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Matrix Methods for Estimating 

the Coherence Functions 

from Estimates of the 

Cross-Spectral Density Matrix 

It is shown that the usual method for estimating the coherence functions (ordinary, 
partial, and multiple) for a general multiple-input! multiple-output problem can be 
expressed as a modified form ofCholesky decomposition of the cross-spectral density 
matrix of the input and output records. The results can be equivalently obtained using 
singular value decomposition (SVD) of the cross-spectral density matrix. Using SVD 
suggests a new form offractional coherence. The formulation as a SVD problem also 
suggests a way to order the inputs when a natural physical order of the inputs is 
absent. © 1996 John Wiley & Sons, Inc. 

INTRODUCTION 

Understanding partial and multiple coherence for 

the analysis of multiple-input/multiple-output 

systems is at best difficult. It is particularly diffi­

cult when the inputs themselves are partially co­

herent. The traditional method for computing par­

tial coherence (Bendat and Piersol, 1986) can be 

expressed in the form of a Cholesky factorization 

of the cross-spectral density matrix of the input 

and output records. The removal of the influence 

of each input in the traditional method is depen­

dent on the order of the inputs. Each input is 

assumed to be caused by a linear combination of 

the previous inputs and an independent contribu­

tion. Sometimes a natural physical reason exists 

for ordering the inputs. But more commonly, no 

physical reason exists for assuming a cause and 

effect relationship between the inputs. Without 

additional information it is unclear which input is 

the dominate source of the coherent response. 
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The Cholesky factorization depends on the input 

cross-spectral density being positive definite. 

This is not always true and the method will some­

times fail. A method to avoid this problem is pre­

sented. A model of the system explaining the co­

herence using singular value decomposition 

(SVD) is possible. SVD makes no assumptions 

of the order of the inputs, but will model the inputs 

as a vector of independent sources monotonically 

decreasing in power. SVD does not require a posi­

tive definite matrix and thus removes the flaw 

(failure of Cholesky factorization for a singular 

matrix) in the traditional methods based on 

Cholesky factorization. While the model may not 

have physical significance (sometimes the tradi­

tional methods do not have physical significance 

either), the method provides a convenient way 

to explain the coherence of the inputs and their 

influence on the outputs. The method introduces 

a new concept of fractional coherence to supple­

ment the concept of partial coherence in the tradi-
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tional methods. It is shown that the traditional 
partial coherence still can be found using SVD. 

DEFINITIONS 

The vector of records is defined as a column vec­

tor, for example x = {x(l)}. The Fourier trans­

forms of the vector of records is defined as X = 

{X(f)}. For convenience the dependence on t and 

f is not usually stated. Ideally the equations in­

volve a limit as the record length, T~ 00, but the 
limit notation is omitted for clarity. In practice 

with finite records the limiting operation is never 

done, and only estimates of the quantities are 

available. The cross-spectral density matrix of 

the vector of records will be defined as 

Gxx = ~E[XXI]. (1) 

The diagonal elements will be the auto spectral 

densities of each record and the off the diagonal 

elements will be the cross-spectral densities be­

tween pairs of records. Note that this is the com­

plex cOJUugate of the cross-spectral density as 

defined by Bendat and Piersol (1986). The cross­

~pectral density between two vectors {x} and {y} 

IS defined as 

GXY = ~E[XYI]. (2) 

An element in a cross-spectral density matrix will 

be defined as 

GXY = ~E[X 
lJ T I YI], (3) 

and G7 is thejth column of Gxy" Sometimes the 

superscript will be omitted if it is clear from the 

context. Note that 

(4) 

but this is not generally true for the frequency 

response function matrix, Hxy , to be defined later. 

G xx and G yy are square, but G XY is square only if 

~he number of inputs and the number of outputs 

IS the same. The notation X m .n ! will be used to 

d~note a conditioned record. Xm . l is the record m 

WIth the effects of the first record removed and 

X m .n ! is the record m with the effects of reco~ds 1 

through n removed. A similar notation will be 

used for a conditioned cross-spectral density ma­

trix. For example, Gvv.x is the conditioned cross­
spectral density of th'e records y with the effect 

of the records x removed. Gvv :x is the fraction of 
the cross-spectral density matrix of the records 

~ that are linearly related to the records x. Gyy:x 

IS the part of the cross-spectral density matrix of 

y that is coherent with the records x. This can be 

r~ad as the cross-spectral density matrix of y 

gIven x. The total cross-spectral density matrix 

of the records y is the sum of these two values. 

