity theorems. The flux 
control connectivity theorem reads 

n x C:t-~2k = 0 (7) 
i = l  

The concentration control connectivity theoremsI0 state 

(8) 
n c c$+;k = - &j 

t = 1  

with 65 = 1 i f j  = k and 0 otherwise. 
If there is a branch in a pathway, then additional 

theorems exist at the branch. If flux J branches into 
two fluxes, J 1  and J2,  then9 

J2* c C:, - JI. x C:, = 0 (9) 
branchl branch2 

This theorem may be called the flux control branching 
theorem. We now formulate the anologous concentra- 
tion control branching theorem for concentration con- 
trol coefficients: 

JZ* C: - JI* CE = 0 (10) 
branchl branch2 

The proof on this theorem is analogous to the proof' 
of equation 9. Let us change the concentrations of all 
enzymes in branch 1 by the fraction d In a.  This will 
instantaneously increase the flux J l  through branch 1 
by that same fraction. If simultaneously we decrease 
the enzyme concentrations in branch 2 by the fraction 
J l (d  In a)/J2, then J2 will instantaneously decrease by 
the latter fraction. The change in the total (J1 + J 2 )  
flux that takes away metabolite X amounts to 

( I  1) 

Consequently, this concomitant change in the concen- 
trations of the enzymes in the branches does not affect 
the concentration of metabolite X4 (Fig. 1). In fact, the 
concentrations of the other metabolites (and flux J) are 
not affected either. Since the change in concentration 
of any metabolite concentration can be expressed in 
terms of the concentration control coefficients, this 
conclusion leads to 

0 = 2 C z d  In a - c CzJl . (d  In a)/Jz (12) 

d(J1 + J2) = JI.d In a - J2.JI.(d In a)/J2 = 0 

branch I branch2 

which proves equation (10). 
If a pathway is branched, then it can be relevant to 

keep track of the  distribution of the total flux over the 
two branches. To allow this, we here define the flux- 
branching ratio, j,, as (for the specific example of 
Fig. 1) 

j ,  = JIIJ2 (13) 

In analogy with equations (1 )  and ( 2 ) ,  we define the 
flux ratio control coefficient C$ as 
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// branch 1 

branch 2 

Figure 1. Branched metabolic pathway. Main pathway flux J 
branches at metabolite X ,  into J , ,  flux through branch I ,  and J z ,  flux 
through branch 2. S,, PI, and Pz: pathway substrates and products 
present at constant concentration. X,: metabolites with variable con- 
centrations. 

C; = d ln&)/d ln(p) (14) 

For the variations in the enzyme activities that were 
discussed in the preceding paragraph, one finds that 

d 1nGJ = d ln(J,) - d 1n(J2) 

By definition, this must also be equal to 

d ln(jr) = 

= d ln(a) + (J1/J2)-d In@) (15) 

C$;d In a 
branch I 

+ z C k - h l n u  (16) 

Combination of equations (16) and (15) yields the flux 
ratio control branching theorem: 

branch2 J2 

c C $ = l  (17) 
branch1 branch2 

The control exerted by an external effector I is re- 
lated to the control exerted by the. enzyme affected by 
the effector through 

c: = c:;€F 

Cf = C$€? (19) 

and 

if ei is the only enzyme affected by I .  If effector I affects 
more than one enzyme, the products on the right-hand 
side of equations (18) and (19) are summed over the 
enzymes i with which the effector interacts. 

SOLVING CONTROL STRUCTURE OF PATHWAY 

For a linear pathway of n reactions (see Fig. 2 for 
an example where n = 4), the flux control coefficients 

Figure 2. Unbranched metabolic pathway lacking feedback (as well 
as feed-forward) inhibition (and stimulation). S and P: pathway sub- 
strate and pathway product present at constant concentrations. e,: 
enzymes. Xj: metabolites present at  variable concentrations. 

