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Abstract

Using mirror symmetry, we show that Chern-Simons theory on certain manifolds such

as lens spaces reduces to a novel class of Hermitian matrix models, where the measure

is that of unitary matrix models. We show that this agrees with the more conventional

canonical quantization of Chern-Simons theory. Moreover, large N dualities in this context

lead to computation of all genus A-model topological amplitudes on toric Calabi-Yau man-

ifolds in terms of matrix integrals. In the context of type IIA superstring compactifications

on these Calabi-Yau manifolds with wrapped D6 branes (which are dual to M-theory on

G2 manifolds) this leads to engineering and solving F-terms for N = 1 supersymmetric

gauge theories with superpotentials involving certain multi-trace operators.

http://arxiv.org/abs/hep-th/0211098v1


1. Introduction

Recently it was observed in [1] that partition functions of Chern-Simons theory on

certain manifolds can be represented as Hermitian matrix integrals with a measure suitable

for unitary matrix models. On the other hand, it was found in [2] that topological strings

for B-branes are equivalent to Hermitian matrix models. It is thus natural to ask if these

two ideas are related. Since Chern-Simons theory arises from topological strings for A-

branes [3] one is led to believe that the observation in [1] should be obtained by applying

mirror symmetry to obtain certain B-brane matrix models. In this paper we will verify that

this is indeed the case. For example by applying mirror symmetry to the deformed conifold

T ∗S3 we show that the Chern-Simons theory on S3 reduces to a Gaussian Hermitian matrix

model with a unitary measure.

On the other hand the large N transition proposed in [4], and derived from the

worldsheet viewpoint in [5], relates Chern-Simons gauge theory to A-model topological

strings (with or without branes) on certain non-compact Calabi-Yau threefolds. Thus the

result we obtain here shows that the topological A-model on certain non-compact Calabi-

Yau manifolds reduces to matrix integrals. In particular we consider the ZZp orbifold of

the duality in [4] which suggests that Chern-Simons theory on lens space should be related

to the ZZp quotient of the resolved conifold1. We find that the large N duality continues

to hold upon orbifolding, and the choice of flat connection in the Chern-Simons theory on

lens space maps to the extra blowup moduli from the twisted sectors on the closed string

side.

This is a natural extension of the result that matrix integrals can compute intersection

theory on moduli space of Riemann surfaces [7]. Moreover this sheds a new light on recent

results [8,9] which relate all genus open and closed topological A-model amplitudes with

Chern-Simons theory. Namely, we can restate (and rederive) this result in terms of the

equivalence of topological A-model and a suitable matrix model.

The matrix model we end up with is a novel kind of matrix model, in which the action

is that of a Hermitian matrix model V (u), but the measure is that suitable for a unitary

matrix U = eu. This is not a unitary matrix model. In particular the action does not

have the periodicity expected for a unitary matrix model. We explain how this arises from

mirror symmetry. Moreover we are able to rewrite this in terms of an ordinary Hermitian

1 This idea has been advanced by a number of physicists, including R. Gopakumar, S. Sinha,

E. Diaconescu, A. Grassi, B. Pioline, J. Gomis and E. Cheung. See also [6].
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matrix model with the usual measure, at the expense of introducing multi-trace operators

in the action.

From the viewpoint of type IIA compactifications the A-branes which fill spacetime

give rise to N = 1 supersymmetric gauge theories. For example N D6 branes wrapped

on S3 ⊂ T ∗S3 gives rise, in the infrared, to pure U(N) Yang-Mills theory. However the

F-terms of the full theory differ from that of pure Yang-Mills. Here we find, using this

rewriting of the measure, that the theory can be viewed as a deformed N = 2 theory with a

mass term for the adjoint mTrΦ2, together with certain multi-trace operators of the form

S TrΦk TrΦl where S is the glueball field S = TrW2. Thus we can capture the deviations

from the pure Yang-Mills in terms of these multi-trace operators. Note that, upon lifting

to M-theory, these theories give an effective description of N = 1 compactifications of

M-theory on certain G2 manifolds.
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Fig. 1 Interrelations of various topics covered in this paper.

The organization of this paper is as follows: in section 2, we review Chern-Simons

theory and how it arises in the context of A-model topological strings. In particular we

show that the matrix model expression of [1] for the partition function is already natural

from the point of view of canonical quantization of Chern-Simons theory. In section 3,

we present the mirror to the A-model geometries, following the ideas in [10]. We also

analyze the topological theory describing B-branes in the mirror geometry in the spirit

of [2], and we show that it reduces to a matrix model. This provides a mirror symmetry
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derivation of the Chern-Simons matrix models advanced in [1]. In section 4, we show

that the standard planar limit analysis [11] of the matrix model leads to the mirror of the

deformed conifold, showing in this way that the large N limit of the Chern-Simons matrix

model leads naturally to the mirror of the large N transition proposed in [4]. In section

5, we extend the analysis to the case of lens spaces. We again give a mirror symmetry

derivation of the corresponding matrix model describing Chern-Simons theory, and give

a detailed comparison with standard results in Chern-Simons theory. Furthermore, we

extend the large N duality to the orbifolds of [4] by ZZp. We do a detailed perturbative

computation for p = 2, by rewriting the Chern-Simons matrix model for lens spaces as

a Hermitian matrix model. In section 6, we consider the closed string geometry which

is the large N dual of T ∗(S3/ZZ2), namely local IP1 × IP1. We give a fairly complete

description of the extended Kähler moduli space and we compute the Fg couplings by

using the B-model Kodaira-Spencer theory of [12]. In order to test the large N duality, we

expand these coupling around the point in moduli space where both IP1’s have vanishing

quantum volume, and find perfect agreement with the results of matrix model/Chern-

Simons perturbation theory. In section 7, we present some generalizations of the mirror

symmetry derivation of the matrix model. In particular, we show how to include matter,

making in this way contact with the results of [8,9]. Finally, in section 8 we put our results

in the context of type IIA compactifications with spacetime filling branes, and we show

that the resulting gauge theories include multi-trace operators that can be read off from

the Hermitian matrix model of section 5. Finally, the two appendices collect some useful

results on computation of averages in the Gaussian matrix model, and on the solution of

the holomorphic anomaly equation.

2. Physics of the A-model and Chern-Simons Theory

As shown in [3], if we wrap N D-branes on M in T ∗M , the associated topological

A-model is a U(N) Chern Simons theory on the three-manifold M

Z =

∫
DAeSCS(A) (2.1)

where

SCS(A) =
ik

4π

∫

M

Tr(A ∧ dA+
2

3
A ∧A ∧ A)
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is the Chern-Simons action. The basic idea of this equivalence is as follows. The path-

integral of the topological A-model localizes on holomorphic curves, and when there are

D-branes, this means holomorphic curves with boundaries ending on them. In the T ∗M

geometry with D-branes wrapping M there are no honest holomorphic curves, however

there are degenerate holomorphic curves that look like trivalent ribbon graphs and come

from the boundaries of the moduli space. This leads to a field theory description in target

space, which is equivalent to topological Chern-Simons theory. In this map, the level

k would be naively related to the inverse of the string coupling constant gs. However,

quantum corrections shift this identification to

2πi

k +N
= gs.

The perturbative open-string expansion and Chern-Simons ribbon graph expansion around

their classical vacua coincide.

In this paper we mainly consider M ’s that are T 2 fibered over an interval I. The fiber

over a generic point in I is a T 2, but some (p, q) one-cycles of the T 2 degenerate at the end

points. Alternatively, we can view M as obtained by gluing two solid tori TL and TR over

the midpoint of the interval, up to an SL(2,Z) transformation U that corresponds to a

diffeomorphism identification of their boundaries. Let (pL, qL) be the cycle of the T 2 fiber

that degenerates over the left half on M , and let (pR, qR) be the cycle that degenerates

over the right half. The gluing matrix U can be written as

U = U−1
L UR, (2.2)

where UL,R =

(
pL,R sL,R

qL,R tL,R

)
∈ SL(2,Z). (Clearly, U is unique up to a homeomorphism

that changes the “framing” of three-manifold [13] and takes

VL,R → VL,R TnL,R (2.3)

where T is a generator of SL(2,Z), T =

(
1 1
0 1

)
. This is a consequence of the fact that

there is no natural choice of the cycle that is finite on the solid torus. We will come back

to this later.)

Consider M with an insertion of a Wilson line in representation R in TL, and a Wilson

line in representation R′ in TR along the one-cycles of the solid tori that are not filled in.

The partition function is given by

Z(M ;R,R′) = 〈R|U |R′〉.
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Above, |R〉 for example, corresponds to computing the path integral on the solid torus

TL. Moreover, it gives a state in the Hilbert space of Chern-Simons theory on T 2 on

the boundary of TL. The SL(2,ZZ) transformations of the boundary act as operators on

this Hilbert space. The corresponding states and operators can be found by considering

canonical quantization of Chern-Simons theory on M = T 2 × R, following [14] (see also

[15]). This allows one to solve the theory, and in particular to show that the theory is

equivalent to a matrix model. Let us begin by briefly recalling [14].

By integrating over At where the time t corresponds to the R direction in T 2×R, the

Chern-Simons path integral becomes

Z =

∫
DAuDAv δ(Fuv) exp

( k

2πi

∫

M

TrAvȦu

)
. (2.4)

The delta function localizes toA’s which are flat connections on the T 2. As the fundamental

group of the 2-torus is commutative, by a gauge transformation, we can set A = u dθu +

v dθv where u and v are holonomies of the gauge field along the (1, 0) and (0, 1) cycle of

the T 2. Integrating out the unphysical degrees of freedom is rather subtle, but the main

physical effect is to incorporate the shift of k → k̂ = k+N . Thus, we can simply consider

the naive quantization, with k replaced by k̂ – the effective value of k is also what enters

in the string coupling constant gs.

We can now construct the operators representing the action of SL(2,ZZ) on the Hilbert

space of T 2, by noting that u and v are conjugate variables, with

[ui, vj ] = gsδij .

The action of S and T operators on the T 2 implies that

T : u → u+ v, v → v ; S : v → u, u → −v,

and this suffices to determine them up to normalization [14]:

T = ηT e−Tr v2/2gs ; S = ηS e−Tr(u2+v2)/4πgs . (2.5)

Suppose that the v-cycle of the T 2 is the one that is filled in. The wave function

corresponding to the the path integral on the solid torus with insertion of a Wilson line in

representation R along the cycle which is finite is given by

〈v|Rv〉 =
1

|W|
∑

w∈W

ǫ(w)δ(v + igsω(αR)). (2.6)
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The sum is over the elements w of the Weyl group where ǫ(w) is their signature. For U(N)

the order of the Weyl group is |W| = N !. Moreover, αR is the highest weight vector of

representation R, shifted by the Weyl vector ρ = 1
2

∑
α>0 α with α > 0 corresponding to

positive roots. In particular, for the partition function without any insertions α0 = ρ.

In writing the wave function in equation (2.6) we do not divide by the full group of

large gauge transformations on the T 2, but only by the Weyl group2. The path integral

on the solid torus can be viewed as a path integral on an interval where v is frozen at the

end-point where the v-circle is filled, and the large gauge transformations that shift v by

2πα for α in the root lattice ΛR are not a symmetry. In fact, generically the large gauge

transformations are broken to the Weyl group by the operators in (2.5). This will be more

transparent yet in the mirror B-model language.

Consider for example the partition function on a three-manifold M where (pL, qL) =

(0, 1) and (pR, qR) = (1, 1), with no insertions. The gluing operator is U = TST , takes v

to u+ v, and leaves u invariant. In terms of u and v it is given by U = exp(Tru2/2gs), up

to normalization. Correspondingly, we have

Z(M) = 〈0v| exp(Tru2/2gs)|0v〉, (2.7)

where |0v〉 is the partition function on a solid torus with no insertions. By writing |0v〉
in the u basis, we see that the theory can be described by a matrix model in terms of u,

eiu ∈ U(N)

Z =
1

vol(U(N))

∫
dHu exp(Tru2/2gs)) (2.8)

where dHu is the Haar measure on U(N). To show this, note that

〈u|0v〉 = ∆H(u) =
∏

α>0

2 sin
(α · u

2

)
,

where we used Weyl denominator formula
∑

w∈W ǫ(w) exp(w(ρ) · u) = ∏α>0 2 sinh
(

α·u
2

)
.

