

## MATRIX p-NORMS ARE NP-HARD TO APPROXIMATE IF p not equal to 1, 2, infinity

The MIT Faculty has made this article openly available. *Please share* how this access benefits you. Your story matters.

| Citation     | Hendrickx, Julien M., and Alex Olshevsky. "Matrix \$p\$-Norms Are NP-Hard to Approximate If \$p\neq1,2,\infty\$." SIAM Journal on Matrix Analysis and Applications 31.5 (2010) : 2802. © 2010 Society for Industrial and Applied Mathematics |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| As Published | http://dx.doi.org/10.1137/09076773x                                                                                                                                                                                                          |
| Publisher    | Society for Industrial and Applied Mathematics                                                                                                                                                                                               |
| Version      | Final published version                                                                                                                                                                                                                      |
| Citable link | http://hdl.handle.net/1721.1/64956                                                                                                                                                                                                           |
| Terms of Use | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.                                                                           |



## MATRIX p-NORMS ARE NP-HARD TO APPROXIMATE IF $p \neq 1, 2, \infty^*$

JULIEN M. HENDRICKX<sup>†</sup> AND ALEX OLSHEVSKY<sup>‡</sup>

**Abstract.** We show that, for any rational  $p \in [1, \infty)$  except p = 1, 2, unless P = NP, there is no polynomial time algorithm which approximates the matrix p-norm to arbitrary relative precision. We also show that, for any rational  $p \in [1, \infty)$  including p = 1, 2, unless P = NP, there is no polynomial-time algorithm which approximates the  $\infty$ , p mixed norm to some fixed relative precision.

Key words. matrix norms, complexity, NP-hardness

AMS subject classifications. 68Q17, 15A60

**DOI.** 10.1137/09076773X

1. Introduction. The p-norm of a matrix A is defined as

$$||A||_p = \max_{||x||_p=1} ||Ax||_p.$$

We consider the problem of computing the matrix p-norm to relative error  $\epsilon$ , defined as follows: given the inputs (i) a matrix  $A \in \mathbb{R}^{n \times n}$  with rational entries and (ii) an error tolerance  $\epsilon$  which is a positive rational number, output a rational number r satisfying

$$|r - ||A||_p| \le \epsilon ||A||_p.$$

We will use the standard bit model of computation. When  $p=\infty$  or p=1, the p-matrix norm is the largest of the row/column sums and thus may be easily computed exactly. When p=2, this problem reduces to computing an eigenvalue of  $A^TA$  and thus can be solved in polynomial time in n,  $\log \frac{1}{\epsilon}$  and the bit size of the entries of A. Our main result suggests that the case of  $p \notin \{1, 2, \infty\}$  may be different.

Theorem 1.1. For any rational  $p \in [1, \infty)$  except p = 1, 2, unless P = NP, there is no algorithm which computes the p-norm of a matrix with entries in  $\{-1, 0, 1\}$  to relative error  $\epsilon$  with running time polynomial in  $n, \frac{1}{\epsilon}$ .

On the way to our result, we also slightly improve the NP-hardness result for the mixed norm  $||A||_{\infty,p} = \max_{||x||_{\infty} \le 1} ||Ax||_p$  from [5]. Specifically, we show that, for every rational  $p \ge 1$ , there exists an error tolerance  $\epsilon(p)$  such that, unless P = NP, there is no polynomial time algorithm approximating  $||A||_{\infty,p}$  with a relative error smaller than  $\epsilon(p)$ .

<sup>\*</sup>Received by the editors August 11, 2009; accepted for publication (in revised form) by D. Boley July 23, 2010; published electronically October 28, 2010. This research was supported by the National Science Foundation under grant ECCS-0701623. The first author holds postdoctoral fellowships from the F.R.S.-FNRS (Belgian National Fund for Scientific Research) and the Belgian American Education Foundation and is on leave from the Department of Mathematical Engineering of the Université Catholique de Louvain, Louvain-la-Neuve, Belgium.

 $<sup>\</sup>rm http://www.siam.org/journals/simax/31-5/76773.html$ 

<sup>&</sup>lt;sup>†</sup>Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA. Current address: Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, 4 avenue George Lemaitre, B-1348 Louvain-la-Neuve, Belgium (julien.hendrickx@uclouvain.be).

<sup>&</sup>lt;sup>‡</sup>Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA. Current address: Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ (aolshevs@princeton.edu).

