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Abstract. We consider here a linear programming problem whose rows of 
the constraint matrix can be partitioned into two parts. Such natural partitions 
exist in several special linear programs, including the assignment problem, the 
transportation problem, the generalized upper-bounded variable problem, the 
block diagonal linear program; and can also be used to induce sparsity pat- 
terns in Cholesky factorizations. In this paper, we propose a matrix partitioning 
method for interior point algorithms. The proposed method independently gen- 
erates Cholesky factorizations of each part, and reduces the complexity to that 
of solving generally, a dense linear system involving several rank one updates 
of the identity matrix. Here, we propose solving this linear system by an induc- 
tive use of the Sherman-Morrison-Woodbury formula. The proposed method 
is easily implemented on a vector, parallel machine as well as on a distributed 
system. Such partitioning methods have been popular in the context of the 
simplex method, where the special structure of the basis matrix is exploited. 
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1. Introduction 

We consider here the linear programming problem 

min cTx 
Ax = b  

x _>0, 

where A is a m x n matrix of rank m, b is an m vector and c is an n vector. We assume 
that the matrix A has the partition 

where G and H, respectively, are m 1 x n and m2 x n matrices, and g and h are, respectively, 
m 1 and m2 vectors, with m 1 + m2 = m. We also assume that such a partition is determined 
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either by the structure of the problem or has been induced by sparsity considerations. 
Specially structured linear programs that have this natural partition include the assignment 
problem, the transportation problem, the generalized upper bounded variable problem and 
the block diagonal linear program. Such partitions may also be considered to arise in 
situations where rows are added, iteratively, to a linear program, and one of the set of rows 
G or H may be considered to be the ones added. 

Many variants of the simplex method exist which exploit the induced special structure of 
the basis matrix. We refer the reader to Lasdon (1970) for a background on these variants. 
Our goal, in this paper, is to consider the application of the recent interior point methods 
to this partitioned linear program. The study of these methods was started by the seminal 
work of Karmarkar (1984). Some notable papers that are related to this work are Barnes 
(1986), Kojima et al (1989) and Vanderbei et al (1986). The reader is encouraged to browse 
through these, the recent book by Fang & Puthenpura (1997), and many references therein, 
for an introduction to these methods. Our starting point in this paper is the implementation 
of these methods, which requires the solution of a linear system 

Cz = d (2) 

where C = ADA T for some diagonal matrix D; and d, as a function of A, b, c and D, is 
determined by the particular interior point method employed. In this paper, we reduce (2) 
to solving an m2 × m2 system of the form, 

(I - EET)u = q, (3) 

where E is an m2 x rnl matrix. IfEy is the j th  column of the matrix E, it can be readily 
seen that 

ml 

I - E E T = I - y ~ E j E  f ,  
i=1 

(4) 

and we view (4) as m l rank one updates to the identity matrix I. We solve the system 
(4) by an inductive version of the Sherman-Morrison-Woodbury formula. This inductive 
method requires O(m2m 2) multiplications, and is advantageous over inverting I - EE r 
when m2 > m 1. Another advantage of this method is its ready implementation on a vector 
and a parallel/distributed computing environment. 

In § 2 we present partial Cholesky factorization, the basic idea behind the partitioning 
technique; and, in § 3 we present a technique to handle several rank one updates. In § 4 we 
present the variant to handle the transportation and assignment problems, in § 5 the GUB 
and in § 6 the block diagonal linear program and the multicommodity flow problem. Finally 
in § 7, we give some preliminary computational results comparing the transportation variant 
with LOQO, Vanderbei (1992). 

2. Partial Cholesky factorization of  ADA y 

In this section we generate the general theory we will use to exploit the partition (1) of A. 
The main result we need for this purpose is the following theorem: 
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Theorem 1. Let C be an m x m symmetric positive definite matrix. Then there exists a 
unique m x m lower triangular matrix L with positive diagonal entries, such that C = LL T. 
In case C is dense, l m3 + l m2 - 3m multiplications are required to compute L. 

Proof  See George & Liu (1981). 
The matrix L in the above theorem is called the Cholesky factor of C. Given that 

C is sparse, we refer the reader to George & Liu (1981), an excellent reference on the 
methodology that preserves sparsity of L. We now use this theorem to exploit the partition 
(1) of the rows of A. 