Recall that the positive roots of U(N) are given by αij = ei − ej , for i < j where ej form

an orthonormal basis, and αij · u = ui − uj . On the other hand, it is a well known result

that the Haar measure on U(N) becomes, when expressed in terms of the eigenvalues,

1

vol(U(N))

∫
dHu =

1

|W|

∫ ∏

i

dui ∆
2
H(u), (2.9)

2 In that the equation (2.6) differs from equation 4.12 of [14].
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upon integrating over angles. Therefore, (2.7) equals (2.8). Notice that, since we are not

dividing by large gauge transformations, the integration region for the eigenvalues ui is

IRN .

We can evaluate (2.8) explicitly by using the Weyl denominator formula to rewrite

(2.9) as a Gaussian integral. We find

Z = (−2πgs)
N/2ηU

∑

w∈W

ǫ(w)e
gs
2 (ρ+w(ρ))2. (2.10)

In the equation above, we denoted by ηU the normalization of the U = TST operator

which we have not fixed.

In [13], Chern-Simons theory was solved by relating the Hilbert space of Chern-Simons

theory to the space of conformal blocks of WZW model. The action of SL(2,ZZ) on the

conformal blocks of WZW model allows one to read off the matrix elements of the operator

corresponding to U . We will now show that the above matrix model formulation agrees

with the known results for U(N)k WZW model on S3 with the corresponding framing.

Namely, consider U corresponding to the SL(2,ZZ) matrix

U =

(
a r
b s

)
. (2.11)

The path integral with Wilson lines in representation labeled by αR, αR′ inserted parallel

to the axis of the solid tori before the gluing with U are given by [16][17]

〈R|U |R′〉 = cU
∑

n∈Λr/bΛr

∑

w∈W

ǫ(w) exp
{ iπ
k̂b

(aα2
R− 2αR · (k̂n+w(αR′))+ s(k̂n+w(αR′))2)

}
.

(2.12)

We recall that k̂ = k +N , and the coefficient cU is given by

cU =
[i sign(b)]N(N−1)/2

(k̂|b|)N/2
exp
[
− i(N2 − 1)π

12
Φ(U)

]
, (2.13)

that only depends on U and not on the Wilson-lines. Above, Φ(U) is the Rademacher

function:

Φ

[(
a r
b s

)]
=

a+ s

b
− 12s(a, b), (2.14)

where s(a, b) is the Dedekind sum

s(a, b) =
1

4b

b−1∑

n=1

cot
(πn

b

)
cot
(πna

b

)
.

7



In particular, we see that the partition function on S3 corresponding to U = TST agrees

with the expression we found above, provided we identify

ηTST =
1

(2π)N
e−

2πi(N2
−1)

12 .

We will make many further checks of this formalism in the following sections (In particular

we will check that arbitrary matrix elements of U agree with (2.12).).

3. Mirror symmetry

3.1. Mirror Pairs of Geometries

As discussed above, Chern-Simons theory on a three-manifold M is the same as topo-

logical A-model string on T ∗M . When M is a T 2 fibration over an interval, the geometry

of X = T ∗M is rather simple. As shown in [10], X itself is a Lagrangian T 2 × IR fibration

with base IR3, and where one-cycles of the T 2 degenerate over lines in the base. Moreover

the T 2 fiber of X and the fiber M can be identified. In the Calabi-Yau geometry, there is

a natural choice of basis of (1, 0), (0, 1) cycles of the T 2 that fibers X , which is provided

by the choice of complex structure on X . We can identify the one-cycles of the T 2 fiber

that shrink over the left and the right sides of the interval with the shrinking 1-cycles of

TL and TR. The diffeomorphism map U is the SL(2,Z) transformation that relates one of

the shrinking cycles of the fiber of X to the other one. Moreover, while any path between

the lines in IR3 lifts to a three-manifold in X , the path of minimal length lifts to M .

For example, X = T ∗S3 can be written as

xu+ yv = µ. (3.1)

The T 2 fiber of X is visible from the fact that the equation is invariant under U(1)2 action

where x, u are charged oppositely under the first and y, v under the second U(1). The

minimal S3 embeds via u = x̄ and v = ȳ,

|x|2 + |y|2 = µ,

and if µ is real and positive this is a three-sphere. In view of the discussion above, we

can regard this S3 as a real interval, together with the (1, 0) one-cycle of the T 2 fiber that

corresponds to the phase of x and the (0, 1) cycle that is the phase of y. Alternatively, we

8



have the gluing operator U = S. The (1, 0) and (0, 1) cycles degenerate over the x = 0

and y = 0 endpoints of the interval, respectively, and these are two copies of C∗ in X –

holomorphic cylinders IR× S1.

As shown in [10], manifolds mirror to the above Calabi-Yau geometries can be obtained

by deformation of the mirror duality proven in [18,19]. We refer the reader to [10,8] for the

details of this and here simply state the result. Suppose M , viewed as a T 2 fibration, has

(pL, qL) and (pR, qR) cycles of the T 2 which degenerate over the boundaries of the base

interval. Correspondingly, X has two lines of degenerate fibers in the base. The mirror

manifold of X , we will call it Y , is given by resolution of the following singularity

xy = PL(u, v)PR(u, v), (3.2)

where

PL = epLu+qLv − 1, PR = epRu+qRv − 1. (3.3)

Above, u and v are C∗ valued, so their imaginary parts are periodic, with period 2π. The

resolution is by blowing up the locus x = y = 0 = PL = PR, by inserting a IP1. If z, z′ are

coordinates on the IP1, z = 1/z′ the resolution corresponds to covering X by two patches

XL and XR given respectively by

(L) xz = PL , (R) yz′ = PR,

in x − z − u − v coordinates for XL and in y − z′ − u − v space for XR. The transition

functions are obvious, relating e.g. y = PRz.

The minimal holomorphic IP1 is where one is blowing up. This can be deformed

to an S2 that is generally not holomorphic by letting x, y, u, v be arbitrary functions of

z, z̄ coordinates on the sphere, obeying above transition functions. However, the allowed

deformations are not entirely arbitrary, as the equation of Y restricts the north pole of the

S2 (z = 0) and the south pole (z′ = 0) to lie at

(L) PL = 0 , (R) PR = 0.

These deformations mirror the deformations of M in X . Topologically, M comes in a

family of 3-submanifolds of X , by deforming the path in the base connecting the two lines

arbitrarily, and the condition on the north and the south pole of the M to lie on the lines

in base of X replaced by the above holomorphic constraint on the mirror two-spheres. This
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is natural in the view of the fact (which one can show using [18]) that the imaginary parts

of u and v in the B-model are T-dual to the 1-cycles of the T 2 in the A-model [10,8].

For example, the mirror of T ∗S3 in (3.1) is given by blowup of

xy = (eu − 1)(ev − 1)

as described above. Mirror symmetry relates N D-branes wrapping the S3 in the A-model

to N B-branes wrapping the IP1 in the mirror geometry 3.

3.2. The mirror B-model D-branes

In this section we consider B-branes, wrapping IP1’s in the B-model geometries de-

scribed above. We will show that the B-model theory is described by a matrix model, as

in [2], albeit of a novel kind. By mirror symmetry, the B-branes on Y and the A-branes on

X should give rise to the same theory. We will show that the matrix model describing the

B-branes at hand is precisely the matrix model we arrived upon in section 2, by considering

canonical quantization of Chern-Simons theory, and consequently the same matrix model

as in [1].

In the simplest example, with (pL,R, qL,R) = (0, 1) the manifold Y is given by blowing

up

xy = (ev − 1)2, u.

This contains a family of IP1’s parameterized by u, and is mirror to A-model geometry

containing a family of S2 × S1’s. Above, u and v are C∗ valued, so their imaginary parts

are periodic, with period 2π 4.

We can choose to parameterize the normal directions to D-branes by v and u, and in

terms of these, the action on the N D-branes wrapped on a IP1 in this geometry is given

by

S =

∫

IP1

Trv(1)D̄u, (3.4)

3 The subtlety regarding the choice of framing of the three-manifold in X is related in part to

performing global SL(2,ZZ) transformations of the T 2 fiber, which is a symmetry of the A-model

theory. There is a similar subtlety in defining the B-model [20], and part of the framing ambiguity

that can be traded for an SL(2, Z) transformation of the geometry corresponds in the B model

to transformation that takes Y to xy = (eu+mv − 1)(ev − 1).
4 Note that if we did forget about compactness of v and of u the above geometry would be an

A1 ALE space times C.
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where v(1) = v/zdz is a one-form on IP1 valued in the Lie algebra of U(N), and D̄ =

∂̄+[A, ] for A a holomorphic U(N) connection on the IP1. Note that v is a section of the

trivial bundle on the IP1 as ev = xz + 1 is globally defined on Y , and the same is true for

u. The action is a non-Abelian generalization of

S =

∫

B(C,C
∗
)

Ω

the action for a single D-brane on the IP1 [2]. Above, Ω = dvdzdu
z is the holomorphic

three-form on Y 5. As a further check, note that the equations of motion corresponding to

the action (3.4) have solutions which agree with the geometric picture. That is

D̄u = 0 = D̄(v/zdz),

is solved by u an arbitrary constant on the D-brane, and moreover the v equation of motion

requires v ∼ z near the north pole z = 0 and v ∼ z′ near the south pole z′ = 0, and is

therefore zero throughout. In terms of the path-integral, the action localizes on the paths

for which v vanishes on the north and the south poles of the sphere, and the equations of

the blowup imply this as well.

Note that (3.4) is the same as the action of Chern-Simons in the temporal gauge,

provided we identify the holonomies around the two 1-cycles of the T 2 in Chern-Simons.

In fact mirror symmetry provides this identification naturally! Since the T 2 in the B-

model, corresponding to the imaginary parts u, v variables in Y being compact, is mirror

to the T 2 that fibers X , the identification of variables above follows simply by applying

T-duality on the D-branes (To be precise, in comparing to (2.4) one should also replace

the IP1 by a cylinder, by replacing dz/z = dρ, where the cylinder is parameterized by ρ.).

For more general three-manifolds (3.2,3.3), the north and the south pole of the D-

brane are constrained to live on pLu+ qLv = 0 and pRu+ qRv = 0. We can think of the

theory on the D-brane as obtained by gluing together two halves of IP1’s [2]. The action

on both halves is the same, as the holomorphic three-form Ω is the same, but there is a

non-trivial map between the two boundaries. That is, writing the partition function on the

IP1 as Z = 〈ρL|ρR〉, the states |ρL,R〉 are obtained by evaluating the path integral over the

5 Here, v(z, z̄) and u(z, z̄) are viewed as maps deforming the holomorphic curve C∗ to a nearby

curve C which is not holomorphic, and B(C,C
∗
) is the 3-chain interpolating between them. Eval-

uated for an infinitesimal deformation along the v direction, this gives the action (3.4) for a single

D-brane.
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north and the south cap of the IP1. In the present context, these correspond to imposing

the boundary conditions pL,Ru+ qL,Rv = 0, classically, so we can denote

|ρL,R〉 = | 0pL,Ru+qL,Rv〉,

therefore

Z = 〈0pLu+qLv | 0pRu+qRv〉.

Note that u and v are conjugate variables in the Lagrangian, so if we know |0v〉, the state

corresponding to | 0pu+qv〉 is related to it by an operator U

|0pu+qv〉 = U(p,q) |0v〉,

such that

U(p,q)vU
−1
(p,q) = pu+ qv,

as discussed above in the Chern-Simons context.

Moreover, in the present context, the effective gluing operator, U = U−1
(pL,qL)U(pR,qR),

should be naturally related to the superpotential W of the theory. Namely, the operator

U encodes difference of boundary conditions on the north and the south poles of the IP1

which is what makes the supersymmetric vacua in the generic geometry (3.2) isolated.

In turn, this is precisely what the superpotential W encodes. As an example, consider

v = 0 as the boundary conditions on the left half of the IP1, and u + v = 0 on the right,

corresponding to a B-brane on

xz = (ev − 1)(ev+u − 1). (3.5)

Then, U = exp( 1
2gs

∫
IP1 ωTru2), where ω is a (1, 1) form on IP1 of unit volume. The blowup

of the manifold in (3.5) corresponds to mirror of T ∗S3 with non-trivial framing that we

studied in detail in section 2. In fact,

U = exp
( 1

gs

∫

IP1

ωTrW (u)
)
.

Namely, we can compute the superpotential by considering a deformation of the holomor-

phic 2-sphere C∗ = IP1 by giving u a constant value on the IP1. This deforms C∗ to a

nearby sphere C(u) which is not holomorphic. Then the superpotential is given by [21,22]

W (u) =

∫

B(C(u),C∗)

Ω.

12



We find6

W (u) =
1

2
u2, (3.6)

as claimed above.