1.1. Previous work. When p is an integer, computing the matrix norm can be recast as solving a polynomial optimization problem. These are known to be hard to solve in general [3]; however, because the matrix norm problem has a special structure, one cannot immediately rule out the possibility of a polynomial time solution. A few hardness results are available in the literature for mixed matrix norms  $||A||_{p,q} = \max_{||x||_p \le 1} ||Ax||_q$ . Rohn has shown in [4] that computing the  $||A||_{\infty,1}$  norm is NP-hard. In her thesis, Steinberg [5] proved more generally that computing  $||A||_{p,q}$  is NP-hard when  $1 \le q . We refer the reader to [5] for a discussion of applications of the mixed matrix norm problems to robust optimization.$ 

It is conjectured in [5] that there are only three cases in which mixed norms are computable in polynomial time: First, p=1, and q is any rational number larger than or equal to 1. Second,  $q=\infty$ , and p is any rational number larger than or equal to 1. Third, p=q=2. Our work makes progress on this question by settling the "diagonal" case of p=q; however, the case of p<q, as far as the authors are aware, is open.

**1.2. Outline.** We begin in section 2 by providing a proof of the NP-hardness of approximating the mixed norm  $||\cdot||_{\infty,p}$  within some fixed relative error for any rational  $p \geq 1$ . The proof may be summarized as follows: observe that, for any matrix M,  $\max_{||x||_{\infty}=1} ||Mx||_p$  is always attained at one of the  $2^n$  points of  $\{-1,1\}^n$ . So by appropriately choosing M, one can encode an NP-hard problem of maximization over the latter set. This argument will prove that computing the  $||\cdot||_{\infty,p}$  norm is NP-hard.

Next, in section 3, we exhibit a class of matrices A such that  $\max_{||x||_p=1} ||Ax||_p$  is attained at each of the  $2^n$  points of  $\{-1,1\}^n$  (up to scaling) and nowhere else. These two elements are combined in section 4 to prove Theorem 1.1. More precisely, we define the matrix  $Z = (M^T \ \alpha A^T)^T$ , where we will pick  $\alpha$  to be a large number depending on n, p ensuring that the maximum of  $||Zx||_p/||x||_p$  occurs very close to vectors  $x \in \{-1,1\}^n$ . As mentioned several sentences ago, the value of  $||Ax||_p$  is the same for every vector  $x \in \{-1,1\}^n$ ; as a result, the maximum of  $||Zx||_p/||x||_p$  is determined by the maximum of  $||Mx||_p$  on  $\{-1,1\}^n$ , which is proved in section 2 to be hard to compute. We conclude with some remarks on the proof in section 5.

**2.** The  $||\cdot||_{\infty,p}$  norm. We now describe a simple construction which relates the  $\infty, p$  norm to the maximum cut in a graph.

Suppose  $G=(\{1,\ldots,n\},E)$  is an undirected, connected graph. We will use M(G) to denote the edge-vertex incidence matrix of G; that is,  $M(G) \in R^{|E| \times n}$ . We will think of columns of M(G) as corresponding to nodes of G and of rows of M(G) as corresponding to the edges of G. The entries of M(G) are as follows: orient the edges of G arbitrarily, and let the ith row of M(G) have +1 in the column corresponding to the origin of the ith edge, -1 in the column corresponding to the endpoint of the ith edge, and 0 at all other columns.

Given any partition of  $\{1, \ldots, n\} = S \cup S^c$ , we define  $\operatorname{cut}(G, S)$  to be the number of edges with exactly one endpoint in S. Furthermore, we define  $\operatorname{maxcut}(G) = \operatorname{max}_{S \subset \{1, \ldots, n\}} \operatorname{cut}(G, S)$ . The indicator vector of a cut  $(S, S^c)$  is the vector x with  $x_i = 1$  when  $i \in S$  and  $x_i = -1$  when  $i \in S^c$ . We will use  $\operatorname{cut}(x)$  for vectors  $x \in \{-1, 1\}^n$  to denote the value of the cut whose indicator vector is x.

Proposition 2.1. For any  $p \ge 1$ ,

$$\max_{||x||_{\infty} \le 1} ||M(G)x||_p = 2 \max(G)^{1/p}.$$

*Proof.* Observe that  $||M(G)x||_p$  is a convex function of x, so that the maximum is achieved at the extreme points of the set  $||x||_{\infty} \leq 1$ , i.e., vectors x satisfying  $x_i = \pm 1$ . Suppose we are given such a vector x; define  $S = \{i \mid x_i = 1\}$ . Clearly,  $||M(G)x||_p^p = 2^p \text{cut}(G, S)$ . From this the proposition immediately follows.

Next, we introduce an error term into this proposition. Define  $f^*$  to be the optimal value  $f^* = \max_{|x||_{\infty} \le 1} ||M(G)x||_p$ ; the above proposition implies that  $(f^*/2)^p = \max_{\text{cut}}(G)$ . We want to argue that if  $f_{\text{approx}}$  is close enough to  $f^*$ , then  $(f_{\text{approx}}/2)^p$  is close to  $\max_{\text{cut}}(G)$ .

