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MATRIX p-NORMS ARE NP-HARD TO APPROXIMATE IF
p �= 1, 2,∞∗

JULIEN M. HENDRICKX† AND ALEX OLSHEVSKY‡

Abstract. We show that, for any rational p ∈ [1,∞) except p = 1, 2, unless P = NP , there is no
polynomial time algorithm which approximates the matrix p-norm to arbitrary relative precision. We
also show that, for any rational p ∈ [1,∞) including p = 1, 2, unless P = NP , there is no polynomial-
time algorithm which approximates the ∞, p mixed norm to some fixed relative precision.
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1. Introduction. The p-norm of a matrix A is defined as

||A||p = max
||x||p=1

||Ax||p.

We consider the problem of computing the matrix p-norm to relative error ε, defined
as follows: given the inputs (i) a matrix A ∈ Rn×n with rational entries and (ii)
an error tolerance ε which is a positive rational number, output a rational number r
satisfying ∣∣r − ||A||p

∣∣ ≤ ε||A||p.
We will use the standard bit model of computation. When p = ∞ or p = 1, the p-
matrix norm is the largest of the row/column sums and thus may be easily computed
exactly. When p = 2, this problem reduces to computing an eigenvalue of ATA and
thus can be solved in polynomial time in n, log 1

ε and the bit size of the entries of A.
Our main result suggests that the case of p /∈ {1, 2,∞} may be different.

Theorem 1.1. For any rational p ∈ [1,∞) except p = 1, 2, unless P = NP , there
is no algorithm which computes the p-norm of a matrix with entries in {−1, 0, 1} to
relative error ε with running time polynomial in n, 1

ε .
On the way to our result, we also slightly improve the NP-hardness result for the

mixed norm ||A||∞,p = max||x||∞≤1 ||Ax||p from [5]. Specifically, we show that, for
every rational p ≥ 1, there exists an error tolerance ε(p) such that, unless P = NP ,
there is no polynomial time algorithm approximating ||A||∞,p with a relative error
smaller than ε(p).
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1.1. Previous work. When p is an integer, computing the matrix norm can be
recast as solving a polynomial optimization problem. These are known to be hard to
solve in general [3]; however, because the matrix norm problem has a special structure,
one cannot immediately rule out the possibility of a polynomial time solution. A few
hardness results are available in the literature for mixed matrix norms ||A||p,q =
max||x||p≤1 ||Ax||q. Rohn has shown in [4] that computing the ||A||∞,1 norm is NP-
hard. In her thesis, Steinberg [5] proved more generally that computing ||A||p,q is
NP-hard when 1 ≤ q < p ≤ ∞. We refer the reader to [5] for a discussion of
applications of the mixed matrix norm problems to robust optimization.

It is conjectured in [5] that there are only three cases in which mixed norms are
computable in polynomial time: First, p = 1, and q is any rational number larger
than or equal to 1. Second, q = ∞, and p is any rational number larger than or equal
to 1. Third, p = q = 2. Our work makes progress on this question by settling the
“diagonal” case of p = q; however, the case of p < q, as far as the authors are aware,
is open.

1.2. Outline. We begin in section 2 by providing a proof of the NP-hardness of
approximating the mixed norm ||·||∞,p within some fixed relative error for any rational
p ≥ 1. The proof may be summarized as follows: observe that, for any matrix M,
max||x||∞=1 ||Mx||p is always attained at one of the 2n points of {−1, 1}n. So by
appropriately choosing M , one can encode an NP-hard problem of maximization over
the latter set. This argument will prove that computing the || · ||∞,p norm is NP-hard.

Next, in section 3, we exhibit a class of matrices A such that max||x||p=1 ||Ax||p
is attained at each of the 2n points of {−1, 1}n (up to scaling) and nowhere else.
These two elements are combined in section 4 to prove Theorem 1.1. More precisely,
we define the matrix Z = (MT αAT )T , where we will pick α to be a large number
depending on n, p ensuring that the maximum of ||Zx||p/||x||p occurs very close to
vectors x ∈ {−1, 1}n. As mentioned several sentences ago, the value of ||Ax||p is
the same for every vector x ∈ {−1, 1}n; as a result, the maximum of ||Zx||p/||x||p is
determined by the maximum of ||Mx||p on {−1, 1}n, which is proved in section 2 to
be hard to compute. We conclude with some remarks on the proof in section 5.