The state |0v〉 can be found as follows. In the context of a single D-brane, this is

a simple δ-function at v = 0 since we have a non-interacting theory. That is, we have

|0v〉 =
∫
DvDu exp( 1

gs

∫
1
2 IP

1 v(1)∂̄u) which integrating over v reduces to zero modes of u

and so

|0v〉 =
∫

du|u〉,

which is the same as in [2]. More generally, for N D-branes on the IP1 u, v are promoted

to matrices in the U(N) Lie algebra, and this will lead to non-trivial measure factors in

the path integral written in terms of eigenvalues.

Note that since u, v are periodic in the geometry, the natural measure for N D-

branes is not the Hermitian matrix measure as in [2], but the unitary matrix measure,

corresponding to a Hermitian matrix with compact eigenvalues. That is, for example in

the B-model mirror to S2 × S1 we have

〈0v|0v〉 =
1

vol(U(N))

∫
dHu =

1

|W|

∫ ∏

i

dui ∆
2
H(u), (3.7)

where in the second equality we integrated over the angular variables of matrix u to get

∆H(u) =
∏

i<j

2 sin(
ui − uj

2
).

This differs from the Hermitian matrix measure ∆(u) =
∏

i<j(ui−uj), and ∆H(u) can be

interpreted as a Hermitian measure in which we include the images of the D-brane [23],

i.e.

∆H(u) ∼
∏

n

∏

i<j

(ui − uj + 2πn).

By taking the square root of (3.7), we find that

|0v〉 =
1

|W|1/2
∫ ∏

i

dui∆H(u)|u〉,

6 As explained in more detail in [10] one can simplify the calculation by using independence

of the three-form periods on blowing up the geometry, which is a Kähler deformation, and com-

pute the integral in the singular geometry. At fixed value of u,
∫
dxdv/x integral computes the

holomorphic volume of the special Lagrangian S2 in the two-fold fiber, and this is u.

13



where ui|u〉 = ui|u〉 is the eigenstate of operator u.

It is important to note that while u and v are periodic in Y , the physics of the B-branes

in these models generally does not have any periodicity, because the boundary conditions

imposed generally break this. One can see this already by considering a single D-brane in

(3.5). Taking u to u + 2π the S2 winds around the v cylinder once: the south pole is at

v = 0 and the north pole at v = −u = −2π, and consequently the D-brane does not come

back to itself. Alternatively, the superpotential is not periodic in u, and this corresponds

to the fact that the tension of the D-brane increases in going around. Consequently, the

range of all integrations is non-compact.

The example of a B-brane on (3.5) consequently gives a Hermitian matrix model, but

with unitary measure

ZTST = 〈0v|0u+v〉 =
1

vol(U(N))

∫
dHu e

1
2gs

Tru2

. (3.8)

More general examples can be constructed along similar lines, and we will see some of

them in the following sections.

v

v=0 v=−u
. .

Fig. 2 The B-brane projected to v cylinder corresponds to a path between v = 0

and v = −u. Because the boundary conditions on the two endpoints are different,

going around u → u = 2π, the B-brane does not come back to itself.

4. Planar Limit

In [4] it was shown that holes in the topological open string amplitudes for N D-

branes on S3 in X = T ∗S3 can be summed up, genus by genus. The resulting closed

string amplitudes coincided with that of closed topological A-model on X̂ = O(−1) ⊕
O(−1) → IP1. In the previous sections we showed that the Chern-Simons theory on S3 can

be rewritten as a matrix model

Z =
1

vol(U(N))

∫
dHu exp(

1

2gs
Tru2) (4.1)

14



that naturally arises as the theory on the mirror B-model D-branes. In this section we

want to show that the matrix model is solvable in the planar limit, and that the geometry

which emerges is precisely that of the mirror Ŷ of O(−1)⊕O(−1) → IP1.

As discussed before, after integrating over angular variables, (4.1) can be written as

∫ ∏

i

dui∆H(u)2 exp(− 1

2gs

∑

i

u2
i ).

Note that in writing the above integral we have made a choice of the integration contour

which amounts to uj → iuj , and then ∆H(u) =
∏

i<j 2 sinh(
ui−uj

2
). In the large N limit,

the integral is localized to the saddle point,

1

gs
ui =

∑

i6=j

coth(
ui − uj

2
), (4.2)

and we can replace the discrete set of eigenvalues ui by a continuous function u(s). The

sum in (4.2) becomes an integral and we find

−1

t
u(s0) = P

∫ 1

0

ds coth(u(s)− u(s0)),

where P denotes the principal value, and t = Ngs is the ’t Hooft parameter. To solve the

above equation we follow [11] and introduce a density of eigenvalues ρ(u). We now change

variables from u to U = eu. The density satisfies ρ(U)dU/U = ds, and from
∫ 1

0
ds we have

∫ b

a

ρ(U)
dU

U
= 1. (4.3)

In terms of u the above equation (4.2) is

− 1

2t
log(Ue−t) = P

∫ b

a

ρ(U ′)

U ′ − U
dU ′, (4.4)

so solving (4.2) is equivalent to solving for the density of eigenvalues u that satisfies

(4.3,4.4). The solution of (4.4) is now standard. Namely, we can define a function v(U)

(usually called the resolvent) by

v(U) = t

∫ b

a

ρ(U ′)

U ′ − U
dU ′,

and then the conditions on u are equivalent to asking that (i) v is analytic in the complex

U plane, cut along an interval (a, b); (ii) it decays at infinity as 1/U ; (iii) the period of
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v around the cut is 2πit; (iv) as U approaches the interval, v(U ± iǫ) = −1
2 log (Ue−t) ±

πitρ(U).

These conditions suffice to completely fix v(U), to be

v = log[
1 + e−u +

√
(1 + e−u)2 − 4e−u+t

2
].

The zeros of the square root in the above expression correspond to the endpoints of the

cut. Alternatively, v and u are functions on the Riemann surface

(ev − 1)(ev+u − 1) + et − 1 = 0, (4.5)

and moreover there is a one-form vdu whose periods on the Riemann surface satisfy special

geometry:

t =
1

2πi

∫

A

vdu, (4.6)

and

∂tF0 =
1

2πi

∫

B

vdu, (4.7)

where A-cycle corresponds to integrating around the cut, and the B-cycle corresponds to

an integral from the endpoint of the cut to some cut-off point at large u.

Note that on the one hand, the Riemann surface (4.5) is the non-trivial part of the

geometry

xz = (ev − 1)(ev+u − 1) + et − 1, (4.8)

that arises by geometric transition that blows down the IP1 in (3.5) and deforms it by

giving t a non-zero value. On the other hand, the equation (4.8) precisely describes the

mirror of X̂ = O(−1)⊕O(−1) → IP1 [18], where the size of the IP1 is mirror to t in (4.8).

In this sense, we have derived the mirror of X̂ by showing the equivalence of the

open string A- and the B-model, and taking the large N limit of both. It can be shown

by explicit calculation that the function F0 in (4.7) precisely agrees with the genus zero

partition function of the A-model on X̂ and the sum over the planar diagrams in U(N)

Chern-Simons theory.
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5. Lens spaces

In this section we consider a generalization of the above results where we replace S3

with the lens spaces Mp = S3/ZZp, where ZZp acts on S3 as

|x|2 + |y|2 = 1, (x, y) ∼ exp(2iπ/p)(x, y). (5.1)

We can think of this as obtained by gluing two solid 2-tori along their boundaries after

performing the SL(2,ZZ) transformation,

Up =

(
1 0
p 1

)
. (5.2)

To see that, consider an S3 which, as explained above, is a T 2 fibration over an interval,

where the cycles of the T 2 are generated by phases of x, y. If the complex structure of the

T 2 corresponding to S3 it is τ , then an SL(2,Z) transformation that takes this T 2 to a T 2

with (1, 0) and (1, p) cycles vanishing over the endpoints will take τ to τ ′ = τ+1
p . But the

T 2 with the new complex structure is precisely a quotient of the original one by the Zp

action specified in (5.1).

Wrapping N D-branes on Mp in T ∗Mp, the topological A-model is U(N) Chern-

Simons theory on Mp. The critical points of the CS action are flat connections, which are

classified by embeddings of the first fundamental group in U(N). Since ZZp acts freely on S3,

we have that π1(Mp) = ZZp. Therefore, onMp there are ZZp discrete flat connections we can

turn on. A choice of a flat connection breaks the gauge group U(N) → U(N1)×. . .×U(Np),

and leads to a choice of vacuum of the theory. The full partition function of Chern-Simons

theory on a compact manifold involves summing over all the flat connections, and in fact

the nonperturbative answer that can be obtained from the relation with WZW theory

[13] gives such a sum. However, for our applications we are interested in Chern-Simons

theory expanded around a particular vacuum, so in evaluating Chern-Simons amplitudes

the prescription is not to sum over different flat connections. Namely, although Chern-

Simons theory lives in a compact space, in our applications D-branes are wrapping not Mp

but Mp × IR4, corresponding to type IIA compactification on T ∗Mp × IR4.

In this section we will first show how to generalize the B-matrix model to the case of

lens space, and we will explicitly show that it agrees with the direct computation using

the standard techniques in CS. We will also discuss the large N transition for CS on lens

spaces, and we will introduce a Hermitian multi-matrix model for CS that captures the

contribution of a given vacuum.
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5.1. B-model matrix model

From the discussion in previous sections, the mirror of T ∗Mp is given by blowing up

xy = (ev − 1)(ev+pu − 1),

corresponding to the fact that in the A-model, there are two lines in the base IR3 over

which the (0, 1) and (p, 1) cycles of the torus degenerate. The resolved geometry,

xz = ev − 1, u

in the z−patch and

yz′ = epu+v − 1,

in the z′−patch, z = 1/z′. There are p holomorphic IP1’s at v = 0 = pu, i.e. at

(u, v) = (2πik/p, 0), k = 0, . . . , p− 1.

Wrapping N D-branes in this geometry, one has to decide how to distribute the N D-

branes among the p vacua. This we can see it at a quantitative level as well. By a trivial

generalization of (3.6), it is easy to see that the theory on the wrapped D-branes has a

superpotential Wp(u), where

Wp(u) = pu2/2,

and this has p vacua as claimed. The B-model path integral, as explained in section 3, is

Z = 〈0v|0v+pu〉 =
1

vol(U(N))

∫
dHu e−

1
gs

TrWp(u), (5.3)

since

exp
( 1

gs
TrWp(u)

)
: (u, v) → (u, v + pu).

Distributing the N branes among the p different vacua corresponds, in the matrix model,

to distributing the N eigenvalues among the different critical points, and also to the choice

of a flat connection in the Chern-Simons theory.

Consider now the path integral around the critical point where Nk eigenvalues are at

uj = 2πi(j − 1)/p, j = 1, . . . p, and the gauge group is broken as U(N) → U(N1)× · · · ×
U(Np). In the eigenvalue basis, the matrix model reads:

Z =

∫ p∏

j=1

dNju(j)

Nj !
∆H(u(j))2

∏

j<k

∆H(u(j), u(k))2 exp
{
−
∑

j

Tr p(u(j))2/2gs

}
(5.4)
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where we have denoted by u(j) the set of Ni eigenvalues sitting at 2πi(j − 1)/p, and

∆H(u(j)) =
∏

m<n

2 sinh
(u(j)

m − u
(j)
n

2

)
,

∆H(u(j), u(k)) =
∏

m,n

2 sinh
(u(j)

m − u
(k)
n + djk
2

)
,

where djk = 2πi(j − k)/p. In other words, there is an effective interaction between D-

branes at different vacua. This can be thought of as coming from integrating out at one

loop the massive string states stretched between the branes.

5.2. Chern-Simons theory on S3/ZZp

In this subsection we show that there is an exact agreement between the topological

B-model and the Chern-Simons answer, as expected. To do that, we will rewrite the matrix

model (5.4) in the eigenvalue basis in a slightly different way. Consider the integral

∫ N∏

k=1

duk e
−
∑

j
u2
j/2ĝs−k̂

∑
j
njuj

∏

j<k

(
2 sinh

uj − uk

2

)2
, (5.5)

where the effective coupling constant ĝs is given by

ĝs =
2πi

pk̂
. (5.6)

In (5.5), we have also introduced a vector n of N integer numbers 0 ≤ nj ≤ p − 1 that

label at which critical point is the eigenvalue uj . These integers label the choice of vacuum

U(N) → U(N1)× · · · ×U(Np) as follows: Nk is the number of nj ’s equal to k− 1. Notice

that there is not a one-to-one correspondence between the nj ’s and the different vacua,

since any Weyl permutation of the nj gives the same Nk’s. Therefore, there are in total

N !∏p
k=1 Nk!

(5.7)

configurations of nj ’s that correspond to the same vacuum. Notice however that (5.5) is

manifestly invariant under permutations of the nj’s, so we can just pick any one of them.