Assuming this partition, it can be easily seen that 

ADA T = -GDG T GDH r- 
HDGT HDHT (5) 

Then we can prove: 

Lemma 1. There exist lower triangular m 1 x m 1 matrix L1 and m2 x m2 matrix L3 such 
that GDG T = L1L T and HDH T = L3 LT. 

Proof Since A is full row rank, so are G and H. Since D has positive diagonal entries, 
GDG r and HDI-I r are symmetric positive definite matrices, and we have our result from 
theorem 1. 

We now use the lower triangular matrices Ll and L3, guaranteed by lemma 1, for solving 
(2) when A has the partition (1). This is done in the next theorem, which generates a partial 
Cholesky factor of ADA T. 

Theorem 2. 
lemma 1. Then, for  the m2 × m I matr• L2 and m2 × m2 matrix I) with 

I) =- L3(I - L31L2LTLaT)L ( ,  

L1L~ = GDH T, 

L : [ L ;  ; ] ,  i ~ = [ I  0 O] ,  

ADA T = LI)L r .  

Let the m l × m l matrix L1 and m2 × m2 matrix L3 be defined as in the 

(6) 

(7) 

Proof  Can be readily verified by a direct multiplication of L, I) and L r .  
As a result of this theorem, the solution of (2) can be expressed in terms of the matrices 

L1, L2, and L3. This is done in the next result. 
Assume that the partitions 

Z2 ' d2 ' 

conform to the partition (5) of C (= ADAT). Here, dl ,  Zl are ml vectors and d2, z2 are 
m2 vectors. 

Theorem 3. Let the m2 x ml  matrix E be defined so that L3E = L2. Equation (2) can 

be solved by the following sequence o f  steps. 
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Step 1. Find Z~l by forward solve 

LlZtl = d l .  

Step 2. Define 

z ~ : d 2 - L 2 1 1 .  

Step 3. Find z~ by forward solve 

L3z~ -- z~. 

Step 4. Solve 

( I  , , ,  = - -  tb l~  )Z  2 ( 8 )  

Step 5. Find z2 by backward solve 

L~'z2 m = Z 2 • 

Step 6. Find Zl by backward solve 

L, zl = Z'l - L;z2  

Proof Using the structure of L and Î ) (of theorem 2) the following equations can be readily 
derived 

LlZ]  = d l ,  
T f 

Z~ = 1:12 -- L 2 z I , 

Dz2 = z~, 

L Zl - L ,2. 

The theorem now follows from the structure (6) of I). 
The result of theorem 3 requires the Cholesky factors of GDG T and HDH T, which are 

expected to be less dense than the factor of ADA T. The price for this enhanced sparsity 
is paid at step 4 of the theorem. Here, generally, a dense system of equations has to be 
solved. In the next section, we will present a procedure that solves this system in O (m2m2) 
multiplications. If this system were solved by Cholesky factorization, calculation of EE T 
would require m lm 2 multiplications, and the calculation of the Cholesky factor another 

gm 2 1  2 + ~m 2 1  2 _ 3m 2. In the case m2 _> m l ,  solving directly is more expensive. 

For a dense matrix C, system (2) can be solved, using Cholesky factors, in ira3 + 

3m2 - 5m multiplications. Using the technique of this section with a partitioned matrix 

A, it requires ~ (m 3 + 9m 2 + 6m2m2 - 3m) multiplications, and is not competitive. 

We now establish a basic property of the matrix EE T, encountered in step 4. 

Theorem 4. Let E be defined as in theorem 3, step 4. The spectral radius of EE T is less 
than 1. 

Proof. Since ADA T is positive definite, so is LDL T (see theorem 2 for definitions), and 
thus I) is positive definite. Using the structure of I), I) is positive definite. Thus, from (6), 
zT(I -- EET)z > 0 for all z. Thus zTEETz < zTz for all z, and we have our result. 
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3. A me thod  for  a system with s e v e r a l  r a n k - o n e  u p d a t e s  

In this section we develop an inductive version of  the Sherman-Morrison-Woodbury 
formula for solving the system (8). For each j = 1 . . . . .  m l, let Ej be the j t h  column of 
the matrix E, and 

I t  
E m l + l  ---- Z2. 