2. The || · ||∞,p norm. We now describe a simple construction which relates
the ∞, p norm to the maximum cut in a graph.

Suppose G = ({1, . . . , n}, E) is an undirected, connected graph. We will use
M(G) to denote the edge-vertex incidence matrix of G; that is, M(G) ∈ R|E|×n. We
will think of columns of M(G) as corresponding to nodes of G and of rows of M(G) as
corresponding to the edges of G. The entries of M(G) are as follows: orient the edges
of G arbitrarily, and let the ith row of M(G) have +1 in the column corresponding
to the origin of the ith edge, −1 in the column corresponding to the endpoint of the
ith edge, and 0 at all other columns.

Given any partition of {1, . . . , n} = S ∪ Sc, we define cut(G,S) to be the num-
ber of edges with exactly one endpoint in S. Furthermore, we define maxcut(G) =
maxS⊂{1,...,n} cut(G,S). The indicator vector of a cut (S, Sc) is the vector x with
xi = 1 when i ∈ S and xi = −1 when i ∈ Sc. We will use cut(x) for vectors
x ∈ {−1, 1}n to denote the value of the cut whose indicator vector is x.

Proposition 2.1. For any p ≥ 1,

max
||x||∞≤1

||M(G)x||p = 2maxcut(G)1/p.
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Proof. Observe that ||M(G)x||p is a convex function of x, so that the maximum
is achieved at the extreme points of the set ||x||∞ ≤ 1, i.e., vectors x satisfying
xi = ±1. Suppose we are given such a vector x; define S = {i | xi = 1}. Clearly,
||M(G)x||pp = 2pcut(G,S). From this the proposition immediately follows.

Next, we introduce an error term into this proposition. Define f∗ to be the optimal
value f∗ = max||x||∞≤1 ||M(G)x||p; the above proposition implies that (f∗/2)p =
maxcut(G). We want to argue that if fapprox is close enough to f∗, then (fapprox/2)

p

is close to maxcut(G).
Proposition 2.2. If p ≥ 1, |f∗ − fapprox| < εf∗ with ε < 1, then∣∣∣∣

(
fapprox

2

)p

−maxcut(G)

∣∣∣∣ ≤ 2p−1pε ·maxcut(G).

Proof. By Proposition 2.1, maxcut(G) = (f∗/2)p. Using the inequality

|ap − bp| ≤ |a− b|pmax(|a|, |b|)p−1,

we obtain∣∣∣∣
(
fapprox

2

)p

−maxcut(G)

∣∣∣∣ ≤ 1

2
|f∗ − fapprox| pmax

(
f∗

2
,
fapprox

2

)p−1

.

It follows from ε < 1 that fapprox ≤ 2f∗. We have therefore∣∣∣∣
(
fapprox

2

)p

−maxcut(G)

∣∣∣∣ ≤ 1

2
|f∗ − fapprox| · p · (f∗)p−1 ≤ ε

2
p(f∗)p,

where we have used the assumption that |f∗− fapprox| ≤ εf∗. The result follows then
from maxcut(G) = (f∗/2)p.

We now put together the previous two propositions to prove that approximating
the || · ||∞,p norm within some fixed relative error is NP-hard.

Theorem 2.3. For any rational p ≥ 1 and δ > 0, unless P = NP , there is no
algorithm which, given a matrix with entries in {−1, 0, 1}, computes its p-norm to
relative error ε = ((33 + δ)p2p−1)−1 with running time polynomial in the dimensions
of the matrix.

Proof. Suppose there was such an algorithm. Call f∗ its output on the |E| × n
matrix M(G) for a given connected graph G on n vertices. It follows from Proposition
2.2 that∣∣∣∣

(
fapprox

2

)p

−maxcut(G)

∣∣∣∣ ≤ 2p−1p

(33 + δ)p2p−1
maxcut(G) =

1

33 + δ
maxcut(G).