If we now change variables in (5.5) by uj → uj + k̂ĝsnj , we reproduce (5.4).

According to our general results, the integral (5.5) must be the contribution of the flat

connection labeled by {Nk}k to the partition function of CS theory on Mp. This follows
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indeed from [1], but in the case of lens spaces one can prove it in a very simple way. After

using Weyl’s denominator formula, the integral (5.5) becomes just a Gaussian, and it can

be computed to give (up to overall constants)

1

|W|
∑

w′,w′′∈W

ǫ(w′)ǫ(w′′) exp
{ iπ

k̂p
(w′(ρ)− k̂n− w′′(ρ))2

}
. (5.8)

If we now sum (5.8) over all possible n, we obtain the following expression

∑

n∈ZZ
N/pZZN

∑

w∈W

ǫ(w) exp
{ iπ

k̂p
(ρ2 − 2ρ · (k̂n+ w(ρ)) + (k̂n+ w(ρ))2)

}
, (5.9)

To see this, notice that the lattice ZZN/pZZN in (5.9) is invariant under Weyl permutations,

therefore we can sum over all possible permutations of n and divide by the order of the

Weyl group |W|. In this way we obtain (5.8), summed over all n. In this way, we have

rederived the matrix element (2.12) when Up is the SL(2,ZZ) element (5.2). Since this

matrix element is the partition function of CS theory on the lens space Mp, we have shown

that the integral (5.4) gives precisely the contribution of the flat connection labeled by

{Nk}k to the CS partition function. After including all the overall factors carefully, one

finds that the precise expression of the full partition function in the canonical framing is

∑

n

e−
ĝs
12 N(N2−1)

N !

∫ N∏

i=1

dui

2π
e−
∑

i
u2
i /2ĝs−k̂

∑
i
niui

∏

i<j

(
2 sinh

ui − uj

2

)2
. (5.10)

5.3. Large N duality for lens spaces

In [4], the large N limit of topological open strings on T ∗S3 was shown to be given

by closed topological strings on the resolved conifold O(−1) ⊕ O(−1) → IP1. There is a

natural question of what is the large N limit when we replace S3 with S3/ZZp. The answer

for this, generalizing [4], is as follows. For definiteness, consider first p = 2. As is familiar,

X = T ∗(S3/ZZ2) has a geometric transition where S3/ZZ2 is replaced by F0 = IP1 × IP1.

The total geometry is a cone over this, more precisely it is X̂ = O(−K) → F0.
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Fig. 3 The figure depicts a geometric transition between T ∗(S3/ZZ2) and O(−K) →

IP1 × IP1. With N D-branes on S3/ZZ2 and gauge group broken to U(N1)×U(N2)

with N = N1+N2, the geometric transition is a large N duality and the BPS sizes

S1,2 of two IP1’s are identified with the t’Hooft parameters Si = Nigs.

That such transition is allowed is easy to see in the language of (p, q) five-branes, see

fig. 3. One may then expect that the large N limit of N D-branes on S3/ZZ2 is a closed

string theory on X̂. For general p, the dual geometry is an Ap−1 fibration over IP1, with

p complexified Kähler classes corresponding to the sizes of the p different IP1’s.

In order to make precise the implications of this large N transition, we need an

identification of the parameters between the two theories. On the open string side we have

a choice of the numbers Nk of D-branes to place in the p different vacua, and we would

expect that these choices correspond to changing the sizes of the p IP1’s. The natural

identification is as follows.

Recall that in the open string theory the large N expansion is a weak coupling expan-

sion in gs. The open string free-energy is of the form

F = F nonpert + F pert,

where

F pert =

∞∑

g=0

F pert
g,h (Nk)g

2g−2+h
s .
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The Nk dependence in F pert
g comes from tracing over the Chan-Paton indices of Riemann

surfaces with holes. This expansion is nothing but the Feynman-diagram expansion of the

CS path integral in the background of a flat connection given by the Nk’s. Notice that

F pert
g,h (Nk) has in fact the structure

F pert
g,h (Nk) =

∑

h1+···+hp=h

F pert
g,h1,···,hp

Nh1
1 · · ·Nhp

p , (5.11)

i.e. it is a homogeneous polynomial in Nk of degree h. The non-perturbative piece, in

contrast to the model dependence of F pert, has a universal behavior. From the open

string/CS perspective, this comes from the measure of the path integral – basically the

volume of the unbroken gauge group G [5].

F nonpert ∼ − log(vol(G)).

In our case G = U(N1)×· · ·×U(Np), and the explicit expression of F nonpert can be easily

obtained from the asymptotic expansion

log(vol(U(N))) =− N2

2

(
log(N)− 3

2

)
+

1

12
logN +

1

2
N2 log 2π

−
∞∑

g=2

B2g

2g(2g − 2)
N2−2g.

In order to identify the parameters in the open and the closed string side, consider the

genus zero piece of the nonperturbative part of the free energy:

F nonpert
g=0 =

1

2

p∑

i=1

(gsNi)
2 log(gsNi), (5.12)

where gsNi is the ’t Hooft coupling. This universal behavior strongly suggests the fol-

lowing. The genus zero topological closed string amplitudes with the above form are well

known to arise by integrating out nearly massless charged particles of mass gsNi, since

(5.12) is basically a contribution of BPS D-branes at one loop to the N = 2 prepotential.

Therefore, one may naively identify the ’t Hooft parameters gsNi with the flat coordinates

Si measuring the BPS sizes of the p IP1’s:

Si = gsNi, i = 1, · · · , p. (5.13)
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Notice that in this picture the perturbative piece of the open string free energy

F pert
g (Si) =

∑

g,h1,···,hp

F pert
g,h1,···,hp

(gsN1)
h1 · · · (gsNp)

hp

which can be computed in ordinary Chern-Simons perturbation theory, is the regular part

of the F closed
g coupling for the closed string dual geometry, expanded in terms of flat

coordinates Si around the point in moduli space where the IP1’s have vanishing size. We

will refer to this point as the orbifold point, although in contrast to orbifold points in

other geometries, like local IP2, we have a singular behavior of the prepotential captured

by F nonpert. We will show below that the naive expectation (5.13) is correct, by comparing

the perturbative expansion in the open side with the expansion of F closed
g computed in the

B model around the orbifold point.

5.4. (Hermitian) Matrix model for Chern-Simons on lens spaces

In order to test the large N duality for lens spaces in the way that we just suggested,

we have to compute Fg,h in the open string/CS side. To do this the equivalence between

CS theory and matrix models turns out to be very useful. As pointed out in [1], one can

regard the CS matrix model as a “deformation” of the usual Hermitian Gaussian model,

where the deformation is due to the appearance of
∏

i<j(2 sinh((ui−uj)/2))
2 instead of the

usual Vandermonde determinant
∏

i<j(ui−uj)
2, therefore one can systematically compute

the perturbative expansion of the CS theory in terms of perturbation theory of the gauged

matrix model around the Gaussian point.

We will in fact write a Hermitian matrix model underlying (5.10). Let us first consider

the contribution due to the trivial connection, i.e. let us consider the integral in (5.10)

with n = 0. We now do the following trick. As in [1], we write

∏

i<j

(
2 sinh

ui − uj

2

)2
= ∆2(u)f(u). (5.14)

In this equation ∆(u) =
∏

i<j(ui − uj) is the usual Vandermonde determinant, and the

function f(u) is given by

f(u) = exp

( ∞∑

k=1

akσk(u)

)
, (5.15)
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where
σk(u) =

∑

i<j

(ui − uj)
2k,

ak =
B2k

k(2k)!

(5.16)

and B2k are the Bernoulli numbers. ak are simply the coefficients in the expansion of

log(2 sinh(x/2)/x). The σk(u) are symmetric polynomials in the ui’s, therefore can be

written in terms of Newton polynomials

Pj(u) =
N∑

i=1

uj
i , (5.17)

as follows:

σn(u) = NP2n(u) +
1

2

2n−1∑

s=1

(−1)s
(
2n

s

)
Ps(u)P2n−s(u). (5.18)

We then write the integral as:

e−
ĝs
12N(N2−1)

N !

∫ N∏

i=1

dui

2π
∆2(u) exp

(
−
∑

i

u2
i /2ĝs +

∞∑

k=1

akσk(u)

)
. (5.19)

Now we notice that the Newton polynomials Pj(u) are just TrM
j, where M is a Hermitian

matrix which has been gauge-fixed to the diagonal form diag(u1, · · · , uN). Therefore the

above integral is (up to the prefactor e−
ĝs
12 N(N2−1)) the gauge-fixed version of the Hermitian

matrix model
1

vol(U(N))

∫
dM exp

{
− 1

2ĝs
TrM2 + V (M)

}
, (5.20)

where

V (M) =
1

2

∞∑

k=1

ak

2k∑

s=0

(−1)s
(
2k

s

)
TrM sTrM2k−s. (5.21)

Here we used the expression for the Hermitian measure (see for example the second ap-

pendix in [24])

1

vol(U(N))
dM =

1

N !
∆2(u)

N∏

i=1

dui, (5.22)

up to factors of 2 and π. Therefore in (5.21) we have represented the eigenvalue inter-

action of (5.5) in terms of an infinite number of vertices. Notice however that, at every

order in ĝs, only a finite number of vertices contribute, so the perturbation expansion
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∑
g,h Fg,hĝ

2g−2+h
s Nh of the partition function can be computed from the Hermitian ma-

trix model (5.20) with action (5.21). In order to obtain the perturbation expansion of

(5.20), we just bring down the powers of TrM jTrMk from the exponent and we evalu-

ate the vevs with the Gaussian weight exp(− 1
2ĝs

TrM2). The Gaussian averages can be

computed in many ways, and we review some of these techniques in Appendix A.

Let us now consider the expansion around a nontrivial flat connection, focusing on

p = 2 (the general case is similar). The resulting integral is given by (5.4) with p = 2.

Equivalently, we can obtain it by expanding around the critical point u∗ = −iπn of the

exponent in (5.5). We will take the representative of n in the Weyl orbit given by

n = (0, · · · , 0, 1, · · · , 1) (5.23)

where there are N1 0’s and N2 1’s. There are two groups of integration variables, as in

(5.4), that we will denote by {λi}i=1,···,N1
, and {µi}i=1,···,N2

. The measure factor in (5.4)

reads now:

(−1)N1N2

∏

1≤i<j≤N1

(
2 sinh

λi − λj

2

)2 ∏

1≤i<j≤N2

(
2 sinh

µi − µj

2

)2∏

i,j

(
2 cosh

λi − µj

2

)2
.

(5.24)

The model is then equivalent to a two-matrix model with an N1 × N1 Hermitian matrix

M1 and an N2 × N2 Hermitian matrix M2. The two matrices interact through the last

factor in (5.24), that can be written as:

exp

{
2
∑

i,j

log
(
2 cosh

λi − µj

2

)}
. (5.25)

In terms of M1 and M2, this is

W (M1,M2) =
∞∑

k=1

bk

2k∑

s=0

(−1)s
(
2k

s

)
TrM s

1TrM
2k−s
2 , (5.26)

where

bk =
22k − 1

k(2k)!
B2k. (5.27)

On the other hand, M1 and M2 interact with themselves through the potentials V (M1),

V (M2), given in (5.21). Making use of (5.22) we finally obtain an “effective” two-matrix

model given by:

1

vol(U(N1))× vol(U(N2))

×
∫

dM1dM2 exp

{
− 1

2ĝs
TrM2

1 − 1

2ĝs
TrM2

2 + V (M1) + V (M2) +W (M1,M2)

}
.

(5.28)
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Similar ideas and techniques to analyze matrix models expanded around nontrivial vacua

have been presented in [25] (see also [26]).

In (5.28) we have omitted an overall factor:

(−4)N1N2e−
ĝs
12 N(N2−1)ek̂N2πi/2, (5.29)

where the last factor equals exp
{

1
2ĝs

(u∗)2
}
, which is the value of the classical CS action on

the flat connection associated to (5.23). Notice that the overall factor ek̂N2πi/2

vol(U(N1))×vol(U(N2))

is in agreement with the prediction for the structure of the semiclassical expansion of CS

[16].

Using (5.28), the perturbative expansion around the nontrivial flat connection is just

a matter of computing averages in the Gaussian ensemble. We have computed the pertur-

bative free energy F pert =
∑

g F
pert
g,h (N1, N2)ĝ

2g−2+h
s up to order 4 in the effective coupling

constant. These quantities are homogeneous, symmetric polynomials of degree h in N1,

N2. For genus 0 one has:

F pert
0,4 =

1

288

{
N4

1 + 6N3
1N2 + 18N2

1N
2
2 + 6N1N

3
2 +N4

2

}
,

F pert
0,6 =− 1

345600

{
4N6

1 + 45N5
1N2 + 225N4

1N
2
2 + 1500N3

1N
3
2

+ 225N2
1N

4
2 + 45N1N

5
2 + 4N6

2

}
.