Also, let B 1 = I,  and for each k = 1 . . . . .  m 1 

Bk+l  = Bk -- EkEk r ,  

and, note that Bml+l = I - EE T. 
Now, for each k = 1 . . . . .  m 1 + 1 and j = 1 . . . . .  m I + 1, define 

BkE)k)  = Ej. 

Thus, for each k = 1 . . . . .  m 1 and j = k + 1 . . . . .  m 1 + 1, 

or  

o r  

B ,~( t+1)  = E j ,  k+ 1 r.,j 

l~ *2T~m(k+l) = E j ,  
(Bk - ~k~k )~j 

(I  - E(/)ET ~ ( k + l ) k  k)'~j =r~)~(k). 

Using the Morrison-Woodbury formula, we can write the solution to (9) as 

(k) 

1 ~ i E :  E--(kk)) ~k 

(Ek, E (k)) _ j ~(k)  
=E~k) + 1 - ~,E-(kk)) = ' k '  

(9) 

where (., .) is the usual inner product of  two vectors. 
We can prove the following result about the above procedure. 

T h e o r e m  5. The solution z~' of (8) is E ( ~ _  +1). 

Proof This is readily seen since by definition, 

B ~ ( m l + l )  
m l + l m m l + l  = E m l + l  

substituting the identities Bml+l = I - EE  T and Eml+l = z~, we obtain the theorem. 
The above inductive procedure (on k) suggests the following algorithm in a vector and 

a distributed/parallel environment. 

Step I. 1. Communicate Ej  to processor j = 1, . . . ,  ml + t. 
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2. At processor j ,  set E~ 1~ = Ej. 

3. Set k = 1. 

Step 2. From processor k, communicate E~ ~), Ek and (Ek,E~ k~) to each processor j = 
k +  1 . . . . .  ml + 1. 

Step 3. At processor j ,  j - k + 1 . . . . .  nzl + 1 compute 

(Ek, E~ k)) E~k) E~ k+l) = E~ k) + - - - ~ - k ) \  " " 
1 - (Ek, ~k / 

Step 4. Set k = k + 1. I fk  < m 1, then go to step 2, otherwise declare E~+-~ 1)~' '  as the solution 
'" of  (8). Z2 

A careful count of the number of  multiplications needed are summarized in the following 
theorem. 

Theorem 6. The number of multiplications required by the algorithm to solve (8) is 
m2m2 + 2m lm2. In the vector and parallel environment, the number of vector operations 
required is 3m 1. 

Proof Can be readily verified by a careful counting. 
There is a considerable advantage in keeping m l < m2 while solving (8), an m2 x m2 

system, by the above strategy. Otherwise, it would require m lm 2 multiplications to obtain 

EE  r ,  ~1 (m 23 + 3m 2 - 9m2) to obtain the Cholesky factor of  I - EE r and m2(m2 + 1) to 
solve the system using the Cholesky factor. The method of  this section is less advantageous 
if m2 < ml;  and to use it effectively ml and m2 should be re-defined. 

4. Transportat ion and ass ignment  problem 

The transportation problem is the following: given m supply depots, with si (> 0) as 
the units of  supply of  some good at depot i for each i = 1 . . . . .  m; n demand centres 
with dj (> 0) as the units of  demand of the good at the centre j for each j = 1 . . . . .  n; 
and ci, j (>  0) the cost of  shipping one unit of good between depot i and centre j for 
each i -- 1 . . . . .  m, j = 1 . . . . .  n; find the least cost quantity of  good shipped between 
each depot and centre. We assume here that the transportation problem is balanced, or 
)-~m n i=1 si = ~ j=l  dj; i.e., there are just enough goods available at the supply depots to 
meet this demand. In this case it is well known that the transportation problem has an 
optimal shipping schedule, and it can be found by solving the following Transportation 
Linear Program, 

m n 

min ~ ~ Ci,jXi.  j 

i = l j = l  
n 

Z X i , j : - S i ,  i = 1  . . . . .  m, 
j----I 
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??l 

~ _ x i , j = d j ,  j = 1 . . . . .  n ,  

i=1 

Xi,j >0,  i = 1 . . . . .  m ;  j = 1 . . . . .  n ,  

w h e r e  xi, j is the number of  units of goods shipped from depot i to centre j ,  for each i 

and j .  