(5) 

Similarly GYY:Xi.I_I)! is the conditioned cross-spec­
tral density matrix of the records, y, given the 

record Xi with the effects of the records 1 through 

i-I removed. 

GENERAL MULTIPLE-INPUT/MULTIPLE­
OUTPUT SYSTEM 

The linear relationship between a vector of n in­

puts, x, and a vector of m outputs, y, can be 

visualized as a system coupled through a matrix 

of frequency response functions, Hvx , as shown 
in Fig. 1, where . 

(6) 

The cross-spectral density matrix between the 

input and output is given by 

(7) 

{x} 

·1 
h(t) • {y} 

{X} 

·1 
H(f) ~ {V} 

FIGURE 1 Multiple-inputlmultiple-output system. 



If Gxx is not singular this gives 

(8) 

The output spectral density matrix coherent with 

the inputs, x, is given by 

(9) 

Combining Eqs. (8) and (9) gives 

The part not coherent with the input is given by 

(11) 

or the total cross-spectral density is the sum of 

the coherent and noncoherent parts. 

(12) 

It is often convenient to examine the effects 

of removing the effects of some of the inputs while 

retaining others. To do this it is convenient to 

express the vector of input and output records as 

a single vector of records 

z = {;}. (13) 

The cross-spectral density matrix of z can be par­

titioned into 

(14) 

The inputs whose effects are to be removed are 

placed in the primary p vector and the remaining 

inputs, i, along with the outputs, y, are placed in 

residual vector r. 

z = {:}. (15) 

As before the cross-spectral density matrix of z 

can be partitioned into 

(16) 
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The conditioned spectral densities G rr.p and Grr :p 

can be found from the above equations [Eqs. 

(10)-(12)] by just substituting p and r for x and 

y, respectively. This result will be used later when 

discussing the coherence functions. 

If the inputs are independent the effects of an 

input on an output are easily computed because 

Gxx is diagonal. If the inputs are not independent 

the relationships are not as easily studied. One 

technique to examine the system is to model the 

inputs, X, as a system of independent inputs, W, 

coupled through a matrix of frequency response 

functions that will produce the vector of inputs, 

X. The model mayor may not have a physical 

significance. Equation (9) suggests that any fac­

torization of the form 

(17) 

where GII'W is a diagonal matrix, will accomplish 

this goal. If GWII' is a diagonal matrix, the signal 

in the vector ware independent because the cross 

spectrum between every pair is zero. 

This method can be used for both the analysis 

and the generation of partially coherent random 

signals (Smallwood and Paez, 1993). The cross­

spectral density matrix relating the modeled inde­

pendent sources wand the outputs y can be devel­

oped as follows. 

which results in 

Taking the expectation 

the equation is unchanged by writing as 

(18) 

(19) 

(20) 

(21) 

(22) 

The inverse of G ww will exist if none ofthe diago­

nal elements of G ww are zero. Comparing Eqs. 

(7) and (22) gives 
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The cross-spectral density of y is then given by 

Of course p and r can be substituted for x and y 

in the above development. 

TRADITIONAL METHODS USING 

CHOlESKY FACTORIZATION 

Cholesky Factorization 

If a matrix G is positive definite, the matrix can 

be factored using Cholesky factorization into a 

product of a lower triangular matrix, L, and its 

conjugate transpose such that 

G=LL'. (25) 

Without loss of generality this can be written as 

G = LIL', (26) 

where I is the identity matrix. Equation (26) has 

the form of Eq. (9). Using this model the inputs 

are modeled by a vector of independent white 

sources with unity amplitUde. The scaling of the 

noise sources is maintained in the lower triangular 

matrix L. If the matrix G is not positive definite 

one or more of the diagonal elements of L will be 

zero. And because the computation of a column 

of L requires division by the diagonal element, 

the factorization will fail. To avoid this problem, if 

a diagonal element ofL is zero the corresponding 

column of L is set to zero, i.e., Lji = ° if L;; = 0, 

j > i. 