PROPOSITION 2.2. If  $p \ge 1$ ,  $|f^* - f_{approx}| < \epsilon f^*$  with  $\epsilon < 1$ , then

$$\left| \left( \frac{f_{\text{approx}}}{2} \right)^p - \text{maxcut}(G) \right| \le 2^{p-1} p \epsilon \cdot \text{maxcut}(G).$$

*Proof.* By Proposition 2.1,  $\max(G) = (f^*/2)^p$ . Using the inequality

$$|a^p - b^p| \le |a - b|p \max(|a|, |b|)^{p-1},$$

we obtain

$$\left| \left( \frac{f_{\text{approx}}}{2} \right)^p - \max(G) \right| \le \frac{1}{2} \left| f^* - f_{\text{approx}} \right| p \max\left( \frac{f^*}{2}, \frac{f_{\text{approx}}}{2} \right)^{p-1}.$$

It follows from  $\epsilon < 1$  that  $f_{\text{approx}} \leq 2f^*$ . We have therefore

$$\left| \left( \frac{f_{\text{approx}}}{2} \right)^p - \text{maxcut}(G) \right| \le \frac{1}{2} |f^* - f_{\text{approx}}| \cdot p \cdot (f^*)^{p-1} \le \frac{\epsilon}{2} p(f^*)^p,$$

where we have used the assumption that  $|f^* - f_{\text{approx}}| \le \epsilon f^*$ . The result follows then from  $\max_{G} (G) = (f^*/2)^p$ .

We now put together the previous two propositions to prove that approximating the  $||\cdot||_{\infty,p}$  norm within some fixed relative error is NP-hard.

Theorem 2.3. For any rational  $p \ge 1$  and  $\delta > 0$ , unless P = NP, there is no algorithm which, given a matrix with entries in  $\{-1,0,1\}$ , computes its p-norm to relative error  $\epsilon = ((33 + \delta)p2^{p-1})^{-1}$  with running time polynomial in the dimensions of the matrix.

*Proof.* Suppose there was such an algorithm. Call  $f^*$  its output on the  $|E| \times n$  matrix M(G) for a given connected graph G on n vertices. It follows from Proposition 2.2 that

$$\left| \left( \frac{f_{\text{approx}}}{2} \right)^p - \max(G) \right| \le \frac{2^{p-1}p}{(33+\delta)p2^{p-1}} \max(G) = \frac{1}{33+\delta} \max(G).$$

Observing that

$$\frac{32+\delta}{34+\delta}\mathrm{maxcut}(G) = \frac{33+\delta}{34+\delta}\left(\mathrm{maxcut}(G) - \frac{1}{33+\delta}\mathrm{maxcut}(G)\right),$$

the former inequality implies

$$\frac{32+\delta}{34+\delta}\mathrm{maxcut}(G) \leq \frac{33+\delta}{34+\delta} \left(\frac{f_{\mathrm{approx}}}{2}\right)^p \leq \mathrm{maxcut}(G).$$

Since p is rational, one can compute in polynomial time a lower bound V for  $\frac{33+\delta}{34+\delta}(f_{\text{approx}}/2)^p$  sufficiently accurate so that  $V > \frac{32+\delta/2}{34+\delta/2} \max \text{cut}(G) > \frac{16}{17} \max \text{cut}(G)$ .

However, it has been established in [2] that, unless P = NP, for any  $\delta' > 0$ , there is no algorithm producing a quantity V in polynomial time in n such that

$$\left(\frac{16}{17} + \delta'\right) \max(G) \le V \le \max(G).$$

Remark. Observe that the matrix M(G) is not square. If one desires to prove hardness of computing the  $\infty$ , p-norm for square matrices, one can simply add |E|-n zeros to every row of M(G). The resulting matrix has the same  $\infty$ , p-norm as M(G) and is square, and its dimensions are at most  $n^2 \times n^2$ .

**3.** A discrete set of exponential size. Let us now fix n and a rational p > 2. We denote by X the set  $\{-1,1\}^n$  and use  $S(a,r) = \{x \in R^n \mid ||x-a||_p = r\}$  to stand for the sphere of radius r around a in the p-norm. We consider the following matrix in  $R^{2n \times n}$ :

$$A = \begin{pmatrix} 1 & -1 & & & \\ 1 & 1 & & & \\ \hline & 1 & -1 & & \\ \hline & 1 & 1 & & \\ \hline & & \ddots & \ddots & \\ & & \ddots & \ddots & \\ \hline & & & 1 & -1 \\ \hline & & & 1 & 1 \\ \hline -1 & & & 1 \\ 1 & & & 1 \end{pmatrix}$$

and show that the maximum of  $||Ax||_p$  for  $x \in S(0, n^{1/p})$  is attained at the  $2^n$  vectors in X and at no other points. For this, we will need the following lemma.