Observing that

32 + δ

34 + δ
maxcut(G) =

33 + δ

34 + δ

(
maxcut(G)− 1

33 + δ
maxcut(G)

)
,

the former inequality implies

32 + δ

34 + δ
maxcut(G) ≤ 33 + δ

34 + δ

(
fapprox

2

)p

≤ maxcut(G).

Since p is rational, one can compute in polynomial time a lower bound V for
33+δ
34+δ (fapprox/2)

p sufficiently accurate so that V > 32+δ/2
34+δ/2maxcut(G) > 16

17maxcut(G).
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However, it has been established in [2] that, unless P = NP , for any δ′ > 0, there is
no algorithm producing a quantity V in polynomial time in n such that(

16

17
+ δ′

)
maxcut(G) ≤ V ≤ maxcut(G).

Remark. Observe that the matrix M(G) is not square. If one desires to prove
hardness of computing the ∞, p-norm for square matrices, one can simply add |E|−n
zeros to every row of M(G). The resulting matrix has the same ∞, p-norm as M(G)
and is square, and its dimensions are at most n2 × n2.

3. A discrete set of exponential size. Let us now fix n and a rational p > 2.
We denote by X the set {−1, 1}n and use S(a, r) = {x ∈ Rn | ||x− a||p = r} to stand
for the sphere of radius r around a in the p-norm. We consider the following matrix
in R2n×n:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1
1 1

1 −1
1 1

. . .
. . .

. . .
. . .

1 −1
1 1

−1 1
1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and show that the maximum of ||Ax||p for x ∈ S(0, n1/p) is attained at the 2n vectors
in X and at no other points. For this, we will need the following lemma.

Lemma 3.1. For any real numbers x, y and p ≥ 2

|x+ y|p + |x− y|p ≤ 2p−1 (|x|p + |y|p) .
In fact, |x+ y|p + |x− y|p is upper bounded by

2p−1 (|x|p + |y|p)− (|x| − |y|)2
4

(
p(p− 1)

∣∣|x|+ |y|∣∣p−2 − 2
∣∣|x| − |y|∣∣p−2

)
,

where the last term on the right is always nonnegative.
Proof. By symmetry we can assume that x ≥ y ≥ 0. In that case, we need to

prove

(x+ y)p + (x− y)p ≤ 2p−1(xp + yp)− (x− y)2

4

(
p(p− 1)(x+ y)p−2 − 2(x− y)p−2

)
.

Divide both sides by (x+ y)p, and change the variables to z = (x− y)/(x+ y):

1 + zp ≤ (1 + z)p + (1− z)p

2
−
(
p(p− 1)

4
z2 − 1

2
zp
)
.

The original inequality holds if this inequality holds for z ∈ [0, 1]. Let’s simplify:

2 + zp ≤ (1 + z)p + (1− z)p − p(p− 1)

2
z2.
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Observe that we have equality when z = 0, so it suffices to show that the right-hand
side grows faster than the left-hand side, namely,

zp−1 ≤ (1 + z)p−1 − (1 − z)p−1 − (p− 1)z,

and this follows from

(1 + z)p−1 ≥ 1 + (p− 1)z ≥ (1− z)p−1 + zp−1 + (p− 1)z,

where we have used the convexity of f(a) = ap−1.
Now we prove that every vector of X optimizes ||Ax||p/||x||p or, equivalently,

optimizes ||Ax||pp over the sphere S(0, n1/p).

Lemma 3.2. For any p ≥ 2, the supremum of ||Ax||pp over S(0, n1/p) is achieved
by any vector in X.

Proof. Observe that ||Ax||pp = n2p for any x ∈ X . To prove that this is the
largest possible value, we write

(3.1) ||Ax||pp =

n∑
i=1

|xi − xi+1|p + |xi + xi+1|p,

using the convention n+ 1 = 1 for the indices. Lemma 3.1 implies that

|xi − xi+1|p + |xi + xi+1|p ≤ 2p−1 (|xi|p + |xi+1|p) .
By applying this inequality to each term of (3.1) and by using ||x||pp = n, we obtain

||Ax||pp ≤
n∑

i=1

2p−1 (|xi|p + |xi+1|p) = 2p
n∑

i=1

|xi|p = 2pn.