The assignment problem is the following: given there are n individuals that can do 

any of  the n tasks; and, assigning the individual i to the task j costs c i , j ( >  0) for each 

i = 1 . . . . .  n, j = 1 . . . . .  n, find the least cost assignment of  individuals to tasks. It is also 
required that each individual perform exactly one task, and that each task be performed 
by exactly one individual. This problem can be cast as a balanced transportation problem, 
with each individual associated with a supply depot with exactly one unit of supply, and 
each task with a demand centre with exactly one unit of demand. The only difference is 
that the variables x , , j  are required to take on values 0 or 1. As is well known, because of  

the total unimodularity property of the constraint matrix, setting si = 1 a n d  dj  = 1 for 

each i = 1 . . . . .  n and j = l . . . . .  n and solving the transportation linear program suffices 

to find the optimal assignment. 

The dual of  this linear program is the following: 

m /7 

m a x  ~ SiUi + Z dj vj 
i--1 j = l  

U i a t- Vj + Si, j : Ci, j,  for all i = 1 . . . .  m, j = 1 . . . . .  n, 

Si, j >0 ,  f o r a l l i  = 1 . . . .  m, j = 1 . . . . .  n, 

where ui and vj  are the dual variables and Si, j a re  the dual slacks for each i and j .  

The constraints of  the (primal) linear program fall naturally into two sets, the supply 
constraints and the demand constraints. It is this partition that we will exploit in the 

algorithm. As is well known, the rank of  the constraint matrix is m + n - 1, which is one 
less than the number of constraints. Thus one constraint must be discarded to ensure that 

the constraint matrix has full row rank. We will discard the supply constraint associated 
with the depot m, and use the following constraint matrix: 

A = 

-e T 0 . . -  0 0- 

0 e T . . .  0 0 

. . .  

0 0 . - -  e T 0 

I I . . .  I I 

where e T = ( 1, 1 . . . . .  1 ), an n vector, and I is the n × n identity matrix. 

Thus we define, 

e T -.-  0 
G : . , 

0 - - .  eT 

H = (I ,  I . . . . .  I ) ,  
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where G is an (m - 1) × mn and H is an n x mn matrix. The diagonal matrix D has mn 
entries along the diagonal, and has the partition 

D(2) . . .  0 0 

D ~ o ~ 
° °  

0 "" • D (m) 

where D (i) an n x n diagonal matrix, and its j th  diagonal entry D)~ ) is the ijth diagonal is 
entry of D, which corresponds to the entry of D associated with the variable Xi, j . The exact 
form of this entry depends on the particular interior point algorithm implemented. 

It can now be readily confirmed that 

erD(2)e 
GDG r = 

" . .  

erD(m-1) e 

an (m - 1) × (m -- 1) diagonal matrix; and 

n 

HDH T = E D  (i) 
i=1 

an n x n diagonal matrix. Thus Ll and L3 are diagonal matrices, with the j th  diagonal 
m (i))½ n r~(J)~ ½ and (~i=1 D ) j .  , respectively. Also entry of L1 and L3 being (~k=l  "-'kk J 

e r D  O) ] 
eTD (2) I 

GDH T = [, 

~TDim_l) J | 

and 

L2 = (D0)e, D(2)e . . . . .  D(m-l)e)L11. 

Thus 

E = L 3 1 L 2  

= L~ -1 (DO)e, D(2)e . . . . .  D im- l )e)Lt  1 ' 

which is an n × (m - 1) positive matrix. 

Theorem 7. Each iteration of  the interior point method requires nm 2 +6nm + 2 (m - n + 1) 
multiplications for the partitioned assignment problem. 

Proof. Using the structure of L1, L2 and L3; and solving (8) by the method of § 3, and 
carefully counting the multiplications at each step, we get the theorem. 
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5. Generalized upper bounding problem 

The generalized upper bounding linear program is the following: 

minimize coxo + cTxl -I- cTx2 + ""  

AoXo + AIXI + A2x2 -4- . . .  

eTx2 

eTx2 

xo>_0 x l >0 x2>_0 ... 