LEMMA 3.1. For any real numbers x, y and  $p \ge 2$ 

$$|x+y|^p + |x-y|^p \le 2^{p-1} (|x|^p + |y|^p).$$

In fact,  $|x+y|^p + |x-y|^p$  is upper bounded by

$$2^{p-1} \left( |x|^p + |y|^p \right) - \frac{\left( |x| - |y| \right)^2}{4} \left( p(p-1) \big| |x| + |y| \big|^{p-2} - 2 \big| |x| - |y| \big|^{p-2} \right),$$

where the last term on the right is always nonnegative.

*Proof.* By symmetry we can assume that  $x \ge y \ge 0$ . In that case, we need to prove

$$(x+y)^p + (x-y)^p \le 2^{p-1}(x^p + y^p) - \frac{(x-y)^2}{4} \left( p(p-1)(x+y)^{p-2} - 2(x-y)^{p-2} \right).$$

Divide both sides by  $(x+y)^p$ , and change the variables to z=(x-y)/(x+y):

$$1+z^p \leq \frac{(1+z)^p + (1-z)^p}{2} - \left(\frac{p(p-1)}{4}z^2 - \frac{1}{2}z^p\right).$$

The original inequality holds if this inequality holds for  $z \in [0, 1]$ . Let's simplify:

$$2 + z^p \le (1+z)^p + (1-z)^p - \frac{p(p-1)}{2}z^2.$$

Observe that we have equality when z = 0, so it suffices to show that the right-hand side grows faster than the left-hand side, namely,

$$z^{p-1} \le (1+z)^{p-1} - (1-z)^{p-1} - (p-1)z,$$

and this follows from

$$(1+z)^{p-1} \ge 1 + (p-1)z \ge (1-z)^{p-1} + z^{p-1} + (p-1)z,$$

where we have used the convexity of  $f(a) = a^{p-1}$ .

Now we prove that every vector of X optimizes  $||Ax||_p/||x||_p$  or, equivalently, optimizes  $||Ax||_p^p$  over the sphere  $S(0, n^{1/p})$ .

LEMMA 3.2. For any  $p \ge 2$ , the supremum of  $||Ax||_p^p$  over  $S(0, n^{1/p})$  is achieved by any vector in X.

*Proof.* Observe that  $||Ax||_p^p = n2^p$  for any  $x \in X$ . To prove that this is the largest possible value, we write

(3.1) 
$$||Ax||_p^p = \sum_{i=1}^n |x_i - x_{i+1}|^p + |x_i + x_{i+1}|^p,$$

using the convention n+1=1 for the indices. Lemma 3.1 implies that

$$|x_i - x_{i+1}|^p + |x_i + x_{i+1}|^p \le 2^{p-1} (|x_i|^p + |x_{i+1}|^p).$$

By applying this inequality to each term of (3.1) and by using  $||x||_n^p = n$ , we obtain

$$||Ax||_p^p \le \sum_{i=1}^n 2^{p-1} (|x_i|^p + |x_{i+1}|^p) = 2^p \sum_{i=1}^n |x_i|^p = 2^p n.$$

Next we refine the previous lemma by including a bound on how fast  $||Ax||_p^p$  decreases as we move a little bit away from the set X while staying on  $S(0, n^{1/p})$ .

LEMMA 3.3. Let  $p \ge 2, c \in (0, 1/2]$ , and suppose  $y \in S(0, n^{1/p})$  has the property that

$$\min_{x \in X} ||y - x||_{\infty} \ge c.$$

Then

$$||Ay||_p^p \le n2^p - \frac{3(p-2)}{2^p n^2} c^2.$$

*Proof.* We proceed as before in the proof of Lemma 3.2 until the time comes to apply Lemma 3.1, when we include the error term which we had previously ignored:

$$||Ay||_p^p \le n2^p - \frac{1}{4} \sum_i (|y_i| - |y_{i+1}|)^2 \left( p(p-1) ||y_i| + |y_{i+1}||^{p-2} - 2 ||y_i| - |y_{i+1}||^{p-2} \right),$$

Note that on the right-hand side, we are subtracting a sum of nonnegative terms. The upper bound will still hold if we subtract only one of these terms, so we conclude that, for each k,

$$||Ay||_p^p \le n2^p - \frac{1}{4} (|y_k| - |y_{k+1}|)^2 \left( p(p-1) ||y_k| + |y_{k+1}||^{p-2} - 2 ||y_i| - |y_{i+1}||^{p-2} \right).$$