are related through n - 1 connectivity theorems [eq. 
(7), one for the concentration of each metabolite in- 
ternal to the pathway] and one summation theorem [eq. 
(3)]. Solution of the n independent linear equations will 
yield an expression for each flux control coefficient in 
terms of all elasticity coefficients. Especially in cases 
of long pathways with feedback or feed-forward stim- 
ulation or inhibition, the solution of such equations 
becomes somewhat tedious. Fell and Sauro9 have de- 
vised the following simple algorithm, which one may 
readily use to calculate flux control coefficients even 
if one does not fully appreciate the mathematics of the 
connectivity and summation theorems. Here, we ex- 
tend the algorithm so as to include calculation of con- 
centration control Coefficients. The first step is to write 
down an n x n matrix, M .  The first row consists of 
1's. The second row of this matrix contains the elas- 
ticity coefficients of all the enzymes in the pathway 
with respect to the first metabolite whose concentra- 
tion is variable, ordered with respect to the number of 
the enzyme in the sequence. The third row consists of 
the elasticity coefficients of all the enzymes with re- 
spect to the second variable metabolite. The nth row 
contains the elasticity coefficients of all the enzymes 
with respect to the final (n  - 1)th metabolite concen- 
tration (remembering that [ S ]  and [PI are parameters, 
they are not to be considered here). The second step 
is to use a computer to invert the matrix M ,  giving 
M - I .  The first column of M - '  now contains the flux 
control coefficients of the respective enzymes on the 
pathway flux. 

To this procedure, we now add a method to calculate 
the concentration control coefficients: for the coeffi- 
cients, CT, quantifying the control exerted by enzyme 
i on metabolite X 3 ,  one has 

( C f C f C p C f C F ) ' =  M-'.(O 0 - 1  0 0)' 
= - (third column of M -  I )  (20) 

Thus, in general, the ith column of M - '  gives minus 
the concentration control coefficients of the different 
enzymes for metabolite i (if we start numbering with 
SJ. The proof of the method (for a good grasp, see the 
next section) resides in the property of equation (21) 
(Z is the unity matrix, with 1 in all positions on the 
main diagonal and zero in all other positions): 

M C  = z (21) 
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that i t  contains all the summation and connectivity 
theorems (eqs. (3), (4), (7), and (S)] and that in a linear 
pathway these completely determine the control struc- 
ture of the pathway, provided that C is constructed as 
follows (n enzymes, n - 1 metabolites): 

As a consequence (we assume M to be nonsingularlO), 

C = M-1 (23) 
(It may be noted that Fell and Sauro9 only used the 
first column of this matrix as a column vector. They 
were only dealing with the flux control coefficients.) 
Thus, equations (21)-(23) relate all flux and concen- 
tration control coefficients to the elasticity coefficients 
of the enzymes constituting the pathway of interest. 

SAMPLE PATHWAY AS ILLUSTRATION 

As a more explicit illustration, let us consider the 
linear pathway of Figure 3, which incorporates feed- 
back inhibition of X, on the second enzyme in the 
pathway. In the algorithm solving the control struc- 
ture, we constitute the matrix M :  

/ 1  1 1  I \  

As in equation (22), C is defined by 
CJ 1 -CP - c p  -cp 

CJ -CX2 -cp -cp 
c; -cf2 -@ -cf4 

c = (  ci 3 3  - c p  -thy, -cf4 

If we define matrix F by 

F = M-C (26) 

then we see that 

F11 = C; + C; + C( + C.4 (27) 

According to the flux control summation theorem [eq. 
(3)], this must equal 1. F2, (second row, first column) 
equals 

FZ1 = C+~fy,  + C$E$, + C$E$, + C&$, (28) 

r - - - - - - - - i  

Figure3. 
0, Inhibition of enzyme 2 by A’,. 

Unbranched metabolic pathway with feedback inhibition. 

According to the flux control connectivity theorem [eq. 
(7)], this must equal zero. 

F - - Ci”,.,zz, - C?-E$,, - cj”,.&, - cf ,Ex, * 33 - (29) 
The concentration control connectivity theorem [eq. 
(S), k = j ]  requires that F,, = 1. Similarly, 

F23 -C+ .~,!y, - C$ -8,- C p  *E%, - Chy, -E$, (30) 
must be zero. Then 

(31) 

should equal zero due to the concentration control 
summation theorem [eq. (4)]. Working one’s way 
through all the elements of F,  one finds that its main 
diagonal elements are equal to 1, whereas all its other 
elements equal zero. Thus, F = MCequals the identity 
matrix, which proves equation (21). Thus, equation 
(23) solves for the control coefficients in terms of the 
elasticity coefficients. 