T + Cp Xp 

+ Apxp = b 

: 1  

= 1  

eTxp = l 

Xp _>0 

where, for each j = 0 . . . . .  p, Aj is an m x nj matrix, cj and xj are nj vectors; and for 
j = 1, . . . ,  p, ej a is an nj vector of all ones. Transportation and assignment problems 
have this structure as well, but in important applications, m < < p (i.e., m is much less 
than p). We make the usual assumption that the constraint matrix has the full row rank 
m + p .  

As is evident, the constraints of this problem have the natural partition (1) with 

G = (A0, A1 . . . . .  Ap) 

H= 
I~0 lT 0 -.- J 0 e~ . . .  

0 0 . .-  e_ r 
F 

and the diagonal matrix D has the partition (corresponding to the partiton of A) 

D(°) 

1 

D(I) D = . , (10) 

D(p) 

where D (j) is an nj × nj diagonal matrix corresponding to columns of xj in A, for each 

j = l  . . . . .  p. 
Here 

p 

GDGT = E AjD(J)Af  ' 
j=o 

HDH T = I e~D(l)et e~D(2) e2 

" e D P eP 1 ' 
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with I t D H  r a diagonal matrix• Thus L3 is a diagonal matrix, and L1, the Cholesky factor 
of  the m x m matrix 

P 
~-~AjD(J)A T = L1L T. 

j=0 

In applications, even when Aj are sparse, we would expect their sum to be considerably 
more dense, and thus we expect L1 to be relatively dense• Also 

G D H  T = (A1D(l)el, A2Dt2)e2 . . . . .  ApD(P)ep). 
Thus if L2 = (11,12 . . . . .  lp), 

Ll l j  = AjO(J)ej, 

and we can expect the p x m matrix L2 to be dense• In addition, E = L a l L 2 .  

Theorem 8. Each step of an interior point method requires 3pro 2 + ~m 3 + ~ p m +  
3 "~ ~m- - l m + 2p when applied to the partitioned GUB problem. 

Proof Can be obtained by a careful calculation of the work at each step of  the algorithm. 
The multiplications required to obtain the Cholesky factor L1 are included in the above 
formula. 

6. Block diagonal linear program 

The block diagonal linear program is the following: 

minimize eo~X0 + elr xl + c2rx2 + - . .  + eprXp 

Aoxo + AlXl + A2x2 + . . .  + A p x p  = b o  

/iA 1 X2 = bl 

~-2x2 = b2 
• ° 

~kpXp : bp 

X 0 >__0 X1 >__0 X 2 > 0 ' ' '  Xp > 0 

where, for each j = 0 . . . . .  p, Aj is an m0 x nj matrix, ej and xj are nj vectors; and, for 

each j = 1 . . . . .  p, ,~,j is an mj × nj matrix. Let m = m0 and M = ml + ' "  + rap. The 
constraints of  this problem have the natural partition (1) with 

G = (A0, A! . . . . .  Ap) 

0 .i.2 . . .  O0 
H ~ . •  

0 0 . . .  Ap 

and the diagonal matrix D has the partition (10). It can be verified that 
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and, 

GDG T = ~ AjD(J)Af; 
j--o 

n o n  r = . 1 

is a block diagonal matrix. As in the GUB case, the factor L~ of GDG 7 will be relatively 
dense• L3, the Cholesky factor of HDIt T is block diagonal, and each diagonal factor can 
be computed independently• Thus, we can assume that [31 1 L32 

1, 3 = .. • 

L3p 

When Aj is sparse, we can preserve the sparsity of L3j (the Cholesky factor of AjD(J)Af ) 
by the techniques of sparse Cholesky factorization, George & Liu (1981). Also 

GDH r = . . . . .  ApD(P),i r) 

is an m x M matrix. If L~" = (L r, . . . . .  L~p), 

L1L~ = AjD(J)A T. 

We expect L2.i to be, generally, dense. 
Let E = (E (Z~, E <2) . . . . .  E(P)) T which conforms to the partition of L3, Then, for each 

j = l , 2  . . . . .  p 

L3jE (j) = L2j 

and we can readily establish the following theorem: 

Theorem 9. For a dense problem, it takes 1 y]j=o(m 3 + 3mj* - 9mj) + l Mm(m + 

1) + -~ Y]jPl mj(mj -4- 1) multiplications to generate LI, L2, L3 and E; and, takes 
2 Mm 2 + 4Mm + m 2 + m + ~P=I mj + M multiplications to solve the systems of  the- 

orem (4). I f  mj = rh for all j = 1 . . . . .  p, the above forms reduce to l(m3 + 3m 2 - 

9m + pfft 3 + 3prh 2 - 9prh) + lprhm(m + 1) + ½Pmrh(rh + 1) and pm2rh + 4pmrh + 

m 2 + m + prh 2 + prh respectively• Thus, in this case, the computations grow linearly 
in p. 