Cholesky Factorization with Ones 

on the Diagonal 

If each column of L is divided by its correspond­

ing diagonal element to give L, L is a lower trian­

gular matrix with ones on the diagonal and 

G = LCL'. (27) 

C is a diagonal matrix where the elements are 

defined as 

(28) 

This will be called a modified Cholesky factoriza­

tion with ones on the diagonal. This procedure is 

also called Cholesky factorization without square 

roots (Lawson and Hanson, 1974; Smallwood and 

Paez, 1993). If the matrix G is not positive definite 

one or more of the diagonal elements of C will 

be zero and the corresponding diagonal element 

in L will be zero. And because the computation 

of a column of Land L requires division by the 

diagonal element, the factorization will fail. To 

avoid this problem, if a diagonal element of C is 

zero the corresponding off the diagonal elements 

of L are set to zero, i.e., Lji = ° if C;; = 0, j > i. 

Relationship Between Cholesky 
Factorization with Ones on the Diagonal 
and Conditioned Spectral Densities 

As explained above, one way to factor the input 

spectral density matrix, G u , is with a modified 

Cholesky factorization with ones on the diagonal. 

In this case let 

G u = LCL' = HH.GC(H~c. (29) 

It can be shown that there is a one to one corre­

spondence between the elements of H tc and the 

terms Lij from Bendat and Piersol (1986, Chap. 

7; L j ;, from Bendat and Piersol = Hijc, this arti­

cle), and a one to one correspondence between 

Gf;c and the terms Gii.U- I)! from Bendat and Piersol 

(1986). Thus it is seen that the solution for Lij 

and G;W-I)' from Bendat and Piersol (1986) are 

equivalent to a modified Cholesky factorization 

with ones on the diagonal where 

{c} = (30) 

Bendat and Piersol (1986) do not explain the pro­

cedure to use if an element in G;;c is zero. This 

procedure is explained above. Equation (23) gives 

Because the inputs c are independent, the condi­

tioned response from each conditioned input {c} 

can be found from 

G - G - HycGcC(HYC)' 
YY:Xi.(i-l)~ - YY:Ci - :j ii :j 

j = l:m, i = l:n, 
(32) 



where j is the index of the output and i is the 

index of the input. The coherent power at the 

jth output due to a single conditioned input C i is 

given by 

GYY:Ci = IH~·.cI2G<;c J' = l:m, i = l:n. (33) 
JJ JI II 

The output power of the jth output with i! condi­

tioned inputs removed is given by 

i 

G}/i! = GJ/ - 2: GJ{Ck j = 1 :m, i = 1 :n. (34) 
k=1 

The cross-spectral density matrix of the outputs, 

given the vector of conditioned responses, is 

given by 

(35) 

and the cross-spectral density matrix of the out­

puts with all the inputs removed is given by 

(36) 

Thus Eqs. (32)-(36) are an alternate solution 

to the methods in Bendat and Piersol (1986) for 

the conditioned spectral densities and have the 

advantage of being written in matrix notation, 

which is easy to implement using a modern matrix 

algebra package. The ordinary coherence is 

given by 

IG vx
l2 

( YX)2 - )i J' = l:m, i = l:n. 
'Y ji - G:xG~'Y 

II JJ 

(37) 

The terms on the right side of Eq. (37) are all 

terms from the original cross-spectral density ma­
trix [Eq. (2)]. The partial coherence is given by 

j= l:m; (38a) 

( ",yx )2 - IGrl2 
J' = l:m, i = l:n. (38b) 

I ji.(i-I)! - GccGYY 
ii jj.(i-I)! 

The term in the numerator on the right side of 

Eq. (38b) can be computed from Eq. (21) with 

the sUbscript C substituted for the subscript w. 

"xc is computed from Eq. (29). The first term in 

the denominator is an element from the factoriza­
tion in Eq. (29). The second term in the denomina­
tor is from Eq. (34). 
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The multiple coherence is given by 

n 

('Yj:n!)2 = 1 - IT (1 - ('Y;~(i_1)!)2) 
i=1 

(39) 
j= l:m,i= l:n. 

PROCEDURE USING SVD 

SVD 

The SVD of a matrix G is defined as: S is a diago­

nal matrix of the same dimension as G, with non­

negative diagonal elements in decreasing order, 

and unitary matrices V and V so that 

G = VSV'. (40) 

An advantage is that because V and V are or­

thogonal, 

V-I = V' and V-I = V'. (41) 

A pseudoinverse can be defined as 

(42) 

The pseudoinverse has the properties that 

G-IG = I and GG- I = I. (43) 

The pseudoinverse reduces to the normal inverse 

for a square matrix whose determinate is nonzero. 
S-I is trivial to compute as a diagonal matrix 

whose elements are the inverse of the diagonal 

elements ofS. Ifadiagonal element ofS is zero the 

corresponding element of S-I is defined as zero. 