By assumption, there is at least one  $y_k$  with  $||y_k| - 1| \ge c$ . Suppose first that  $|y_k| > 1$ . Then we have  $|y_k| > 1 + c$ , and there must be a  $y_j$  with  $|y_j| < 1$ , for otherwise y would not be in  $S(0, n^{1/p})$ . Similarly, if  $|y_k| < 1$ , then  $|y_k| < 1 - c$  and there is a j for which  $|y_j| > 1$ . In both cases, this implies the existence of an index m with  $|y_m|$  and  $|y_{m+1}|$  differing by at least c/n and such that at least one of  $|y_m|$  and  $|y_{m+1}|$  is larger than or equal to 1 - c. Therefore,

$$||Ay||_p^p \le n2^p - \frac{1}{4} \frac{c^2}{n^2} \left[ p(p-1) \left| |y_m| + |y_{m+1}| \right|^{p-2} - 2 \left| |y_m| - |y_{m+1}| \right|^{p-2} \right].$$

Now observe that  $||y_m|-|y_{m+1}|| \le |y_m|+|y_{m+1}|$  and that  $|y_m|+|y_{m+1}| \ge (1-c) \ge 1/2$  because  $c \in (0, 1/2]$ . These two inequalities suffice to establish that the term in square brackets is at least  $(1/2)^{p-2}(p(p-1)-2) \ge (3/2^p)(p-2)$  so that

$$||Ay||_p^p \le n2^p - \frac{3(p-2)}{2^p n^2} c^2.$$

**4. Proof of Theorem 1.1.** We now relate the results of the last two sections to the problem of the *p*-norm. For a suitably defined matrix Z combining A and M(G), we want to argue that the optimizer of  $||Zx||_p/||x||_p$  is very close to satisfying  $|x_i| = |x_j|$  for every i, j.

Proposition 4.1. Let p>2 and G be a graph on n vertices. Consider the matrix

$$\tilde{Z} = \left(\begin{array}{c} A\\ \frac{p-2}{64pn^8}M(G) \end{array}\right)$$

with M(G) and A as in sections 2 and 3, respectively. If  $x^*$  is the vector at which the optimization problem  $\max_{x \in S(0,n^{1/p})} ||\tilde{Z}x||_p$  achieves its supremum, then

$$\min_{x \in X} ||x^* - x||_{\infty} \le \frac{1}{4^p n^6}.$$

*Proof.* Suppose the conclusion is false. Then using Lemma 3.3 with  $c = 1/4^p n^6$ , we obtain

$$||Ax^*||_p^p \le n2^p - \frac{3(p-2)}{2^p 4^{2p} n^{14}} = n2^p - \frac{3(p-2)}{32^p n^{14}}.$$

It follows from Proposition 2.1 that

$$||Mx^*||_p^p \le 2^p \operatorname{maxcut}(G) \le 2^p n^2$$

so that

$$||\tilde{Z}x^*||_p^p = ||Ax^*||_p^p + \left(\frac{p-2}{64pn^8}\right)^p ||Mx^*||_p^p \leq 2^p n - \frac{3(p-2)}{32^pn^{14}} + \frac{2^p(p-2)^pn^2}{64^pp^pn^{8p}}.$$

Observe that the last term in this inequality is smaller than the previous one (in absolute value). Indeed, for p > 2, we have that  $3/32^p > (2/64)^p$ ,  $p-2 > [(p-2)/p]^p$ , and  $1/n^{14} > n^2/n^{8p}$ . We therefore have  $||Zx^*||_p^p < 2^p n$ . By contrast, let x be any vector in  $\{-1,1\}^n$ . Then  $x \in S(0,n^{1/p})$  and

$$||\tilde{Z}x||_p^p \ge ||Ax||_p^p \ge 2^p n,$$

which contradicts the optimality of  $x^*$ .

Next we seek to translate the fact that the optimizer  $x^*$  is close to X to the fact that the objective value  $||Zx||_p/||x||_p$  is close to the largest objective value at X.

Proposition 4.2. Let p > 2, G be a graph on n vertices, and

$$Z = \begin{pmatrix} \frac{64pn^8}{p-2}A\\ M(G) \end{pmatrix}.$$

If  $x^*$  is the vector at which the optimization problem

$$\max_{x \in S(0, n^{1/p})} ||Zx||_p$$

achieves its supremum and  $x_r$  is the rounded version of  $x^*$  in which every component is rounded to the closest of -1 and 1, then

$$\left| ||Zx^*||_p^p - ||Zx_r||_p^p \right| \le \frac{1}{n^2}.$$

*Proof.* Observe that  $x^*$  is the same as the extremizer of the corresponding problem with  $\tilde{Z}$  instead of Z so that x satisfies the conclusion of Proposition 4.1. Consequently every component of  $x^*$  is closer to one of  $\pm 1$  than to the other, and so  $x_r$  is well defined. We have,

$$||Zx^*||_p^p - ||Zx_r||_p^p = \left(64 \frac{p}{p-2} n^8\right)^p (||Ax^*||_p^p - ||Ax_r||_p^p) + (||Mx^*||_p^p - ||Mx_r||_p^p).$$