(5.30)

For genus 1, one finds:

F pert
1,2 =− 1

288

{
N2

1 − 6N1N2 +N2
2

}
,

F pert
1,4 =

1

69120

{
2N4

1 + 105N3
1N2 − 90N2

1N
2
2 + 105N1N

3
2 + 2N4

2

}
.

(5.31)

Finally, for genus 2 one finds:

F pert
2,2 = − 1

57600

{
N2

1 + 60N1N2 +N2
2

}
. (5.32)

As a partial check of these expressions, notice that, if N1 = N and N2 = 0 (i.e. when

we specialize to the trivial connection) the partition function of Mp is identical to the

partition function on S3, up to a rescaling of the coupling constant, and the coefficients

F pert
g,h (N) can be obtained from the results of [27][4]. Their explicit expression is

F pert
0,h =

Bh−2

(h− 2)h!

F pert
1,h =− 1

12

Bh

hh!

F pert
g,h =− 1

h!

B2g−2+h

2g − 2 + h

B2g

2g(2g − 2)
, g ≥ 2,

(5.33)
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in agreement with the above results for N2 = 0. In the next sections we will see that the

above expansions exactly agree with the expansion of the closed string amplitudes on local

IP1 × IP1 near the orbifold point.

For S3/ZZp with general p, the result for an arbitrary flat connection can be written

as a p-matrix model

1∏p
i=1 vol(U(Ni))

×
∫ p∏

i=1

dMi exp

{
− 1

2ĝs

p∑

i=1

TrM2
i +

p∑

i=1

V (Mi) +
∑

1≤i<j≤p

W (Mi,Mj)

}
,

(5.34)

where V (M) is still given by (5.21), and W (Mi,Mj) is given by

W (Mi,Mj) =

∞∑

k=1

2−k+1a
(ij)
k

k∑

s=0

(−1)s
(
k

s

)
TrM s

1TrM
k−s
2 , (5.35)

and a
(ij)
k are the coefficients in the Taylor series expansion of

log sinh
(
(j − i)

πi

p
+ x
)
. (5.36)

6. Closed topological strings on O(−K) → IP1 × IP1.

In this section we will calculate the topological string amplitudes for the non-compact

Calabi-Yau geometry which is the large N dual of T ∗S3/ZZ2, by using mirror symmetry

and the B-model technique. The geometry is the canonical line bundle over F0 = IP1× IP1.

The B-model mirror description of that geometry is encoded in a Riemann surface with a

meromorphic differential. Many of the techniques developed here extend to more general

non-compact Calabi-Yau geometries.

6.1. Moduli space of O(−K) → F0

Let us first describe the complexified Kähler moduli space.
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21
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Fig. 4 Schematic view of the unresolved moduli space of O(−K) → IP1 × IP1.

The method to analyze the complexified Kähler moduli space is to study the complex

structure deformations of the mirror as encoded in the period integrals. Up to finite choice

of integration constants these periods are captured by the linear differential operators of

order two [28]7

L1 = z2(1− 4z2)ξ
2
2 − 4z21ξ

2
1 − 8z1z2ξ1ξ2 − (6z1 + 6z2)ξ1 + ξ2,

L2 = z1(1− 4z1)ξ
2
1 − 4z22ξ

2
2 − 8z1z2ξ1ξ2 − (6z1 + 6z2)ξ2 + ξ1,

(6.1)

where the ξi = ∂
∂zi

. Differential systems governing the periods can have only regular

singular points [30], i.e. the periods will in “suitable” coordinates have at worst (in this

case double) logarithmic singularities. One can obtain the corresponding singular locus

by calculating the resultant of the leading (order two) pieces of Li = 0 with ξi viewed as

algebraic variables. This yields

z1z2[1− 8(z1 + z2) + 16(z1 − z2)
2] =: z1z2∆ = 0 .

We need to compactify the z1, z2 space and chose IP2 as first approximation to do that, i.e.

we consider in addition the patches (a1 = 1/z2, a2 = z1/z2) and (b1 = 1/z1, b2 = z2/z1).

Transforming (6.1) and repeating the analysis in these coordinates we get the following

schematic picture of the degeneration locus in fig. 4. We see that the C touches L1 at

z2 = 1
4 , L2 at z1 = 1

4 and I at u = z1
z1+z2

= 1
2 . All intersections are with contact order

two. For example identifying8 at C ∩ I a = 4(1− 2u) and b = 8
z1+z2

the local equations at

7 The Picard-Fuchs equations as starting point of the further considerations can be easily

obtained for all toric non-compact Calabi-Yau spaces [29]. Using the mirror geometry given most

explicitly in [18], it would be also possible to work directly with period integrals.
8 Similarly at C ∩L2 we set a = (1− 4z1) and b = z2 and at C ∩L1, a = (1− 4z2) and b = z1.
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the intersection C ∩ I are

C = {a2 − b = 0} and I = {b = 0} . (6.2)

As a consequence the differential equations are not solvable in the local variables (a, b).

Physically speaking we have to consider a multi scaling limit in approaching the intersection

point in order to be able to define the F (g).

L2

1L

E 2

2F

E

E 1

F
1

C

I

F

Fig. 5 Schematic view of the resolved moduli space of O(−K) → IP1 × IP1.

In algebraic geometry this corresponds to the well-known fact that one can resolve the

moduli space of Kuranishi family in a way that all boundary divisors, i.e. the discriminant

components, have normal crossings. The vanishing coordinates at those divisors are the

“suitable” coordinates for the statement about the regular singular behavior of the periods

above. The resolution process of (6.2) is standard and was used in similar context in

[31]. To resolve points of contact order k one introduces k times (ai : bi) homogeneous

P 1 variables and k relations. In our case the process produces normal crossing after

introducing a1a = b1b and a2a = b2a1. In the (a, b|a1 : b1|a2 : b2) variables the coordinates

along the divisors are C: (
√
b, b|a : 1, |1 : 1), I: (a, 0|0 : 1|0 : 1), E: (0, 0|a1 : 1|1 : 0) and

finally F : (0, 0|0 : 1|a2 : b2). One sees from that that F intersects I, E and C in the way

depicted in fig. 5. The blow ups of Li∩C are completely analogous resolutions of the local

equation (6.2).
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For us the most relevant points are

I ∩ F : ZZ2 orbifold pt. : Matrix model expansion,

L1 ∩ L2 : large complex st. pt. : Topological A−model expansion.

Also interesting are the two copies of Seiberg-Witten field theory embedding

Li ∩ Fi : SW weak coupl. pt. : Space time instanton expansion,

Li ∩ C : SW strong coupl. pt. : SW strong coupling expansion scheme.

6.2. Choosing local complex structure coordinates

Choosing local complex structure coordinates is merely a technical issue needed to

evaluate the periods at all points, two of which will really become the good physical

B-model variables. The transversal directions to the divisors are the good complex co-

ordinates coordinates. At I ∩ F , b2 = 1 and a2 moves transversally to I along F so

a2 = a1/a = b
a2 and a moves transversally to F along I, i.e. (b/a2, a) are good coordi-

nates. At F ∩E b2 = a2

b
is transverse to E and a1 = b

a
transverse to F , good coordinates

are (a
2

b ,
b
a ) and finally at C ∩ F . And at C ∩ I: (1 − b

a2 , a) are good coordinates. This

clarifies the choice of the complex structure variables at all blown loci. At L1 ∩ L2 good

local variables are (z1, z2) and at Li ∩ I
(

zi
z1+z2

, 1
z1+z2

)
. Clearly the right choice of these

variables is a local issue, e.g. we could also have chosen
(

z1
z2
, 1
z2

)
at L1 ∩ I which differs

only away from L1 from the previous ones.

A global issue in the choice of complex parameters is the fact that (z1, z2) are actually

ZZ2 × ZZ2 multi covering variables. The branching loci of which give rise to the E-type

divisors. Choosing single cover variables x2
1 = z1 and x2

2 = z2 the conifold locus ∆ = 0

reduces into four components and the embedding of the Seiberg-Witten u-planes (F1, F2

in fig. 5.) become more familiar since there is now a (1,−1) dyon component and a (0,−1)

monopole component crossing the four u-planes in the single cover variables.

6.3. Solving the Picard-Fuchs equation near the orbifold point

In the usual application of mirror symmetry the periods are evaluated near the large

complex structure point L1 ∩ L2. Two of the periods, usually called t1 = log(z1) + O(z)

and t2 = log(z2) + O(z), approximate at this point the classical large Kähler volumes of

the two IP1.
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Here we need to expand the solutions to the Picard-Fuchs equations near the orbifold

point. It is convenient to use the variables


x1 = 1− z1

z2
, x2 =

1
√
z2

(
1− z1

z2

)


 . (6.3)

The choice of x1 and (B.5) ensures that q1 = q2 or t1 = t2 near the expansion point, while

the vanishing of x2 ensures that
√
z2 goes faster to infinity then x1 goes to zero.

The periods in this variables have the following structure

ω0 = 1,

s1 = − log(1− x1) =
∑

m

cm,0x
m
1 = t1 − t2,

s2 =
∑

m,n

cm,nx
m
1 xm

2 ,

F (0)
s2 = s2 log(x1) +

∑

m,n

dm,nx
m
1 xn

2 ,

where the cm,n and dm,n are determined by the following recursions relations

cm,n =cm−1,n
(n+ 2− 2m)2

4(m− n)(m− 1)
,

cm,n =
1

n(n− 1)
(cm,n−2(n−m− 1)(n−m− 2)− cm−1,n−2(n−m− 1)2),

dm,n =
dm−1,n(n+ 2− 2m)2 + 4(n+ 1− 2m)cm,n + 4(2m− n− 2)cm−1,n

4(m− n)(m− 1)
,

dm,n =
1

n(n− 1)
(dm,n−2(n−m− 1)(n−m− 2)− dm−1,n−2(n−m− 1)2

+ (2n− 2− 2m)cm−1,n−2 + (2m+ 3− 2n)cm,n−2).

Up to linear transformations we expect the s1 and s2 periods to be the good co-

ordinates in which we will express the B-model correlators, which are giving in (x1, x2)

coordinates using (B.3) and (6.3). We therefore need the inverse function x(s). To invert

the second and third period we define s̃1 = s1 = x1 +O(x2) and s̃2 = s1
s2

= x2 +O(x2)

x1(s1) = 1− e−s̃1 ,

x2(s̃1, s̃2) = s̃2 +
1

4
s̃1s̃2 +

1

192
s̃21s̃2 −

1

256
s̃31s̃2 −

49

737280
s̃41s̃2 −

1

192
s̃21s̃

3
2 +O(s̃6) .

(6.4)

This yields the mirror map at the orbifold point.
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6.4. The genus zero partition function at the orbifold point

The genus zero partition function can now be obtained by transforming (B.3) using

(6.3) to the (x1, x2) and by (6.4) to the (s1, s2) coordinates. These s variables are flat

coordinates, which have natural GL(2,C) structure. It follows that we can integrate the

cijk(s) = ∂si∂sj∂skF
(0) to obtain the prepotential F (0) up to a quadratic polynomial in

s. The appropriate variables S1, S2 that match the ’t Hooft parameters in the CS/matrix

model side are given by

S1 =
1

4
(s1 + s2), S2 =

1

4
(s1 − s2) . (6.5)

In view of these identifications, the fact that s1 = t1 − t2 and the symmetry of S1, S2 in

the partition functions below we conclude that s2 = t1 + t2, hence Si =
1
2
ti. This can be

shown also by analytic continuation.

An alternative way to get F (0) is to integrate F
(0)
s2 with respect to the flat coordinate

s2. This way one misses terms, which depend only on s1, but those can be reinstalled by

requiring symmetry between S1 and S2 in the final expression. So one can get F (0) up to

a constant. By comparing the all genus partition function F =
∑∞

i=0 g
2g−2
s F (g) with the

matrix model one also has to make a choice of the string coupling gs namely gtops = 2iĝs.