Next we refine the previous lemma by including a bound on how fast ||Ax||pp
decreases as we move a little bit away from the set X while staying on S(0, n1/p).

Lemma 3.3. Let p ≥ 2, c ∈ (0, 1/2], and suppose y ∈ S(0, n1/p) has the property
that

(3.2) min
x∈X

||y − x||∞ ≥ c.

Then

||Ay||pp ≤ n2p − 3(p− 2)

2pn2
c2.

Proof. We proceed as before in the proof of Lemma 3.2 until the time comes to
apply Lemma 3.1, when we include the error term which we had previously ignored:

||Ay||pp ≤ n2p−1

4

∑
i

(|yi| − |yi+1|)2
(
p(p− 1)

∣∣|yi|+ |yi+1|
∣∣p−2 − 2

∣∣|yi| − |yi+1|
∣∣p−2

)
,

Note that on the right-hand side, we are subtracting a sum of nonnegative terms.
The upper bound will still hold if we subtract only one of these terms, so we conclude
that, for each k,

||Ay||pp ≤ n2p − 1

4
(|yk| − |yk+1|)2

(
p(p− 1)

∣∣|yk|+ |yk+1|
∣∣p−2 − 2

∣∣|yi| − |yi+1|
∣∣p−2

)
.
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By assumption, there is at least one yk with
∣∣|yk| − 1

∣∣ ≥ c. Suppose first that
|yk| > 1. Then we have |yk| > 1 + c, and there must be a yj with |yj| < 1, for
otherwise y would not be in S(0, n1/p). Similarly, if |yk| < 1, then |yk| < 1 − c and
there is a j for which |yj | > 1. In both cases, this implies the existence of an index m
with |ym| and |ym+1| differing by at least c/n and such that at least one of |ym| and
|ym+1| is larger than or equal to 1− c. Therefore,

||Ay||pp ≤ n2p − 1

4

c2

n2

[
p(p− 1)

∣∣|ym|+ |ym+1|
∣∣p−2 − 2

∣∣|ym| − |ym+1|
∣∣p−2

]
.

Now observe that
∣∣|ym|−|ym+1|

∣∣ ≤ |ym|+|ym+1| and that |ym|+|ym+1| ≥ (1−c) ≥ 1/2
because c ∈ (0, 1/2]. These two inequalities suffice to establish that the term in square
brackets is at least (1/2)p−2(p(p− 1)− 2) ≥ (3/2p)(p− 2) so that

||Ay||pp ≤ n2p − 3(p− 2)

2pn2
c2.

4. Proof of Theorem 1.1. We now relate the results of the last two sections
to the problem of the p-norm. For a suitably defined matrix Z combining A and
M(G), we want to argue that the optimizer of ||Zx||p/||x||p is very close to satisfying
|xi| = |xj | for every i, j.

Proposition 4.1. Let p > 2 and G be a graph on n vertices. Consider the
matrix

Z̃ =

(
A

p−2
64pn8M(G)

)

with M(G) and A as in sections 2 and 3, respectively. If x∗ is the vector at which the
optimization problem maxx∈S(0,n1/p) ||Z̃x||p achieves its supremum, then

min
x∈X

||x∗ − x||∞ ≤ 1

4pn6
.

Proof. Suppose the conclusion is false. Then using Lemma 3.3 with c = 1/4pn6,
we obtain

||Ax∗||pp ≤ n2p − 3(p− 2)

2p42pn14
= n2p − 3(p− 2)

32pn14
.

It follows from Proposition 2.1 that

||Mx∗||pp ≤ 2pmaxcut(G) ≤ 2pn2

so that

||Z̃x∗||pp = ||Ax∗||pp +
(

p− 2

64pn8

)p

||Mx∗||pp ≤ 2pn− 3(p− 2)

32pn14
+

2p(p− 2)pn2

64pppn8p
.