Most often, many elements of M equal zero. This 
simplifies the calculations somewhat. For the pathway 
of Figure 3, where the only “distant” effect of metab- 
olites is the feedback inhibition of e2 by X4, 

0 (32) Ex, = EX4 - Ex, = ER, = €$3 = 

/ I  1 1  1 \  

F = - C p  - C? - C$3 - Chy, 
13 

1 1 - 3  

Matrix M is then simplified to 

BRANCHED PATHWAYS 

For a branched pathway, the number of metabolites 
becomes less than the number of enzymes, so that the 
above procedure will not produce a square matrix M .  
Fell and Sauro9 derived a theorem [eq. (9)] that, to- 
gether with our equations (10 and 17), provides the 
equations required for the missing rows of M .  We il- 
lustrate this for the branched pathway given by Figure 
4: 

1 1 1 1 1  
Efy, €$, 0 0 0 

where j ,  is the fraction of J that flows through the 
branch containing enzyme 5. The first row, responsible 
for the summation theorems, again consists of 1’s. Rows 
2-4 of M again consist of an enumeration of the elas- 
ticity coefficients of all five enzymes with respect to 
all three metabolites. Upon multiplication with C [eq. 
(22)], these columns generate the connectivity theo- 
rems. The fifth row embodies equations (9) and (10). 
In this last row, each element that corresponds to an 
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e5 

Figure 4. Branched metabolic pathway with feedback inhibition. 
Pathway flux J, which flows through enzymes el and e2 branches at 
X ,  into flux J?,, which flows through enzyme e5 and flux Jfl - j s ) ,  
which flows through enzymes e, and e4. 

enzyme not in either branch (but in the unbranched 
part of the pathway) becomes zero. The other elements 
equal I minus the fraction of pathway flux J that flows 
through the enzyme. 

The solution [eq. (37)] is further analogous to the 
unbranched case discussed above. Here C is defined 
as in equation (22), except that an extra column con- 
tains the control coefficients that refer to the control 
exerted by the enzymes on the branch ratioj,.: 

c; -cp -ciy, -cp C !  

c = C{ -cf2 -cf3 -cy4 (35) ci -cf2 -cf3 -cf4 C ?  
c; -cp -cp -cp C !  

1 0 0 0 0  

i 
the equation that contains the summation theorems and 
connectivity theorems as  well as the branching theo- 
rems [eqs. (9) and (lo)] is 

so that equation (23) again gives the magnitudes of all 
control coefficients, now including those that refer to 
the flux ratio at the branch (j,.). The reader may wish 
to check that the bottom elements of MC correspond 
to the flux and concentration control branching theo- 
rems [eqs. (9) and (lo)]. Also, the last column of M C  
contains the analogues of equations (4) and (7) for j ,  
as well as equation (17). 

NUMERICAL EXAMPLE OF SOLVING CONTROL 
STRUCTURE 

As a numerical example, let us consider the case 
(Fig. 2) without feedback inhibition (& = 0), with the 
elasticities specified taking the values [corresponding 
to the M of eq. (24)] in the following matrix: 

/ 1  1 1 1 \  
-0.9 0.5 0 

= 1 0 -0.2 0.7 0 
\ o  0 -0.1 0.9 / 

Inverting matrix M, one finds 

= M - ’  
c; -cy2 -cp -Cy4 
c< -cp -C$ -cp 
c -  -cp -c+ -cf4 
c; -cf2 -cp -cf4 

0.30 -0.78 -0.48 -0.33 
0.53 0.59 -0.85 -0.59 
0.15 0.17 1.19 -0.17 
0.02 0.02 0.13 1.09 

i 
=i 

For this particular example, all the flux control coef- 
ficients lie between 0 and 1. Most flux control (i.e., 
53%) lies in enzyme 2; this enzyme is a sort of “bottle- 
neck.” Yet, enzymes 1 and 3 also exert significant flux 
control. It is also seen here that concentration control 
coefficients tend to be positive when the enzyme pre- 
cedes the controlled metabolite and negative when it 
succeeds it. Enzyme 3 has rather strong negative con- 
trol on the concentration of metabolite X ,  (a 1% in- 
crease in the former decreases the latter by I .  19%). 