Proof This can be readily proved by a careful counting of the required multiplications. 
One specially structured, and important problem which shares the block-diagonal struc- 

ture is the multi-commodity flow problem. In its node-arc formulation, p is the number 
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of commodities, Ai = I for each i = 0 . . . . .  p; and ~k i ~-- R, where R is a node- 
arc incidence matrix of the directed network through which these commodities flow. 
Thus, 

P 
GDGT = Z D(j) 

j=0  

is diagonal, and the sparsity pattem of/~iD(i)~, T, for each i = 1 . . . . .  p, is the same. 
Also, 

AiD(i)Af  = D(i)R T. 

Thus 

1 

L2 T. = D(J ) D(i)R T ' 

\ j = l  / 
I 

1 L3iE (i) = RD (i) D (j) . (11) 
\ j = l  ] 

L3i is the Cholesky factor of RD(i)R T, and, for each i, has the same sparsity pattern as that 
of the factor of RR T. It is readily confirmed that, in the notation of George & Liu (1981), 
the graph associated with RR T is the unordered network on which the commodities flow. 
This facilitates considerably the use of their techniques for generating sparse Cholesky 
factors L3i. Since each column of R has only two nonzero entries, E (i) will be sparse; and 
will have the same sparsity pattern for each i. 

For a network with m nodes, n arcs and p commodities, L1 is an n × n diagonal matrix, 
for each i = 1 . . . . .  p, L3i is an m × m matrix, L2i is an m × n and E is pm × n. Also, 
assume that it takes 8 multiplications to get a sparse Cholesky factor of RRT; and note 

1 i, m3 that 8 _< ~ ~ + 3m 2 - 9m); and that the number of non-zero elements in this factor are 
r/. Then, the following can be shown. 

Theorem 10. Given L1, L2, L3 and E, it takes pmn 2 + 4pn + 2n + PO multiplications 
to solve all the systems of theorem 3. 

7. Computational experience 

In this section, we present some computational experience of solving assignment problems 
by the procedure suggested here and by the state-of-the-art code LOQO (Vanderbei 1992). 

LOQO is a state-of-the-art interior point code based on the primal-dual homotopy 
method, and implements a predictor-corrector strategy for tracing the path of centres. 
The per iteration times of this code are compared with the per iteration times of a special- 
ized transportation code, implementing the dual affine scaling strategy. The LOQO per 
iteration times may be a little larger because of the step size selection in the predictor- 
corrector strategy. The per-iteration times and their ratio are given in table 1. We point out 
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Table 1. Computational results. 

Assignment LOQO Ratio 
Problem Size Iter Time * Iter time Iter Time Iter time Loqo/Asgn 

1 200x200 14 20.78 1.48 15 75.72 5.048 3.41 
2 200x 200 17 25.09 1.476 17 85.30 4.911 3.33 
3 200x200 21 31.02 1.477 20 96.61 4.830 3.27 
4 300x300 14 65.72 4.69 18 301.07 16.72 3.565 
5 300x300 19 88.80 4.67 19 314.16 16.53 3.540 
6 300x300 2l 98.06 4.67 21 418.5 16.86 3.61 

* This time is the total time for all the iterations, without the input/output time. All times are in seconds. 

that for these special problems, the specialized version was about 3 to 4 times faster than 
the general purpose code, LOQO. 

The three problems of size 200 × 200; and, of size 300 x 300 are generated randomly, 
and present increasing difficulty to interior point methods. On the first problem, these 
methods converge to a solution in the interior of a face, with very few variables at value 1. 
On the second problem, these methods converge to a solution with more than 75% of the 
variables at value 1, while on the third problem they converge to a vertex, with all variables 
at value 1. For the first problem, LOQO found a solution to the accuracy of eight significant 
figures, but for the second and third, it was unable to find this accurate a solution. For these 
problems it found a solution to 7 digits of accuracy. 
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