This way the terms in front of ĝ−2
s are

F (0) =
1

2
(S2

1 log(S1) + S2
2 log(S2)) +

∑

m,n

c(0)Sm
1 Sn

2 + p2(S) . (6.6)

The c
(0)
m,n are only non-zero for n+m ∈ 2ZZ and symmetric in m,n. The first few degrees

have been checked against the matrix model calculation in (5.30):

d = 4 :
1

288
(S4

1 + 6S3
1S2 + 18S2

1S
2
2 + 6S1S

3
2 + S4

2)

d = 6 : − 1

345600
(4S6

1 + 45S5
1S2 + 225S4

1S
2
2 + 1500S3

1S
3
2 + . . .)

d = 8 :
1

40642560
(4S8

1 + 63S7
1S2 + 441S6

2S
2
1 + 441S5

1S
3
2 + 30870S4

1S
4
2 + . . .) .

Both calculations are in perfect agreement.
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6.5. The genus one B-model amplitude

According to [32][12] and taking the simplification in the local case [33] into account

we expect the holomorphic s̄i → 0 limit of the topological amplitude to be

F (1) = log

(
1
2

det

(
∂xi

∂sj

)
∆(x1, x2)

− 1
12

2∏

i=1

xbi
i

)
,

where the conifold discriminant is given by ∆ = (16 − 16x2
2 + 8x1x

2
2 + x2

1x
4
2) in the x

coordinates. The exponent − 1
12 at the conifold is universal and b1 = 1

3 , b2 = 0. Note that

the rescaling of the string coupling does not affect this comparison with the expression

from the matrix model. Expanding in the matrix model flat coordinates (S1, S2) and get

F (1) = − 1

12
(logS1 + logS2) +

∑

m,n

c(1)m,nS
m
1 Sn

2 .

Again the c
(1)
m,n are only non-zero for n + m ∈ 2ZZ and symmetric in m,n. The first few

degrees are given by

d = 2 : − 1

288
(S2

1 − 6S1S2 + S2
2)

d = 4 :
1

69120
(2S4

1 + 105S3
1S2 − 90S2

1S
2
2 + 105S1S

3
2 + 2S4

2)

d = 6 : − 1

17418240
(8S6

1 − 189S5
1S2 + 7560S4

1S
2
2 − 630S3

1S
3
2 + . . .)

d = 8 :
1

1857945600
(16S8

1 + 435S7
1S2 − 27195S6

2S
2
1 + 196770S5

1S
3
2 + 222600S4

1S
4
2 + . . .) .

in perfect agreement with the matrix model calculation (5.31).

6.6. The higher genus topological B-model amplitudes at the orbifold point

The key problem in deriving higher genus results in the B-model with multi dimen-

sional moduli space is to find the propagators of the topological B-model. Due to the

technical nature of the problem we relegate the derivation of the propagators in the Ap-

pendix B.

Equipped with F (0), F (1) and the propagator (B.7) S := S22 we can readily calcu-

late F (2). Since we assured the same singular behavior of the propagator, the ambiguity

at genus 2 has not to be determined again, but can be taken after suitable coordinate

transformation from the calculation of the F (2) at the large complex structure.
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F (2) =− 1

8
S2
2F

(0)
,4 +

1

2
S2F

(1)
,2 +

5

24
S3
2(F

(0)
,3 )2 − 1

2
S2
2F

(1)
,1 F

(0)
,3 +

1

2
S2(F

(1)
,1 )2 + f (2)

=− 1

240

(
1

S2
1

+
1

S2
2

)
+
∑

m,n

c(2)m,nS
m
1 Sn

2

The c
(2)
m,n are only non-zero for n+m ∈ 2ZZ and symmetric in m,n

d = 2 : − 1

57600
(S2

1 + 60S1S2 + S2
2)

d = 4 :
1

1451520
(S4

1 + 126S3
1S2 + 378S2

1S
2
2 + 126S1S

3
2 + S4

2)

d = 6 : − 1

2654208000
(64S6

1 − 38385S5
1S2 + 334575S4

1S
2
2 + 124500S3

1S
3
2 + . . .)

d = 8 :
1

81749606400
(64S8

1 + 68343S7
1S2 − 2224299S6

2S
2
1 + 7547001S5

1S
3
2 + 27188870S4

1S
4
2 + . . .) .

The d = 2 term and the terms involving only one Si are again in perfect agreement with

the matrix model (5.32)(5.33).

The iteration in the genus is in principle no problem in the B-model, however one has

to fix the holomorphic ambiguity at each genus, which we pushed only up to genus 3.

F (3) =S2F
(2)
,1 F

(1)
,1 − 1

2
S2
2F

(2)
,1 F

(0)
,3 +

1

2
S2F

(2)
,2 +

1

6
S3
2(F

(1)
,1 )3F

(0)
,3 − 1

2
S2
2F

(1)
,2 (F

(1)
,1 )2

− 1

2
S4
2(F

(1)
,1 )2(F

(0)
,3 )2 +

1

4
S3
2(F

(1)
,1 )2F

(0)
,4 + S3

2F
(1)
,2 F

(1)
,1 F

(0)
,3 − 1

2
S2
2F

(1)
,3 F

(1)
,1

− 1

4
S2
2(F

(1)
,2 )2 +

5

8
S5
2F

(1)
,1 (F

(0)
,3 )3 − 2

3
S4
2F

(1)
,1 F

(0)
,4 F

(0)
,3 − 5

8
S4
2F

(1)
,2 (F

(0)
,3 )2

+
1

4
S3
2F

(1)
,2 F

(0)
,4 +

5

12
S3
2F

(1)
,3 F

(0)
,3 +

1

8
S3
2F

(0)
,5 F

(1)
,1 − 1

8
S2
2F

(1)
,4 − 7

48
S4
2F

(0)
,5 F

(0)
,3

+
25

48
S5
2F

(0)
,4 (F

(0)
,3 )2 − 5

16
S6
2(F

(0)
,3 )4 − 1

12
S4
2(F

(0)
,4 )2 +

1

48
S3
2F

(0)
,6 + f (3)

=− 1

1008

(
1

S2
1

+
1

S2
2

)
+
∑

m,n

c(2)m,nS
m
1 Sn

2 .

The first few coefficients are

d = 4 :
1

557383680
(16S4

1 − 345S3
1S2 + 58500S2

1S
2
2 − 345S1S

3
2 + 16S4

2)

d = 6 : − 1

36787322880
(64S6

1 − 325116S5
1S2 + 1461735S4

1S
2
2 − 2198130S3

1S
3
2 + . . .) .

These results are predictions for the matrix model.
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7. Some generalizations

7.1. Adding matter

The considerations in the preceding sections can be easily generalized by adding matter

fields. In terms of Chern-Simons theory this has been discussed in [8,9]. In this section

we consider this in the mirror B-model language. We will show that all the amplitudes

computed in [8,9] are matrix model amplitudes. This includes invariants for torus knots

and links in the classes of three- manifolds M considered in this paper.

For definiteness, consider the B-model geometry corresponding to

xz = (eu − 1)(eu−t1 − 1)(ev − 1)(ev−t2 − 1), (7.1)

which is a mirror of the A-model geometry studied in section 7.5 of [8]. There are four

holomorphic IP1’s corresponding to four points with u = 0, t1 and v = 0, t2. We can

consider wrapping some numbers Ni D-branes on the i-th IP1.

P

P

P

P

1 

1 

1 

1 

2 

3 

4

u=0 u=t

v=0

v=t

1 

2 

1 

Fig. 6 The figure depicts the four isolated IP1’s in the Calabi-Yau (7.1).

Consider the partition function of the modes corresponding to the IP1 at u = 0 = v.

This is given by

Z(S) = 〈0v|S|0v〉 = 〈0u|0v〉,
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since u and v are related by S operator given in (2.5). Alternatively, the wave function

|0u〉 is obtained from |0v〉 by simply exchanging u and v, as this is what S does, up a

constant. We have that

Z =
1

|W|

∫ ∏

i

duidvi

(2πgs)
1
2

∆H(u)∆H(v) e
∑

i
uivi/gs , (7.2)

where we used that u and v are canonically conjugate, so 〈u|v〉 = e
∑

i
uivi/gs , and further-

more |W| = N ! is the order of the Weyl group of U(N) where N = N1 is the number of

wrapped D-branes. It is easy to see that the partition functions of the modes living on the

other IP1’s in (7.1) coincide with (7.2) with appropriate values of N .

This corresponds to a matrix model given by

Z =
1

vol(U(N))

∫

[u,v]=0

d̂ud̂v

(2πgs)
N
2

eTruv/gs , (7.3)

where the integral is over commuting Hermitian matrices u and v. The measure in the

path integral is defined as follows. Consider the space of unitary matrices U, V . where

U = eu and V = ev. Since u, v are canonically conjugate it is natural to consider the

symplectic form

ω = TrU−1dU ∧ V −1dV , (7.4)

in terms of the left U(N) invariant line elements U−1dU and V −1dV . The symplectic form

gives rise to the volume element on the phase space ωd/d! where d = N2 is the dimension

of U(N). The measure in the path integral (7.3) is induced from this by restricting to the

space of commuting matrices U and V . Namely, u and v commute, there exists a unitary

matrix Ω that diagonalizes both U and V , i.e. ΩUΩ−1 = diag(ui) and ΩV Ω−1 = diag(vi).

The volume of the phase space is obtained by writing (7.4) in terms of Ω, ui and vi.

Integrating over Ω to reduce the path integral to integral over the eigenvalues recovers

(7.2). This is akin to the matrix models studied in [34] based on Hermitian matrices. In

the following, the measure on the phase space of pairs of conjugate, U(N) Lie-algebra

valued variables, u, v will be denoted by d̂ud̂v. In particular, it should be understood that

u and v commute. The fact that u and v are commuting matrices in (7.3) is natural as

the Az̄ equation of motion implies that the matrix [u(z), v(z)]ij vanishes9, and we have

localized to zero modes.

Because there is more than one stack of B-branes, there are additional open string

sectors with the two ends of the string on the D-branes wrapping the different IP1’s. By

the same arguments as in [8], the only modes that contribute to the B-model amplitudes

correspond to the strings stretching between IP1
i and IP1

i+1 in the fig. 6.

9 This is mirror to the vanishing of F in (2.4).
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u

. .
u=0 u=t

Q

Q
(1)

(2)

Fig. 7 The figure depicts the lift in the full geometry of the line passing through

the north and the south pole of the IP1
1 and IP1

2. This is the u-cylinder intersected

at u = 0 and u1 by the two IP1’s. Consequently there is a family of BPS strings

connecting the two IP1’s and winding around the cylinder. The strings are labeled

by their winding number.

Consider for example the strings stretching between u = 0 and u = t1 on the u-

cylinder and connecting IP1
1 and IP1

2. There are different topological sectors of these strings

– corresponding to how many times the string winds around the S1, see fig. 7. From each

sector we get one physical scalar in the bifundamental representation. Moreover, each of

the strings is minimally coupled to the gauge-fields on the spheres it ends on. Thus, the

matter part of the action is

S(Q12, u) =
∑

n

TrQ
(n)
12

(
(2πin+ t) 11 ⊗ 12 + u1 ⊗ 12 − u1 ⊗ 12

)
Q

(n)
21 ,

where [Q
(n)
12 ]† = Q

(n)
21 , and u1 and u2 are matrices corresponding to the positions of the

first and the second stack of D-branes on the u-cylinder. Recall that there is a relative

shift by parameter t between them that contributes to the mass. The contribution of this

to the path integral O12 =
∫ ∏

n dQ
(n)
12 exp(S(Q12, u)/gs) is trivial to evaluate, as in [35],

giving

O12 =exp
{ ∞∑

n=1

e−nt

n
TrUn

1 TrU−n
2

}

=
∑

R

e−lRt TrRU1 TrRU2,

(7.5)

where U1,2 = eu1,2 and lR is the number of boxes in representation R. In writing (7.5)

we used the regularization
∑

n log(2πin + x) = log sinh(x) + const of the one loop path

integral.
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Note that mirror symmetry transforms the tower of modes above to a single string

ground state propagating on a circle, where as above u1,2 get related to Wilson lines on the

mirror S3’s as in [8]: S(Q12, A) =
∮
γ
Tr Q12

(
(d+ t)11⊗12−A1⊗12+11⊗A2

)
Q21. This

is the expected action of T-duality on D-branes. The operators U1,2 are now interpreted

as Wilson loop operators in Chern-Simons theory.