This entire quantity is nonnegative since  $x^*$  is the maximum of ||Zx|| on  $S(0, n^{1/p})$ . Moreover,  $||Ax^*||_p^p - ||Ax_r||_p^p$  is nonpositive since, by Proposition 3.2,  $||Ax||_p$  achieves its maximum over  $S(0, n^{1/p})$  on all the elements of X. Consequently,

$$||Zx^*||_p^p - ||Zx_r||_p^p \le ||Mx^*||_p^p - ||Mx_r||_p^p 
\le (||Mx^*||_p - ||Mx_r||_p)p \max(||Mx^*||_p, ||Mx_r||_p)^{p-1}.$$
(4.1)

We now bound all the terms in the last equation. First

$$(4.2) ||Mx^*||_p - ||Mx_r||_p \le ||M||_2 ||x^* - x_r||_2 \le ||M||_F \sqrt{n} ||x^* - x_r||_{\infty} = \frac{n\sqrt{n}}{4p_n 6},$$

where we have used  $||M(G)||_F = \sqrt{2|E|} < n$  and Proposition 4.1 for the last inequality. Now that we have a bound on the first term in (4.1), we proceed to the last term. It follows from the definition of M that

$$||Mx_{\mathbf{r}}||_p^p \le 2^p \cdot \binom{n}{2} \le 2^p n^2.$$

Next we bound  $||Mx^*||_p^p$ . Observe that a particular case of (4.2) is

$$(4.3) ||Mx^*||_p < ||Mx_r||_p + 1.$$

Moreover, observe that  $||Mx_r||_p \ge 1$ . (The only way this does not hold is if every entry of  $x_r$  is the same, i.e.,  $||Mx_r||_p = 0$ . But then (4.3) implies that  $||Mx^*||_p < 1$ , which is

impossible since G has at least one edge.), So (4.3) implies that  $||Mx^*||_p \le 2||Mx_r||_p$ , and so

$$||Mx^*||_p^p \le 4^p n^2.$$

Thus

$$\max(||Mx^*||_p, ||Mx_r||_p)^p \le 4^p n^2,$$

and therefore  $\max(||Mx^*||_p, ||Mx_r||_p)^{p-1} \le 4^p n^2$ . Indeed, this bound is trivially valid if  $\max(||Mx^*||_p, ||Mx_r||_p)^p \le 1$  and follows from  $a^{p-1} < a^p$  for  $a \ge 1$  otherwise. Using this bound and the inequality (4.2), we finally obtain

$$||Zx^*||_p^p - ||Zx_r||_p^p \le \frac{n^{1.5}}{4^p n^6} p \cdot 4^p n^2 \le \frac{1}{n^2}.$$

Finally let us bring it all together by arguing that if we can approximately compute the p-norm of Z, we can approximately compute the maximum cut.

Proposition 4.3. Let p>2. Consider a graph G on n>2 vertices and the matrix

$$Z = \begin{pmatrix} 64 \frac{p}{p-2} n^8 A \\ M(G) \end{pmatrix},$$

and let  $f^* = ||Z||_p$ . If

$$|f_{\text{approx}} - f^*| \le \frac{(p-2)^p}{132^p p^p n^{8p+3} p},$$

then

$$\left| \left( \frac{n}{2^p} f_{\text{approx}}^p - n \left( \frac{64pn^8}{p-2} \right)^p \right) - \text{maxcut}(G) \right| \le \frac{1}{n}.$$

*Proof.* Observe that  $n^{\frac{1}{p}}f^* = \max_{x \in S(0,n^{1/p})} ||Zx||_p$ . It follows thus from Proposition 4.2 that

$$\left| nf^{*p} - \max_{x \in X} ||Zx||_p^p \right| < \frac{1}{n^2}.$$

Recall that  $||Zx||_p^p = ||Mx||_p^p + \left(64\frac{p}{p-2}n^8\right)^p ||Ax||_p^p$  and that  $||Ax||_p^p = n2^p$  for every  $x \in X$ . Therefore,

$$\max_{x \in X} ||Zx||_p^p = \left(\frac{64pn^8}{p-2}\right)^p n2^p + \max_{x \in X} ||Mx||_p^p = \left(\frac{64pn^8}{p-2}\right)^p n2^p + 2^p \mathrm{maxcut}(G),$$

and by combining the last two equations, we have

$$\left| \left( \frac{n}{2^p} f^{*p} - n \left( \frac{64pn^8}{p-2} \right)^p \right) - \text{maxcut}(G) \right| \le \frac{1}{2^p n^2}.$$