As a second numerical example, we consider a case 
where there is significant feedback inhibition by X ,  on 
e2: M(2, 4) = €5 = - 1. Keeping the other elasticity 
coefficients at the same magnitudes as  in equation (37), 
we find, for the control coefficients [by inverting M as 
in eq. (38)], 

1 c; -cy2 -ciy, -cp 
ci -cp - c p  -cp 
C{ -cf2 -cp -cy4 
c; -cp -cp -cf4 

/ 0.19 -0.90 -0.30 -0.21 \ 
i 

- 0.34 0.37 -0.53 -0.37 
- [ 0.10 0.11 1.28 -m ) (39) L 0.38 - 0.43 -0.45 - 0.69 / 

where we have underlined the values that have greatly 
changed as a consequence of the feedback inhibition. 
Most importantly, although enzyme 2 is now strongly 
feedback inhibited, its flux control coefficient has sig- 
nificantly decreased. It turns out that flux control has 
shifted toward enzyme 4. Another striking feature is 
that the control exerted by enzyme 4 on X 2  is now 
strongly negative: An increased activity of enzyme 4 
will lead to a significant decrease in [XJ. An activator 
(external effector) of enzyme 4 would cause a “false” 
crossover because it would cause a decrease in X 2  and 
an increase in X,, i.e., a crossover at enzyme 2. One 
might be misled and conclude that the activator acti- 
vates enzyme 2 rather than enzyme 4. 

The matrix method used here is very effective if 
approximate numerical values for the elasticity coef- 
ficients are available. In cases where such u priori 
knowledge is absent, it may still be useful to solve the 
connectivity and summation theorem equations ana- 
lytically. For the flux control coefficients in Figure 3,  
we obtain [through the application of eqs. (3) and (7) 
and tedious but straightforward algebra] 
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c: = pz.P3-p4/c (40) 

c; = P Y P a  (41) 

c: = P a  (42) 

(43) c; = (1 + p4’€3€.3/c 
with 

2 = pZ’P3’p4 + p3’p4 + p4 + 1 + p4’&Ez 

and 

p; Z E  - &; ‘ (45) 

where pi is minus the ratio of the two elasticity coef- 
ficients with respect to Xi, i.e., minus the one of the 
enzyme for which Xi is the substrate divided by the 
one of the enzyme for which Xi  is the product. In 
“featureless” pathways (4 = 0), the p’s exceed 1 and 
hence the flux control decreases from the first enzyme 
down to the last [cf. eqs. (40)-(45)l. The present equa- 
tions clearly show that strong feedback inhibition by 
X4 can greatly increase the flux control of enzyme 4 
and decrease the flux control exerted by the preceding 
enzymes. 

ANSWERING BIOTECHNOLOGICAL QUESTIONS 

When engineering a cell that is used to excrete a 
valuable substance, the relevant question is: How should 
we modify which enzymes to increase the rate at which 
that substance is excreted? If, on the other hand, the 
cells are harvested and lysed so as to isolate the de- 
sirable product, then the question is: How should we 
modify which enzymes in order to increase the “steady- 
state” concentration (either in a continuous culture or 
in the “idiophase” of a batch culture) ofthe metabolite 
of interest? The first column of matrix C bears on the 
former question(s j, whereas the other columns bear on 
the latter. However, some additional aspects of the 
problem need to be considered. 

First, we must consider which parameters of our 
system are likely to be adjustable through genetic ma- 
nipulation. An obvious one is the concentration of the 
enzymes. If we can vary the concentration of enzyme 
i by the (small) fraction 6 In[eiJ (e.g., by increasing the 
strength of the promoter of the structural gene for that 
enzyme), then the change in flux will be approximately 
equal to C:;S ln[ei] (6 refers to a small change). If we 
can vary catalytic activity (by varying k,,,), by 6 1n[kcatl, 
then, very similarly, the effect on the flux will be 

One may also alter the way in which an enzyme 
interacts with one of its substrates, products, or  ef- 
fectors. In almost all rate equations for enzyme-cata- 
lyzed reactions, the concentrations of such substances 
occur in combination with (actually in a ratio to) a 
constant, either a K ,  , a K i ,  or a Kd. It is this constant 
that may again be subject to alteration through genetic 
modification of the enzyme. If indeed the metabolite 

c:;s Mkcatl. 

concentration Xj only occurs in the equation as a ratio 
to the constant K,, then 

(46) 

The proof of this relationship is found by writing the 
reaction rate as u(y) with y = XjlK,, then taking the 
two partial derivatives with respect to Xj  and Kj, re- 
spectively, and using the chain rule 

0, €2, = -Ex, 

av, avi 1 
ax, ay K~ 
_ -  - .- - (47) 

Thus, it is readily shown that 

. K~ avi -x. av. -x- av; 
E‘ =-.-=>.-!---A. - K,.- 

K~ vi aK, K,V, ay K,V~ a x ,  
- Xj  avyi 
vi ax, -E‘x, (49) - -.- = - 

For an alteration of Kj by a (small) fraction 6 In K,, the 
resulting effect on the steady-state flux will be d In J 
= - C ~ ; E ~ ; S  In K,. 