Observe that the last term in this inequality is smaller than the previous one (in
absolute value). Indeed, for p > 2, we have that 3/32p > (2/64)p, p−2 > [(p−2)/p]p,
and 1/n14 > n2/n8p. We therefore have ||Zx∗||pp < 2pn. By contrast, let x be any

vector in {−1, 1}n. Then x ∈ S(0, n1/p) and

||Z̃x||pp ≥ ||Ax||pp ≥ 2pn,
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which contradicts the optimality of x∗.
Next we seek to translate the fact that the optimizer x∗ is close to X to the fact

that the objective value ||Zx||p/||x||p is close to the largest objective value at X .
Proposition 4.2. Let p > 2, G be a graph on n vertices, and

Z =

(
64pn8

p−2 A

M(G)

)
.

If x∗ is the vector at which the optimization problem

max
x∈S(0,n1/p)

||Zx||p

achieves its supremum and xr is the rounded version of x∗ in which every component
is rounded to the closest of −1 and 1, then

∣∣∣ ||Zx∗||pp − ||Zxr||pp
∣∣∣ ≤ 1

n2
.

Proof. Observe that x∗ is the same as the extremizer of the corresponding
problem with Z̃ instead of Z so that x satisfies the conclusion of Proposition 4.1.
Consequently every component of x∗ is closer to one of ±1 than to the other, and so
xr is well defined. We have,

||Zx∗||pp − ||Zxr||pp =

(
64

p

p− 2
n8

)p

(||Ax∗||pp − ||Axr||pp) + (||Mx∗||pp − ||Mxr||pp).

This entire quantity is nonnegative since x∗ is the maximum of ||Zx|| on S(0, n1/p).
Moreover, ||Ax∗||pp − ||Axr||pp is nonpositive since, by Proposition 3.2, ||Ax||p achieves

its maximum over S(0, n1/p) on all the elements of X . Consequently,

||Zx∗||pp − ||Zxr||pp ≤ ||Mx∗||pp − ||Mxr||pp
≤ (||Mx∗||p − ||Mxr||p)pmax(||Mx∗||p, ||Mxr||p)p−1.(4.1)

We now bound all the terms in the last equation. First

(4.2) ||Mx∗||p − ||Mxr||p ≤ ||M ||2||x∗ − xr||2 ≤ ||M ||F
√
n||x∗ − xr||∞ =

n
√
n

4pn6
,

where we have used ||M(G)||F =
√
2 |E| < n and Proposition 4.1 for the last inequal-

ity. Now that we have a bound on the first term in (4.1), we proceed to the last term.
It follows from the definition of M that

||Mxr||pp ≤ 2p ·
(
n

2

)
≤ 2pn2.

Next we bound ||Mx∗||pp. Observe that a particular case of (4.2) is

(4.3) ||Mx∗||p < ||Mxr||p + 1.

Moreover, observe that ||Mxr||p ≥ 1. (The only way this does not hold is if every entry
of xr is the same, i.e., ||Mxr||p = 0. But then (4.3) implies that ||Mx∗||p < 1, which is
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impossible since G has at least one edge.), So (4.3) implies that ||Mx∗||p ≤ 2||Mxr||p,
and so

||Mx∗||pp ≤ 4pn2.

Thus

max(||Mx∗||p, ||Mxr||p)p≤ 4pn2,

and therefore max(||Mx∗||p, ||Mxr||p)p−1≤ 4pn2. Indeed, this bound is trivially valid
if max(||Mx∗||p, ||Mxr||p)p ≤ 1 and follows from ap−1 < ap for a ≥ 1 otherwise. Using
this bound and the inequality (4.2), we finally obtain

||Zx∗||pp − ||Zxr||pp ≤ n1.5

4pn6
p · 4pn2 ≤ 1

n2
.

Finally let us bring it all together by arguing that if we can approximately compute
the p-norm of Z, we can approximately compute the maximum cut.

Proposition 4.3. Let p > 2. Consider a graph G on n > 2 vertices and the
matrix

Z =

(
64 p

p−2n
8A

M(G)

)
,

and let f∗ = ||Z||p. If

|fapprox − f∗| ≤ (p− 2)p

132pppn8p+3p
,

then ∣∣∣∣
(

n

2p
fp
approx − n

(
64pn8

p− 2

)p)
−maxcut(G)

∣∣∣∣ ≤ 1

n
.