Let us now evaluate the error introduced by the approximation  $f_{\text{approx}}$ :

$$\left| \left( \frac{n}{2^{p}} f_{\text{approx}}^{p} - n \left( \frac{64pn^{8}}{p-2} \right)^{p} \right) - \text{maxcut}(G) \right| \leq \frac{1}{2^{p}n^{2}} + \frac{n}{2^{p}} \left| f_{\text{approx}}^{p} - f^{*p} \right|$$

$$\leq \frac{1}{2^{p}n^{2}} + \frac{n}{2^{p}} \left| f_{\text{approx}} - f^{*} \right| p \max(f^{*}, f_{\text{approx}})^{p-1}.$$

It remains to bound the last term of this inequality. First we use the fact that  $f^* \geq 1$  and (4.4) to argue

$$(4.5) \qquad f^{*(p-1)} \leq f^{*p} \leq 2^p \left(\frac{64pn^8}{p-2}\right)^p + \frac{2^p}{n} \mathrm{maxcut}(G) + \frac{1}{n^3} \leq 2^p \left(\frac{66pn^8}{p-2}\right)^p,$$

where we have used  $\max(G) < n^2$  and  $1 \le p/(p-2)$  for the last inequality. By assumption,  $|f_{\text{approx}} - f^*| \le 1$ , and since  $f^* \ge 1$ ,

$$f_{\text{approx}}^{(p-1)} \le (2f^*)^{p-1} \le (2f^*)^p \le 4^p \left(\frac{66pn^8}{p-2}\right)^p.$$

Putting it all together and using the bound on  $|f_{approx} - f^*|$ , we obtain (assuming n > 1)

$$\left| \left( \frac{n}{2^p} f_{\text{approx}}^p - n \left( \frac{64pn^8}{p-2} \right)^p \right) - \text{maxcut}(G) \right| \le \frac{1}{2^p n^2} + \frac{(p-2)^p}{132^p p^p n^{8p+3} p} 2^p n p \left( \frac{66pn^8}{p-2} \right)^p$$

$$\le \frac{1}{2^p n^2} + \frac{1}{n^2}$$

$$\le \frac{1}{n}. \quad \square$$

PROPOSITION 4.4. Fix a rational  $p \in [1, \infty)$  with  $p \neq 1, 2$ . Unless P = NP, there is no algorithm which, given input  $\epsilon > 0$  and a matrix Z, computes  $||Z||_p$  to a relative accuracy  $\epsilon$ , in time which is polynomial in  $1/\epsilon$ , the dimensions of Z, and the bit size of the entries of Z.

*Proof.* Suppose first that p > 2. We show that such an algorithm could be used to build a polynomial time algorithm solving the maximum cut problem. For a graph G on n vertices, fix

$$\epsilon = \left(132^p \left(\frac{p}{p-2}\right)^p n^{8p+3} p\right)^{-1} \cdot \left(132 \left(\frac{p}{p-2}\right) n^8\right)^{-1},$$

build the matrix Z as in Proposition 4.3, and compute the norm of Z; let  $f_{\text{approx}}$  be the output of the algorithm. Observe that, by (4.5),

$$||Z||_p \le \frac{132pn^8}{p-2},$$

SO

$$\left|f_{\text{approx}} - ||Z||_p\right| \le \epsilon \, ||Z||_p \le \epsilon \left(132 \frac{p}{p-2} n^8\right) \le \left(132^p \left(\frac{p}{p-2}\right)^p n^{8p+3} p\right)^{-1}.$$

It follows then from Proposition 4.3 that

$$n\left(\frac{f_{\rm approx}}{2}\right)^p - n\left(64 \cdot \left(\frac{p}{p-2}\right)n^8\right)^p$$

is an approximation of the maximum cut with an additive error at most 1/n. Once we have  $f_{\text{approx}}$ , we can approximate this number in polynomial time to an additive accuracy of 1/4. This gives an additive error 1/4 + 1/n approximation algorithm for

maximum cut, and since the maximum cut is always an integer, this means we can compute it exactly when n > 4. However, maximum cut is an NP-hard problem [1].

For the case of  $p \in (1,2)$ , NP-hardness follows from the analysis of the case of p > 2 since, for any matrix Z,  $||Z||_p = ||Z^T||_{p'}$ , where 1/p + 1/p' = 1.

Remark. In contrast to Theorem 2.3 which proves the NP-hardness of computing the matrix  $\infty$ , k-norm to relative accuracy  $\epsilon = 1/C(p)$ , for some function C(p), Proposition 4.4 proves the NP-hardness of computing the p-norm to accuracy  $1/C'(p)n^{8p+11}$  for some function C'(p). In the latter case,  $\epsilon$  depends on n.

Our final theorem demonstrates that the p-norm is still hard to compute when restricted to matrices with entries in  $\{-1,0,1\}$ .

THEOREM 4.5. Fix a rational  $p \in [1, \infty)$  with  $p \neq 1, 2$ . Unless P = NP, there is no algorithm which, given input  $\epsilon$  and a matrix M with entries in  $\{-1, 0, 1\}$ , computes  $||M||_p$  to relative accuracy  $\epsilon$ , in time which is polynomial in  $\epsilon^{-1}$  and the dimensions of the matrix.