To evaluate which alteration is going to be the most 
effective in changing flux J, one may construct the 
matrix B .  Here B is identical to M except that every 
elasticity coefficient is multiplied with the change in 
corresponding K and the 1’s are replaced with the frac- 
tional change in activity of the corresponding enzyme. 
If Ciiag is defined as 

c:, 0 0 - - *  0 

CAag = - [: 7 “c:, 1 : :  8 ] (50) 

0 0 - . -  Cin 

then the matrix A given by 

A B.C$,, (51) 

consists of elements that are each characteristic for an 
effect of a change in a parameter of the system on flux 
J .  If we are looking for the best strategy to increase 
the flux, then the largest eIement of A gives the pa- 
rameter change we are looking for, in the sense that it 
will lead to the greatest change in flux for the given 
percentage change in K,, K d ,  K i ,  k,,, or lei]. 

Let us consider the pathway of Figure 3 by way of 
an example. Our matrix B becomes 

= [ 0 ei;6 In KJ - ~ $ ; 8  In K: 
- ~$;6 In r g  

0 - ~ $ ~ - 6  In 

61nel 6 In e2 

6 In e3 6 In e4 
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Here Kj refers to the Michaelis, inhibition, etc., con- 
stant of enzyme i with respect to metabolite Xj .  

The Ciiag is obtained from equation (50): 

/ c :  0 0 0 \ 
0 c:o 0 

o o o c ; :  
Ciiag = 

C$S In e3 c $ s I ~ ~ ,  \ 

If all parameters changes would amount to 2%, our 
numerical example would become 

/ 0.19 0.34 0.10 0.38 \ 
-0.17 0.17 0 

-0.07 0.07 0 100-A = I 
\ 0 -0.34 -0.01 0.34 / 

The largest elements of A are those corresponding to 
changing [e4] (0.38), [ez], G ,  and K: (all 20.34). Thus, 
for this example the best strategy would be to increase 
the concentration of e4. Almost equally good would be 
the strategies of increasing fez], increasing the K ,  of 
this enzyme for its feedback inhibitor, X4, or decreas- 
ing the K ,  of enzyme 4 for its substrate. 

It also follows that strategies altering the product 
inhibition of enzyme 3 (-0.01), product inhibition of 
enzyme 2 ( -  0.07), or the K ,  of e3 for its substrate 
(0.07) are rather undesirable. If the changes in the pa- 
rameters that we can produce are different from each 
other (i.e., not all equal to 2%), then the elements of 
matrix A should first be multiplied by the achievable 
change before determining which element is greatest. 

If one is interested in the maximization of a metab- 
olite concenrration (say, X,) rather than a flux, then 
the C&. in the above analysis should be replaced with 
C$&, which is obtained from the third row of h F 1 .  
The further analysis is identical. 

It should be noted, strictly speaking, that the above 
analysis is only valid when one is considering small 
changes in the parameters. For large changes (say > 
lo%), the predictions of the method become less re- 
liable, but on the average, they will still be better than 
predictions obtained from nonsystematic methods. 

Similarly, the above analysis strictly applies to sta- 

tionary steady state, though microbial growth, of course, 
may sometimes have additional properties. I I J *  

DISCUSSION 

In this article, we have shown how the metabolic 
control theory derived for biochemical systems by 
Kacser and Burns3 and Heinrich and Rapoport, may 
be tailored to address questions that may be asked 
while devising strategies for the genetic manipulation 
of productive microbial strains. The result is a rela- 
tively straightforward matrix method that, with the 
present ubiquity of microcomputers, leads to a simple 
expression of the effects of genetic changes in enzyme 
properties on steady-state fluxes and metabolic con- 
centrations in terms of the kinetic properties of the 
cellular complement of enzymes. Of course, this does 
not alleviate the need for knowledge of those kinetic 
properties but at least provides for a rational choice 
between potential schemes for the manipulation of mi- 
crobial enzymes based on whatever information is 
available. That limitations in the application of meta- 
bolic control theory in the case of productive microbes 
pose no significant problem of principle has recently 
been discussed elsewhere.' 
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