Proof. Observe that n
1
p f∗ = maxx∈S(0,n1/p) ||Zx||p. It follows thus from Propo-

sition 4.2 that ∣∣∣∣nf∗p −max
x∈X

||Zx||pp
∣∣∣∣ < 1

n2
.

Recall that ||Zx||pp = ||Mx||pp +
(
64 p

p−2n
8
)p

||Ax||pp and that ||Ax||pp = n2p for every

x ∈ X . Therefore,

max
x∈X

||Zx||pp =

(
64pn8

p− 2

)p

n2p +max
x∈X

||Mx||pp =

(
64pn8

p− 2

)p

n2p + 2pmaxcut(G),

and by combining the last two equations, we have

(4.4)

∣∣∣∣
(

n

2p
f∗p − n

(
64pn8

p− 2

)p)
−maxcut(G)

∣∣∣∣ ≤ 1

2pn2
.

Let us now evaluate the error introduced by the approximation fapprox:∣∣∣∣
(

n

2p
fp
approx − n

(
64pn8

p− 2

)p)
−maxcut(G)

∣∣∣∣ ≤ 1

2pn2
+

n

2p
∣∣fp

approx − f∗p∣∣
≤ 1

2pn2
+

n

2p
|fapprox−f∗| pmax(f∗, fapprox)

p−1.
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It remains to bound the last term of this inequality. First we use the fact that f∗ ≥ 1
and (4.4) to argue

(4.5) f∗(p−1) ≤ f∗p ≤ 2p
(
64pn8

p− 2

)p

+
2p

n
maxcut(G) +

1

n3
≤ 2p

(
66pn8

p− 2

)p

,

where we have used maxcut(G) < n2 and 1 ≤ p/(p − 2) for the last inequality. By
assumption, |fapprox − f∗| ≤ 1, and since f∗ ≥ 1,

f (p−1)
approx ≤ (2f∗)p−1 ≤ (2f∗)p ≤ 4p

(
66pn8

p− 2

)p

.

Putting it all together and using the bound on |fapprox − f∗|, we obtain (assuming
n > 1)∣∣∣∣
(

n

2p
fp
approx − n

(
64pn8

p− 2

)p)
−maxcut(G)

∣∣∣∣ ≤ 1

2pn2
+

(p− 2)p

132pppn8p+3p
2pnp

(
66pn8

p− 2

)p

≤ 1

2pn2
+

1

n2

≤ 1

n
.

Proposition 4.4. Fix a rational p ∈ [1,∞) with p �= 1, 2. Unless P = NP ,
there is no algorithm which, given input ε > 0 and a matrix Z, computes ||Z||p to a
relative accuracy ε, in time which is polynomial in 1/ε, the dimensions of Z, and the
bit size of the entries of Z.

Proof. Suppose first that p > 2. We show that such an algorithm could be used
to build a polynomial time algorithm solving the maximum cut problem. For a graph
G on n vertices, fix

ε =

(
132p

(
p

p− 2

)p

n8p+3p

)−1

·
(
132

(
p

p− 2

)
n8

)−1

,

build the matrix Z as in Proposition 4.3, and compute the norm of Z; let fapprox be
the output of the algorithm. Observe that, by (4.5),

||Z||p ≤ 132pn8

p− 2
,

so

∣∣∣fapprox − ||Z||p
∣∣∣ ≤ ε ||Z||p ≤ ε

(
132

p

p− 2
n8

)
≤
(
132p

(
p

p− 2

)p

n8p+3p

)−1

.

It follows then from Proposition 4.3 that

n

(
fapprox

2

)p

− n

(
64 ·

(
p

p− 2

)
n8

)p

is an approximation of the maximum cut with an additive error at most 1/n. Once
we have fapprox, we can approximate this number in polynomial time to an additive
accuracy of 1/4. This gives an additive error 1/4 + 1/n approximation algorithm for
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maximum cut, and since the maximum cut is always an integer, this means we can
compute it exactly when n > 4. However, maximum cut is an NP-hard problem [1].

For the case of p ∈ (1, 2), NP-hardness follows from the analysis of the case of
p > 2 since, for any matrix Z, ||Z||p = ||ZT ||p′ , where 1/p+ 1/p′ = 1.