The matrix model allows one to very simply calculate expectation values of Wilson

loop operators. Consider for example evaluating the Chern-Simons path integral on S3 in

the presence of a Hopf link. This can be obtained from gluing two solid 2-tori by an S

transformation, and in the presence of Wilson loops in representations R and R′ on the

one-cycles that cannot shrink, i.e. we are interested in evaluating 〈R|S|R′〉 = 〈Rv |R′
u〉. In

the light of the discussion above, the path integral on the solid two-torus with the Wilson

loop is mirror to computing

|Rv〉 =
1

|W| 12

∫ ∏

i

duiTrRU∆H(u)|u〉,

so that 〈R|S|R′〉 is

〈R|S|R′〉 = 1

vol(U(N))

∫
d̂ud̂v

(2πgs)
N
2

TrRUeTruv/gsTrR′V −1. (7.6)

It is easy to see that this agrees with the expression (2.12) – as above it can be evaluated

simply by using the Weyl character formula, for U(N)

TrRU =

∑
w∈W ǫ(w)eiw(α)·u

∑
w∈W ǫ(w)eiw(ρ)·u

,

where α is the highest weight vector of the representation R of U(N) shifted by ρ. As a

check, note that

〈R|S|R′〉 = 1

|W |
( gs
2π

)N
2

∑

w,w′∈W

ǫ(ww′)e−gsw(α)·w′(β)

=
( gs
2π

)N
2
∑

w∈W

ǫ(w)e−gsw(α)·β

. (7.7)

Note that this exactly agrees with (2.12).
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To summarize, we have a matrix model expression for the B-branes in the geometry

(7.1), given by

Ztot =
1

∏4
i=1 vol(U(Ni))

∑

R1,...,R4

∫

[ui,vi]=0

4∏

i=1

d̂uid̂vi

(2πgs)
Ni
2

e−
∑

4

i=1
Truivi/gs

×e−l1t1 TrR1
U−1
2 TrR2

V2e
−l2t2 TrR2

V −1
3 TrR3

U3

×e−l3t1 TrR3
U−1
4 TrR4

V4 e
−l4t2TrR4

V −1
1 TrR1

U1

(7.8)

where the expectation values of the Hopf link operators are computed by matrix integrals

(7.7). The minus sign in the exponent corresponds to the fact that the gluing operator is

S−1 [8].

Fig. 8 The figure depicts the geometric transition of the open string geometry in

figure fig. 6. The geometric transition is a large N duality, and the matrix model

computes amplitudes of the A-model version of geometry on the left (a toric IB5)

to all genera.

Moreover, the large N dual of this is a mirror of toric Calabi-Yau geometry without

any D-branes, corresponding to a O(−K) → IP1 × IP1 blown up at four points, which is

a non-generic Del-Pezzo surface IB5, see fig. 8. In [8] it was shown that Chern-Simons

theory on the A-model mirror of geometries in (7.1) computes the topological A-model

amplitudes in IB5 to all genera. What we have shown here is that all genus IB5 amplitudes

are really computed by a matrix model!

The above Hopf-link computation is also easy to generalize to more general (m,n)

torus knots, where the corresponding operator is

|R;m,n〉 = TrRe
mu+nv|0v〉.

where we have picked one particular ordering of operators. Different orderings of the

operators differ from this by overall phases.
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7.2. More general geometries

The considerations above can be generalized to arbitrary backgrounds of the form

xz =
∏

i

Pi(u, v).

We have a collection of IP1’s where curves

Pi = 0 = Pj

intersect. In general there are also matter multiplets corresponding to strings stretching

between the IP1’s whose poles lie on the same curve, and we get a quiver theory. On the

nodes of the quiver we get a matrix model,

Zij = 〈0Pi
| 0Pj

〉.

For example, if Pi = 0 and Pj = 0 are given respectively by

v = W ′
i (u), u = W ′

j(v), (7.9)

then

Zij = 〈0v | eWi(u)/gs eWj(v)/gs | 0u〉

=
1

vol(U(N))

∫
d̂u d̂v

(2πgs)
N
2

exp
{ 1

gs

(
TrWi(u)− Truv +TrWj(v)

)}
,

(7.10)

This corresponds to replacing T ∗M by more general geometries which approximate this in

the immediate neighborhood of M .

e  + e  −1 = 0
u v

 

P
1 

v=t

Fig. 9 An example of more general geometries.
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As an example, let us consider the B-model geometry studied previously in [10], cor-

responding to a blowup of

xz = (eu + ev − 1)(ev−t − 1),

we have W1(v) = −∑n
1
n2 e

nv and W2(u) = tu. Note that the gluing operator is related to

the superpotential of the theory. Namely, the superpotential for a B-brane in this geometry

was computed in [10], where it was found that

W (u) =

∫

B

Ω =

∫
(v2(u)− v1(u))du,

where

v1 = log(1− eu), v2 = t,

are the equations of the corresponding Riemann surfaces. In calculating the superpotential,

we kept v fixed over the whole IP1. Note that on the Riemman surface, if we put v1(u) =
d
du

WD
1 (u), we have that WD

1 (u) and W1(v) are Legendre transforms

WD
1 (u) = uv +W1(v).

7.3. Framing dependence

In the formalism we have been developing there is a subtlety related to framing depen-

dence. Note that there is more than one operator having the property that it conjugates

v to pu+ qv. For example, given an operator U(p,q) that conjugates v to pu+ qv, operator

U ′
(p,q)

U ′
(p,q) = U(p,q)e

−mv2/2gs ,

has the same property, for any value of m. This corresponds geometrically to a SL(2,ZZ)

transformation that leaves the shrinking one-cycle of the boundary T 2 invariant T : b → b,

but affects the finite cycle a → a+mb. The resulting ambiguity is related to the choice of

framing in Chern-Simons theory, and affects the vacuum expectation value by an overall

phase that one can readily calculate, so presents no loss of predictability.

In fact, we can derive the known framing dependence by using the matrix model

representation. Consider the solid torus with a Wilson line in representation R. Changing

framing affects the path integral |Rv〉 =
∑

ω∈W ǫ(ω)δ(v′ + igsω(α)) as

|Rv〉 → e
−mv2

2gs |Rv〉

=
∑

w∈W

ǫ(w)

∫
dv′e

m(v′)2

2gs |v′〉δ(v′ + igsw(α))

= e
mgsα·α

2 |Rv〉.

(7.11)
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Recall that α is the highest weight vector λ of representation R shifted by the Weyl vector,

i.e. α = Λ+ρ. From this we see that α ·α = CR+ρ ·ρ, where CR is the quadratic Casimir of

the representation R. Note that ρ · ρ = N(N2−1)
12

. Therefore, the state |Rv〉 gets multiplied

by a relative phase

exp(2πimhR)

where hR = CR

2(k+N)
is the conformal weight of the primary field in representation R of

the corresponding WZW model. The above result is the well-known framing dependence

of Wilson lines in CS theory. The remaining phase, exp(mgsρ
2/2), corresponds in fact to

a change in the framing of the three-manifold. Namely, gsρ
2/2 = −2πicU(N)/24 up to a

constant 2πN2/24.

8. Relation to N = 1 theories

Consider IIA theory compactified on T ∗S3 with N D6 branes wrapping S3. At low

energies, the theory in four dimensions reduces to N = 1 super Yang-Mills, and as it

was shown in [12][36] the open string amplitudes Fg,h lead to superpotential terms in the

effective four-dimensional theory of the form

∫
d2θFg,hW2g[NhSh−1],

where Wαβ is an N = 1 multiplet whose bottom component is the self-dual part of the

graviphoton, and S = TrWαW
α is the gluino superfield. Notice that the derivative with

respect to S of the prepotential F0(S) =
∑

h F0,hS
h gives the superpotential of the N = 1

theory.

The small S behavior of the superpotential is captured by the leading piece of F0(S),

in other words, by the behavior of the prepotential near the conifold point

F0(S) =
1

2
S2 log S.

As shown in [36], this leads to the Veneziano-Yankielowicz gluino superpotential. The full

prepotential is given by

F0(S) =
1

2
S2 log S +

∞∑

h=4

Bh−2

(h− 2)h!
Sh,
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and leads to a superpotential that can be written (in string units) as [36]

W =
∑

n∈ZZ

(S + 2πin) log(S + 2πin)−N . (8.1)

This can be interpreted in terms of infinitely many species of domain walls labeled by n [36].

With the results of this paper we can give another interpretation of (8.1). According to

the general result of [2][37], the effective superpotential of an N = 1 supersymmetric gauge

theory can be computed by a matrix model whose potential is the tree level superpotential

of the gauge theory. On the other hand, we have seen that there is a Hermitian matrix

model describing Chern-Simons theory on the three-sphere, given by (5.20). This means

that (8.1), which includes infinitely many domain walls, can be interpreted as the effective

superpotential of an N = 2 theory whose tree-level superpotential is

1

2
TrΦ2 + S

∞∑

k=0

B2k

(2k)(2k)!

2k∑

s=0

(−1)s−1

(
2k

s

)
1

N
TrΦsTrΦ2k−s. (8.2)

Here, Φ is the N = 1 chiral superfield in the adjoint representation which is part of

the N = 2 vector multiplet, and we have used that gs → S/N [36,2,37]. Notice that this

superpotential contains multi-trace operators. These kinds of operators have been recently

considered in the context of the AdS/CFT correspondence, see for example [38,39].

A similar argument can be applied to type IIA theory compactified on T ∗Mp, with

N D6 branes wrapping Mp. Since we are orbifolding with a ZZp action, we have in general

a quiver theory with p nodes and gauge groups U(N1) × · · ·U(Np). Each of these quiver

theories (i.e. the different choices of N1, · · · , Np) are in one-to-one correspondence with the

choices of flat connections in the corresponding Chern-Simons theory. At leading order

in the gluino superfields, this theory is just a direct product of U(Ni) theories that do

not interact with each other, and the prepotential is just the sum of the corresponding

prepotentials for the different gauge groups. However, as we have seen in this paper, the

higher order corrections mix the different gluino fields, and we can interpret the resulting

N = 1 superpotential as coming from a product of p N = 2 theories with gauge groups

U(N1), · · · , U(Np), and with a tree level superpotential that can be read from (5.34):

1

2

p∑

i=1

TrΦ2
i +

S

pN

p∑

i=1

V (Φi)−
S

pN

∑

1≤i<j≤p

W (Φi,Φj),

where Φi is the N = 1 chiral superfield in the adjoint of the U(Ni) theory, V (Φ) is given

by the second term in (8.2), and W (Φi,Φj) is given in (5.26).
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Appendix A. Computation of correlation functions in the Gaussian matrix

model

In order to compute the perturbation expansion of (5.28), one has to evaluate correla-

tion functions in the Gaussian matrix model. In this short appendix we review some basic

techniques to do these computations.

Fig. 10 Fatgraphs representing TrM , TrM2 and TrM3.

We want to evaluate normalized correlation functions of the form

〈
∏

j

(TrM j)kj 〉 =
∫
dMe−

1
2TrM

2 ∏
j(TrM

j)kj

∫
dMe−

1
2TrM

2
, (A.1)

where M is an N × N Hermitian matrix. When the exponent of the Gaussian is given

by − 1
2ĝs

TrM2, the above correlation functions gets multiplied by ĝℓs, where ℓ =
∑

j jkj.

Notice that the correlation function is different from zero only when ℓ is even.

There are various ways to obtain the value of (A.1). A useful technique is to use the

matrix version of Wick’s theorem, or its graphic implementation in terms of fatgraphs (see

[40] for a nice review). An insertion of (TrM j)kj leads to kj j-vertices written in the double

line notation, and the average (A.1) is evaluated by performing all the contractions. The

propagator is the usual double line propagator. Each resulting graph Γ gives a power of

N ℓ, where ℓ is the number of closed loops in Γ. Since we have insertions of TrM as well,

we have to consider a one-vertex given by a double line in which two of the ends have been

joined. The one, two and three-vertices in terms of fatgraphs are shown in fig. 10.
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3

Fig. 11 The fatgraph contributing to 〈TrMTrM3〉.

As an example, consider the average

〈σ2〉 = 〈NTrM4 − 4TrMTrM3 + 3(TrM2)2〉. (A.2)

The evaluation of 〈TrM4〉 is standard [24]: we have one planar diagram with weight 2

giving 2N3, and one nonplanar diagram (with g = 1) giving N . In the evaluation of

〈TrMTrM3〉 we have three possible contractions between the one-vertex and the three-

vertex of fig. 10, leading to a planar diagram with weight 3, as shown in fig. 11. Since

there are two closed loops, the final result is 3N2.

+ 2

Fig. 12 The fatgraphs contributing to 〈(TrM2)2〉.

To evaluate 〈(TrM2)2〉 we consider two two-vertices. We can do self contractions,

leading to one disconnected planar diagram with four loops, or we can contract the two-

vertices one to another in two ways, leading to a connected diagram with two loops, see

fig. 12. We find in total N4 + 2N2. Putting everything together, we obtain:

〈σ2〉 = 5N2(N2 − 1).