If G is Hermitian, as is a cross-spectral den­

sity matrix, 

V=V (44) 

and 

G = VSV'. (45) 

The pseudoinverse reduces to 

(46) 

An important property of SVD is that the ratio 

of the smallest diagonal element in S to S 11 is a 

measure of the condition of the matrix. Roughly, 
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if the ratio of a particular Sii to S 11 is less than 

the relative error in the elements of G, the matrix 

can be assumed to be computationally singular 

of order n - i, where n is the number of rows 

and columns in G. Values of Sii less than this ratio 

can be set to zero, and the corresponding rows 

of U and V can be deleted. SVD is a robust tech­

nique and seldom fails. 

Relationship Between SVD and 

Conditioned Spectral Densities 

SVD can also be used to decompose the cross­

spectral density matrix G xx • 

(47) 

This is very convenient as Eq. (23) reduces to 

(48) 

because for SVD 

H;s = H;/. (49) 

Because the inputs are independent, the condi­

tioned response from each conditioned input s 

can be found from 

G,.y:s; = H-~lGf/(H-;;)' j = l:m, i = l:n. (50) 

The coherent power at the jth output due to a 

single conditioned input Si' is given by 

The output power of the jth output with i! condi­

tioned inputs removed is given by 

i 

GYY. = GYY - '" Gyy:sk J' = l'm /' = l'n (52) 
JJ./! JJ L..J JJ .,. • 

k~l 

The matrix of conditioned responses is given by 

(53) 

and 

(54) 

The results can be improved by first conditioning 

the cross-spectral density terms by removing any 

singular values less than the relative errors in 

the cross-spectral density matrix (Golub and Van 

Loan, 1989). The results can also be improved 

by scaling the cross-spectral density matrix to 

remove the artificial conditioning effects caused 

by using different physical units and other scaling 

factors (Fletcher et aI., 1995). The scaling is not 

unique and serves only to make the dynamic 

range of the data as small as possible. If an esti­

mate of the noise floor for each channel is avail­

able, one way to scale the data is to divide each 

channel by the estimate of its noise floor. This 

will tend to make the noise level in each channel 

the same. If it is believed that each channel has 

a range of good data from the noise floor to Q 
times the noise floor, then singular values less 

than the maximum singular value divided by Q 
will be rejected. 

There are several advantages to using SVD 

instead of Cholesky factorization. The method 

seldom fails and does not suffer from the condi­

tioning problems of Cholesky factorization. A 

unified method for dealing with noise in the spec­

tral estimates is available. The method does not 

depend on any particular order of the inputs. U s­

ing the conditioned spectral density matrices the 

ordinary, fractional, and multiple coherence func­

tions can be computed as follows. The ordinary 

coherence is given by 

(55) 

The fractional coherence, analogous to the partial 

coherence using Cholesky factorization, is 

given by 

IG"s 
~vx )2 _ )i 
\Yji.(i-l)' - GssGYY 

ii jj.(i-l)' 

The multiple coherence is given by 

q 

2 - 1 n (1 (- \'X )2) Yj:q' - - - Y jW-l)' . 
i~l 

(56a) 

(56b) 

(57) 

The fractional coherence is not the same as par­

tial coherence. The fractional coherence suggests 

that the set of inputs can be modeled by a set 

of independent sources in order of decreasing 

magnitude. The inputs are then a linear combina­

tion of the independent sources. The first frac-



tional coherence expresses the fraction of output 

in a least squares sense that can be modeled by a 

single independent source. The second fractional 

coherence expresses the fraction of the output 

that can be modeled by the two independent 

sources, etc. 

To compute partial coherence using SVD re­

quires a special procedure. The partial coherence 

of any input, with respect to any set of inputs 

removed, can be solved by just arranging the in­

puts in the z vector. The inputs whose effects are 

to be removed are placed in the p vector and the 

remaining inputs X, along with the outputs y, are 

placed in the residual vector r. The complete set 

of partial coherences formed by removing the in­

puts one at a time can be found by solving a 

succession of problems, each problem removing 

one more input. The vector z is partitioned into 

primary (the removed input records) and residual 

components (the remaining input and the out­

put records). 

z = {:}. (58) 

The primary inputs are factored using SVD. 