*Proof.* As before, it suffices to prove the theorem for the case of p > 2; the case of  $p \in (1,2)$  follows because  $||Z||_p = ||Z^T||_{p'}$ , where 1/p + 1/p' = 1.

Define

$$Z^* = \left( \begin{array}{c} \left( \left\lceil \left( 64 \frac{p}{p-2} n^8 \right) \right\rceil \right) A \\ M(G) \end{array} \right),$$

where  $\lceil \cdot \rceil$  refers to rounding up to the closest integer. Observe that, by an argument similar to the proof of the previous proposition, computing  $||Z^*||_p$  to an accuracy  $\epsilon = (C(p)n^{8p+11})^{-1}$  is NP-hard for some function C(p). But if we define

$$Z^{**} = \begin{pmatrix} A \\ A \\ \vdots \\ A \\ M \end{pmatrix},$$

where A is repeated  $\left\lceil \left(64\frac{p}{p-2}n^8\right)^p\right\rceil$  times, then

$$||Z^{**}||_p = ||Z^*||_p.$$

The matrix  $Z^{**}$  has entries in  $\{-1,0,1\}$ , and its size is polynomial in n, so it follows that it is NP-hard to compute  $||Z^{**}||_p$  within the same  $\epsilon$ .

Remark. Observe that the argument also suffices to show that computing the p-norm of square matrices with entries in  $\{-1,0,1\}$  is NP-hard: simply pad each row of  $Z^{**}$  with enough zeros to make it square. Note that this trick was also used in section 2.

- **5. Concluding remarks.** We have proved the NP-hardness of computing the matrix p-norm approximately with relative error  $\epsilon = 1/C(p)n^{8p+11}$ , where C(p) is some function of p, and the NP-hardness of computing the matrix  $\infty$ , p-norm to some fixed relative accuracy depending on p. We finish with some technical remarks about various possible extensions of the theorem:
  - Due to the linear property of the norm  $||\alpha A|| = |\alpha| ||A||$ , our results also imply the NP-hardness of approximating the matrix p-norm with any fixed or polynomially growing additive error.

- Our construction also implies the hardness of computing the matrix p-norm for any irrational number p > 1 for which a polynomial time algorithm to approximate  $x^p$  is available.
- Our construction may also be used to provide a new proof of the NP-hardness of the  $||\cdot||_{p,q}$  norm when p>q, which has been established in [5]. Indeed, it rests on the matrix A with the property that  $\max ||Ax||_p/||x||_p$  occurs at the vectors  $x \in \{-1,1\}^n$ . We use this matrix A to construct the matrix  $Z = (\alpha A \ M)^T$  for large  $\alpha$  and argue that  $\max ||Zx||_p/||x||_p$  occurs close to the vectors  $x \in \{-1,1\}^n$ . At these vectors, it happens Ax is a constant, so we are effectively maximizing  $||Mx||_p$ , which is hard as shown in section 2. If one could come up with such a matrix for the case of the mixed  $||\cdot||_{p,q}$  norm, one could prove NP-hardness by following the same argument. However, when p > q, actually the same matrix A works. Indeed, one could simply argue that

$$||A||_{p,q} = \max_{x \neq 0} \frac{||Ax||_q}{||x||_p} = \max_{x \neq 0} \frac{||Ax||_q}{||x||_q} \frac{||x||_q}{||x||_p},$$

and since the maximum of  $||x||_q/||x||_p$  when  $1 \le q occurs at the vectors <math>x \in \{-1,1\}^n$ , we have that both terms on the right are maximized at  $x = \in \{-1,1\}^n$ , and that is where  $||Ax||_q/||x||_p$  is maximized.

• Finally we note that our goal was only to show the existence of a polynomial time reduction from the maximum cut problem to the problem of matrix p-norm computation. It is possible that more economical reductions which scale more gracefully with n and p exist.

## REFERENCES

- M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman, San Francisco, 1979.
- [2] J. HÅSTAD, Some optimal inapproximability results, J. ACM, 48 (2001), pp. 798–859.
- [3] K. G. Murty and S. N. Kabadi, Some NP-complete problems in quadratic and nonlinear programming, Math. Program., 39 (1987), pp. 117-129.
- [4] J. ROHN, Computing the norm  $||A||_{\infty,1}$  is NP-hard, Linear Multilinear Algebra, 47 (2000), pp. 195–204.
- [5] D. Steinberg, Computation of Matrix Norms with Applications to Robust Optimization, M.Sc. thesis, Technion—Israel Institute of Technology, Haifa, Israel, 2005, also available online from http://www2.isye.gatech.edu/~nemirovs/Daureen.pdf.