It turns out that one can write a general an explicit expression for the average (A.1)

using results of Di Francesco and Itzykson [41]. This goes as follows. By Frobenius

formula, one can express the product of traces
∏

j(TrM
j)kj as a linear combination of

traces in irreducible representations R. To do that, one regards the vector (k1, k2, · · ·) as
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a conjugacy class of the symmetric group of ℓ =
∑

j jkj elements. This conjugacy class,

that we will denote by C(~k), has k1 cycles of length 1, k2 cycles of length 2, and so on.

We then have,
∏

j

(TrM j)kj =
∑

R

χR(C(~k)) TrRM, (A.3)

where the sum is over representations of the symmetric group of ℓ elements. These repre-

sentations are associated to Young tableaux with ℓ boxes, and we will denote the number

of boxes in the i-th row of the Young tableau by li, with l1 ≥ l2 ≥ · · ·. Define now the ℓ

integers fi as follows

fi = li + ℓ− i, i = 1, · · · , ℓ. (A.4)

We will say that the Young tableau associated to R is even if the number of odd fi’s is

the same as the number of even fi’s. Otherwise, we will say that it is odd (remember that

ℓ is even). One can show [41] that the average of TrRM in the Gaussian matrix model

vanishes if R is an odd tableau, and for even tableaux one has the explicit formula:

〈TrRM〉 = (−1)
A(A−1)

2

∏
f odd f !!

∏
f ′ even f

′!!
∏

f odd,f ′ even(f − f ′)
dR, (A.5)

where A = ℓ/2. Here dR is the dimension of R as an irreducible representation of U(N),

and can be computed for example by using the hook formula. As an example of (A.5), let

us compute 〈TrMTrM3〉. To do that, one has to evaluate 〈TrRM〉 for R = , and

. All of these tableaux are even, and one finds:

〈Tr M〉 =1

8
N(N + 1)(N + 2)(N + 3),

〈Tr M〉 =1

4
N2(N2 − 1),

〈Tr M〉 =1

8
N(N − 1)(N − 2)(N − 3).

(A.6)

One then finds, by using Frobenius formula,

〈TrMTrM3〉 = 〈Tr M〉 − 〈Tr M〉+ 〈Tr M〉 = 3N2, (A.7)

in agreement with the result that we obtained with fatgraphs.

46



Although the result of [41] explained above gives a general answer, in some cases

there are more convenient expressions. For example, for 〈TrM2j+2〉, Kostov and Mehta

[42] found the useful result:

〈TrM2j+2〉 = (2j + 2)!

(j + 1)!(j + 2)!
Pj+1(N), (A.8)

where

Pm(N) =

[m/2]∑

i=0

ami

4i
Nm+1−2i, (A.9)

and the coefficients ami are defined by the recursion relation

am+1,i =

m∑

k=2i−1

k(k + 1)ak−1,i−1, (A.10)

and am0 = 1. One has for example am1 = (m+ 1)m(m− 1)/3, and so on. Notice that in

the planar limit, the leading term of the average (A.8) is given by N j+2 times the Catalan

number cj+1 = (2j + 2)!/((j + 1)!(j + 2)!). Using (A.8), one finds for example,

〈TrM4〉 =2N3 +N,

〈TrM6〉 =5N4 + 10N2,

〈TrM8〉 =14N5 + 70N3 + 21N.

Finally, another useful fact in the computation of (A.1) is that averages of the form

〈(TrM2)p O〉 can be evaluated by restoring appropriately the g = 1/ĝs dependence in

the Gaussian. One easily finds that, if O is an operator of the form
∏

j(TrM
j)kj , with

ℓ =
∑

k jkj , then

〈(TrM2)pO〉 =
(
−2

d

dg

)p

g−
ℓ+N2

2

∣∣∣
g=1

〈O〉.

Appendix B. Derivation of the propagators in the B-model

One main problem in the analysis of the B-model is the determination of the propa-

gators Sij with the defining relation ∂̄īS
kl = C̄kl

ī
[12]. They are simply integrated w.r.t.

∂̄̄ from the special geometry relation

Rk
īl = Gīδ

k
l +Gk̄δ

k
i − CilmC̄km

̄ , (B.1)
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using the wellknown formulas in Kähler geometry Rk
īl = −∂̄̄Γ

k
il, Gī = ∂i∂̄̄K and Γi

lm =

Gik̄∂lGk̄,m to

SijCjkl = δil∂kK + δik∂lK + Γi
kl + f i

kl. (B.2)

However there are two problems in actually solving for the Sij . The purely holomorphic

terms f i
kl are ambiguous integration constants. In the multi moduli case the 1

2n
2(n + 1)

equations overdetermine the 1
2n(n+ 1) Sji = Sji, i ≤ j and the f i

kl can in general not be

trivial. Secondly, since the left hand side of (B.2) is covariant, the f i
kl have to undo the

inhomogeneous transformation of Christoffel symbol as well as the shift of the first two

terms of the left hand side under Kähler transformations.

While for the instanton expansion we need the flat large complex structure variables

ti(zk), we expect the f
i
kl to be simple rational functions involving the discriminant compo-

nents in the zi variables, because the Cikl have similar properties in these coordinates. We

will first solve the problem of the over determination of the Sij in the z coordinates and

then transform the Sij as covariant tensors to the t variables, this determines the choice

of the f i
jk in the t variables.

Let us discuss some non-compact Calabi-Yau manifolds first. Here we have the sim-

plification that in the holomorphic limit the Kähler potential becomes a constant and

furthermore there is a gauge [33] in which the propagators ∂̄̄S
j := Sj

̄ and ∂̄̄S := S̄

vanish in that limit, which makes the topological amplitudes entirely independent from

quantities like the Euler number or the Chern classes, which would have to be regularized

in the non-compact case.

The simplest cases to consider areO(−2,−(n+2)) → Fn. We use the parameterization

of the complex structure variables of [28][29], where the Picard-Fuchs equations and the

genus zero and genus one results can be found. For n = 0, i.e. F0 = IP1 × IP1 we note that

the threepoint functions are given in the z variables by

C111 =
∆2 − 16z1(1 + z1)

4z31∆
, C112 =

16z21 −∆2

4z21z2∆
, C122 =

16z22 −∆1

4z1z
2
2∆

, (B.3)

where ∆i = (1− 4zi) and

∆ = 1− 8(z1 + z2) + 16(z1 − z2)
2

is the conifold discriminant. Other three-point function follow for F0 by symmetry. Gener-

ally these couplings of the local models can be obtained from the compact elliptic fibration
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over Fn with fiber X6(1, 2, 3) by a limiting procedure. This compact Calabi-Yau has three

complexified volumes: tE , roughly the volume of the elliptic fiber, and tB and tF the vol-

ume of base and the fiber of the Hirzebruch surface Fn. They correspond to the Mori cone

generators (−6, 3, 2, 1, 0, 0, 0, 0), (0, 0, 0, (n− 2), 1, 1,−n, 0), (0, 0, 0,−2, 0, 0, 1, 1) and fulfill

in large complex structure limit log(za) = ta. It turns out that the limit of is not given by

tE → ∞ but rather by t̃E = (tE − K·B
8

tB − K·F
8

tF ) → ∞
With these couplings we find a particular solution to (B.2) by choosing

f1
12 = − 1

4z2
, f2

12 = − 1

4z1
,

f1
11 = − 1

z1
, f2

22 = − 1

z2
,

(B.4)

where the rest are either related by symmetry to the above or zero. Note that this sim-

ple choice of the integration constants implies algebraic relations between the Christoffel

symbols in the z coordinates in the holomorphic limit

lim
z̄→0

Γza
zbzc

= lim
z̄→0

Gzaz̄e∂zbGz̄e,zc =
∂za
∂te

∂

∂zb

∂te
∂zc

.

These relations are due the fact that only one transcendental mirror map exists. In partic-

ular the following relation between the mirror maps is easily shown from the Picard-Fuchs

equations
z1
z2

=
q1
q2

(B.5)

with qi = e−ti . With this we can obtain the general solution to the integrability constraints

as a rational relation between the f i
jk as

f1
11 =

6zs − 1

z1(1− 4zs)
+

8f1
12z2zs

z1(1− 4zs)
− f1

22

z22
z21

,

f2
11 =

z2(6zs − 1)

z21(1− 4zs)
+

8f2
12z2zs

z1(1− 4zs)
− f2

22

z22
z21

,

where zs = z1 + z2.

Claim: The remaining degrees of freedom in the choice of f i
jk can always be used to

set all but one Skk to zero. This has been checked for F0, see also [43], F1 and F2 and is

probably true more generally10.

10 It would be interesting to check for compact Calabi-Yau.
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In view of (B.5) we can see this most easily for F0 in the variables

z =
z1
z2

, q =
q1
q2

,

Z = z2, Q = q2,
(B.6)

in which some Christoffel symbols are rational

Γ1
11 =

1

z
, Γ1

12 = 0, Γ1
22 = 0

We can set f1
11 = − 1

z , f
1
12 = 0 and f1

22 = 0 so that by

Sik = (C−1
p )kl(Γi

pl + f i
pl)

we have S1p = 0. Because of S2k = (C−1
p )kl(Γ2

pl + f2
pl) we must ensure that there is

a rational relation between the Γ2
kl and rational choice of f2

kl, which is compatible with

S12 = S21 = 0. A particular choice corresponding to (B.4) is given by f1
11 = 0, f2

12 = − 1
4z

and f2
22 = − 3

2Z
.

We need the propagator in the local orbifold coordinates. It follows from the ten-

sorial transformation law of the left hand side of (B.2) and the transformation of the

Christoffel on the right that a possible choice of the ambiguity at the orbifold is given

by f̃a
bc = ∂xa

∂zl

(
∂zl

∂xb∂xc

)
+ ∂xa

∂zj
∂zk
∂xb

∂zl
∂xc

f j
kl, where f i

kl are the ambiguities (B.4) and the

transformation is given by (6.3). This formula holds since the si and ti are related by

a GL(2,C) transformation and yields f̃1
11 = 1

1−x1
, f̃1

12 = f̃1
22 = f̃2

22 = 0, f̃2
11 = − x2

2x1(1−x1)

and f̃2
12 = 4−3x1

4x1(1−x1)
. Note that Γ1

11 = − 1
(1−x1)

in the x coordinates and we get

S11 = S12 = S21 = 0. The only nonvanishing propagator in the s1, s2 coordinates is

S22 =
1

16
(s2 − s1)(s1 + s2) +

1

6144
((s1 − s2)(s1 + s2)(s

2
1 − 5s22)) +O(s6) . (B.7)

The fact that only one propagator contributes allows a consistency check or an alternative

way of deriving the propagator. Namely by noting that the holomorphic anomaly equation

for the genus 1 partition function can be either derived using the contact terms in topo-

logical field theory or more geometrically via a generalized determinant calculation similar

as in Quillen’s work

∂i∂̄j̄F
(1) =

1

2
CiklC̄j̄k̄l̄e

2KGk̄kGll̄ −
( χ

24
− 1
)
Gij̄ . (B.8)
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Fig. 13 Degeneration of the marked torus.

If we specialize this to the non-compact case the last term becomes irrelevant in the

holomorphic limit. Using the definition of the propagator ∂̄j̄S
kl := C̄j̄k̄l̄e

2KGk̄kGll̄ and the

fact that Cikl is truly holomorphic we may write this as

∂̄j̄

[
∂iF

1 − 1

2
CiklS

kl

]
= 0 . (B.9)

This is the easiest example of the Feynman graph expansion of the anomaly equation, see

fig. 13.

The result is that F (1) can be integrated in the holomorphic limit from

∂tiF
(1) = Sjk∂i∂j∂kF

(0) + ∂ti

s∑

r=1

ar log(∆r) , (B.10)

where ∆r = 0 are the various singular divisors in the moduli space and
∑s

r=1 ar log(∆r)

parameterize the holomorphic ambiguity. Since only S22 is nonzero we can invert the

equation (B.10) and obtain (B.7) from the knowledge of F (0), F (1). A singular behavior

of S22 at the discriminant can be absorbed by choosing the ar appropriately. In our case

the only nonzero ar will be acon = 1
12 in order to recover the previous gauge choice (B.7)

11. We have fixed the holomorphic ambiguity up to genus three. Using the transformation

properties of the ambiguities this allows to calculate F (g), g = 0, 1, 2, 3 at all points in

the moduli space. We checked that the expansion at large complex structure matches the

Gromov-Witten invariants in [8] and [43].

11 In fact one can drop the ambiguity part ∂ti

∑s

r=1
ar log(∆r) in (B.10) altogether. This

corresponds merely to gauge choice of the propagator which leads to a different form of the

ambiguity at higher genus.
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