(59) 

The conditioned spectral density is then found 

from Eqs. (48) and (53). 

and 

Grr .s = G rr - Grr:s • 

The conditioned matrix is partitioned into 

= [Gxx.s GXY .s ] 
Grr .s • 

Gyx.s Gyy.s 

(60) 

(61) 

(62) 

(63) 

The partial coherence of any of the remaining 

inputs x with the inputs in the p vector removed 

is the ordinary coherence from the conditioned 

matrix. 

IGYX.SI 2 

( yx. ,)2 = jk j = l:m, k = i:n, (64) 
'Y }k.(l-\). Gxx.sGYY.s 

kk jj 
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where k is the index of the desired remaining input 

in x. More specifically the first row of the reduced 

conditioned set G rr .s is the partial coherence for 

first input in the r vector with the effects of the 

p vector removed. 

IGyX.SI 2 

(yx. ,f= jl j= l:m,i= l:n, (65) 
'Y }l.(l-I). Gxx.sGYY.s 

II jj 

where (i - 1) is the length of the vector p, or the 

number of inputs removed. 

This method can also be used with Cholesky 

factorization by substituting a Cholesky factor­

ization for the S VD. Using this method the partial 

coherences of all the outputs with respect to all 

the remaining inputs can be evaluated with the 

effects of the primary inputs removed. 

SUGGESTED METHOD FOR ORDERING 
INPUTS WHEN USING CHOLESKY 
FACTORIZATION 

One of the problems using Cholesky factorization 

for the computation of the coherence functions 

is the selection of the input order. The discussion 

using SVD that orders the inputs in a monotonic 

decreasing order suggests a method. First the or­

dinary coherence is computed. The input with the 

largest ordinary coherence is selected to be first. 

If more than one output is present the selection 

can be made on the basis of a weighting criterion, 

for example, the largest ordinary coherence in a 

least squares sense with respect to all the outputs. 

Another approach would be to accomplish the 

ordering for each output separately. The effects 

of this input are removed to form the conditioned 

spectral density matrix of the remaining inputs 

and the outputs with the selected input removed. 

This will remove the most power possible for 

the effects of a single input from the conditioned 

power of the outputs. The partial coherence of 

the remaining inputs with the first input removed 

is generated from ordinary coherence of this con­

ditioned spectral density matrix. This order was 

also suggested by Bendat and Piersol (1986, p. 

217). The input with the largest partial coherence 

is selected next. Placing this input second is 

hinted at by Bendant and Piersol but not stated 

explicitly. Again this will remove the maximum 

power from the conditioned output for any of the 

remaining inputs. The process is then repeated 

removing the effects of the second input, etc., 

until all the inputs are removed. With the order 
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of the inputs now established, the traditional 

Cholesky decomposition can be used to find the 

conditioned spectral density and the correspond­

ing coherence functions. Because the spectral 

density functions are a function of frequency, the 

additional small burden of keeping track of the 

input order as a function of frequency must be 

maintained. But input order can reveal significant 

information about the influence of the various 

inputs on the output as a function of frequency. 

This will result in the conditioned output power 

being reduced in a fastest descent as the effects 

of successive inputs are removed. 

EXAMPLE. Assume a problem with 3 inputs and 

1 output where the cross-spectral density matrix 

and modified Cholesky decomposition are given 

by 

c= 

2 2 

2 3 

000 

o 0 0 0 

000 

000 

, L= 

000 

o 0 

o 

o 

o 

Notice that a traditional Cholesky decomposition 

would fail for this example. The SVD for this 

example is given by 

0.3389 -0.5774 0.2277 -0.7071 

0.3389 -0.5774 0.2277 0.7071 
U= 

0.5577 0 -0.83 0 

0.6777 0.5774 0.4554 0 

s= 

5.6458 0 

o 

o 

o 

o 

o 

o 0 0.3542 0 

o o o o 

If noise of magnitude 0.01 is added to each input 

and the output, the spectral density matrix be­

comes 

1.01 

1.01 

2.01 2 

2 3.01 

The diagonal of the matrix C and the singular 

values become diag(C) [1.01 0.0199 

1.015 1.0199] and diag(S) = [5.6558 1.01 

0.3642 0.01]. Notice that the small C22 indicates 

a problem, but the magnitude does not directly 

reflect the noise level. The small value of S44 also 

indicates a problem, and the value is directly re­

lated to the noise level. The cross-spectral density 

matrix can be conditioned by setting S44 to zero. 