Remark. In contrast to Theorem 2.3 which proves the NP-hardness of computing
the matrix ∞, k-norm to relative accuracy ε = 1/C(p), for some function C(p), Propo-
sition 4.4 proves the NP-hardness of computing the p-norm to accuracy 1/C′(p)n8p+11

for some function C′(p). In the latter case, ε depends on n.
Our final theorem demonstrates that the p-norm is still hard to compute when

restricted to matrices with entries in {−1, 0, 1}.
Theorem 4.5. Fix a rational p ∈ [1,∞) with p �= 1, 2. Unless P = NP , there is

no algorithm which, given input ε and a matrix M with entries in {−1, 0, 1}, computes
||M ||p to relative accuracy ε, in time which is polynomial in ε−1 and the dimensions
of the matrix.

Proof. As before, it suffices to prove the theorem for the case of p > 2; the case
of p ∈ (1, 2) follows because ||Z||p = ||ZT ||p′ , where 1/p+ 1/p′ = 1.

Define

Z∗ =

( (⌈(
64 p

p−2n
8
) ⌉)

A

M(G)

)
,

where 	·
 refers to rounding up to the closest integer. Observe that, by an argument
similar to the proof of the previous proposition, computing ||Z∗||p to an accuracy
ε = (C(p)n8p+11)−1 is NP-hard for some function C(p). But if we define

Z∗∗ =

⎛
⎜⎜⎜⎜⎜⎝

A
A
...
A
M

⎞
⎟⎟⎟⎟⎟⎠ ,

where A is repeated
⌈(

64 p
p−2n

8
)p ⌉

times, then

||Z∗∗||p = ||Z∗||p.

The matrix Z∗∗ has entries in {−1, 0, 1}, and its size is polynomial in n, so it follows
that it is NP-hard to compute ||Z∗∗||p within the same ε.

Remark. Observe that the argument also suffices to show that computing the
p-norm of square matrices with entries in {−1, 0, 1} is NP-hard: simply pad each row
of Z∗∗ with enough zeros to make it square. Note that this trick was also used in
section 2.

5. Concluding remarks. We have proved the NP-hardness of computing the
matrix p-norm approximately with relative error ε = 1/C(p)n8p+11, where C(p) is
some function of p, and the NP-hardness of computing the matrix ∞, p-norm to some
fixed relative accuracy depending on p. We finish with some technical remarks about
various possible extensions of the theorem:

• Due to the linear property of the norm ||αA|| = |α| ||A||, our results also
imply the NP-hardness of approximating the matrix p-norm with any fixed
or polynomially growing additive error.
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• Our construction also implies the hardness of computing the matrix p-norm
for any irrational number p > 1 for which a polynomial time algorithm to
approximate xp is available.

• Our construction may also be used to provide a new proof of the NP-hardness
of the || · ||p,q norm when p>q, which has been established in [5]. Indeed, it
rests on the matrix A with the property that max ||Ax||p/||x||p occurs at
the vectors x ∈ {−1, 1}n. We use this matrix A to construct the matrix
Z = (αA M)T for large α and argue that max ||Zx||p/||x||p occurs close to
the vectors x ∈ {−1, 1}n. At these vectors, it happens Ax is a constant, so
we are effectively maximizing ||Mx||p, which is hard as shown in section 2.
If one could come up with such a matrix for the case of the mixed ||·||p,q norm,
one could prove NP-hardness by following the same argument. However, when
p > q, actually the same matrix A works. Indeed, one could simply argue
that

||A||p,q =max
x 	=0

||Ax||q
||x||p = max

x 	=0

||Ax||q
||x||q

||x||q
||x||p ,

and since the maximum of ||x||q/||x||p when 1 ≤ q < p ≤ ∞ occurs at the
vectors x ∈ {−1, 1}n, we have that both terms on the right are maximized at
x =∈ {−1, 1}n, and that is where ||Ax||q/||x||p is maximized.

• Finally we note that our goal was only to show the existence of a polynomial
time reduction from the maximum cut problem to the problem of matrix
p-norm computation. It is possible that more economical reductions which
scale more gracefully with n and p exist.
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