If the inputs are reordered by the criteria stated 

above, the input order becomes [3 1 2]. The 

values for the ordinary coherence, partial coher­

ence, and multiple coherence for the various for­

mulations of the example are given in Table 1. 

The row in Table 1 labeled the original problem 

can be considered to be the correct answer for 

this example. When noise is added the values of 

the coherence are corrupted. The ordinary coher­

ence is reduced and the partial coherence of input 

2 is no longer zero. When the spectral density 

matrix is conditioned by removing the smallest 

singular value, the coherence values are im­

proved. The reordering of the inputs reveals an 

Table 1. Coherence Values for Various Statements of Example Problem 

Ordinary Coherence Partial Coherence 

Problem 2 3 2 3 Multiple Coherence 

Original 0.333 0.333 0.667 0.333 0 0.5 .667 

With noise added 0.329 0.329 0.661 0.329 0.002 0.494 .661 

Conditioned 0.331 0.331 0.661 0.331 0 0.494 .661 

Input order changed to 312 0.333 0.333 0.667 0 0 0.667 .667 

No noise 

Noise added and conditioned 0.331 0.331 0.661 0 0 0.661 .661 

Inputs are 1, 2, and 3. 
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Ordinary coherence with respect to: -.-.input 1 & input 2 _input 3 

0.9 

0.8 

0.2 

0.1 

oL-__ -L ____ l-__ ~ ____ ~ __ ~ ____ ~ __ ~ ____ ~ __ ~L_ __ ~ 

o 10 20 30 40 50 60 70 80 90 1 00 

Frequency (Hz) 

FIGURE 2 Ordinary coherence for the example. 

interesting observation that when the third input 

is removed first, the partial coherence of both 

inputs 1 and 2 are zero. Four 50,000 point se­

quences of data were generated using Smallwood 

and Paez's method (1993) as a realization of a 

random process having a flat cross-spectral den-

sity matrix given by the original Gzz in the exam­

ple. The cross-spectral density matrix was then 

estimated using Welch's method (1967) (block 

size = 256, overlap = 75%, window = Hanning, 

sample rate = 204.8). The coherence, the partial 

coherence, and the singular values for these se-

Partial coherence with respect to: _input 1 ---input 2 -.-.input 3 

0.9 

0.8 

0.7 

0.2 

0.1 

o~~~~~~=-~-=x-~-~-=x-~-~-~-~-~~~~~~~~~~~= 

o 10 20 30 40 50 60 70 80 90 100 

Frequency (Hz) 

FIGURE 3 Partial coherence for the example. 



246 Smallwood 

Singular values of Gxx using SVD: _SV#1 ---SV#2, -.-.SV#3 

------------------------------

/' . 
\' \ I v" /,1', '\ "Ii, \ - i l '" " 

1O. ,8 '---_--'--_---' __ ....l...-_---'-__ -'--_--'-__ '---_--'--_---'_-----' 

o 10 20 30 40 50 60 70 80 90 100 

Frequency (Hz) 

FIGURE 4 Singular values of the input cross-spectral density matrix for the example. 

quences were then estimated and are plotted as 

Figs. 2-4. This data illustrates that the statistical 

errors associated with the estimation of spectral 

densities from a realization of random process 

are present in the coherence estimates; however, 

they are not present in the singular values, and 

hence do not affect the condition of the spectral 

density matrix. 

CONCLUSIONS 

It is shown that the traditional methods for com­

puting the coherence functions can be efficiently 

formulated as a modified Cholesky decomposi­

tion of the cross-spectral density matrix. An alter­

nate solution using SVD is developed. The use 

of SVD suggests a new concept of fractional co­

herence. The development of the method using 

SVD also suggests a way to order the inputs when 

using the traditional Cholesky decomposition 

method. The input with the largest ordinary co­

herence is placed first. The influence of this input 

is removed. The input with the largest partial co­

herence with the first input removed is placed 

second. The influences of the first two inputs are 

removed and the process is repeated until all the 

inputs have been ordered. The use of SVD to 

condition the estimated cross-spectral density 

matrix can also improve the results. 

This work was supported by the United States Depart­
ment of Energy under Contract DE-AC04-94AL85000. 
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