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Finding and Visualizing Time Series Motifs of All 
Lengths using the Matrix Profile 

(blinded)

Abstract— Many time series analytic tasks can be reduced to 

discovering and then reasoning about conserved structures, or 

time series motifs. Recently, the Matrix Profile has emerged as the 

state-of-the-art for finding time series motifs, allowing the 

community to efficiently find time series motifs in large datasets. 

The matrix profile reduced time series motif discovery to a process 

requiring a single parameter, the length of time series motifs we 

expect (or wish) to find. In many cases this is a reasonable 

limitation as the user may utilize out-of-band information or 

domain knowledge to set this parameter. However, in truly 

exploratory data mining, a poor choice of this parameter can 

result in failing to find unexpected and exploitable regularities in 

the data. In this work, we introduce the Pan Matrix Profile, a new 

data structure which contains the nearest neighbor information 

for all subsequences of all lengths. This data structure allows the 

first truly parameter-free motif discovery algorithm in the 

literature. The sheer volume of information produced by our 

representation may be overwhelming; thus, we also introduce a 

novel visualization tool called the motif-heatmap which allows the 

users to discover and reason about repeated structures at a glance. 

We demonstrate our ideas on a diverse set of domains including 

seismology, bioinformatics, transportation and biology. 

Keywords—Time series, Motif discovery, Anomaly detection  

I. INTRODUCTION 

In recent years, the Matrix Profile (MP) has emerged as a 
promising data structure to support time series data mining. The 
MP is a simple data structure that contains the nearest neighbor 
information for all subsequences of a given length in a time 
series. In the past three years it has been shown that the MP can 
be used to facilitate the discovery of motifs [21], discords 
(anomalies) [25], chains (evolving patterns) [24], shapelets [21], 
snippets [7], regimes [25], and more. However, we argue that 
the MP has a strong assumption that limits it practicality by 
requiring the user to specify the subsequence length ahead of 
time. A data scientist may have a good intuition as to what this 
subsequence length should be, based on their experience or a 
first principles model of the system being examined. However, 
in many cases, particularly for exploratory data mining, the user 
may have no idea as to the subsequence lengths at which patterns 
are conserved in the data necessitating the need for variable-
length motif discovery. 

Consider the one-hundred second excerpt of an EOG 
(Electro-oculogram; the movement of an eye) dataset from a 66-
year old healthy male recorded during a sleep study show in Fig. 
1. Here we are tasked with identifying regions corresponding to 
the “blinking of the eye” in an attempt to remove these regions 
from a companion EEG dataset (not shown). Because eye blinks 
are not only unique to the individual but also sensitive to the 
sensor placement, we cannot use a single “one-size-fits-all” 
template. But, given that blinks are typically well-conserved, at 

least during a single sleep session, we can perform motif 
discovery to identify an appropriate template. However, the 
suggested subsequence length for motif discover is not readily 
apparent. We may attempt to rely on the current sleep study 
literature in which case [16] suggests “a duration of 1.5 to 2.5 
seconds” as the subsequence length. In Fig 1.bottom.left we 
show that using 2.5 seconds does indeed discover a highly 
conserved motif that corresponds to an eye blink. Moreover, 
searching for more examples of this pattern in the full night of 
sleep data, we find hundreds of additional examples of this 
shape. 

A sleep technician might very well be justified in terminating 
her search. However, as Fig 1.bottom.right shows, this time 
series has a second type of eye-blink artifact with a subsequence 
length of five seconds which may not have been considered by 
the sleep technician due to the high frequency of the 2.5 second 
motif. The fact that eye blinks can be polymorphic seems 
underappreciated, but [1] cautions EOG signals can have  “ more 
than one category… classified by shape.” Missing this second 
blink artifact would have drastically corrupted the downstream 
analytics performed on this dataset. 

 

Fig. 1. top) One hundred seconds of EOG data. bottom.left) A search for the top 
2.5-second motif reveals a highly conserved pattern eye-blink-artifact. 
bottom.right) A search for the top 5-second motif reveals another highly 
conserved pattern, that has no overlap with the first. 

This very basic problem exemplified in an EOG dataset is 
ubiquitous in nearly all domains as the user’s choice limits what 
regularities can be found in the dataset. In the EOG dataset 
shown in Fig. 1, the two motif patterns differ by a factor of two; 
however, as this paper will show, other datasets may contain 
motifs which can differ by up to two orders of magnitude. 

A possible, yet inelegant, solution to this problem is trial and 
error over different lengths. Beyond being frustratingly time 
consuming and awkward for the user, there is still a real danger 
of missing an interesting pattern. Though the definition of a time 
series motif is fairly robust to minor changes in length 
[13][14][25], there will be some length at which there is a “phase 
change”, that is, the location of the motif will “jump” to a 
different place in the time series. For example, in Section III.A 
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we introduce a dataset with a maximal motif for 𝑚1 = 68, and 
a non-related/nonoverlapping maximal motif for 𝑚2 = 610. 

In this work we solve this motif-length sensitivity problem 
by introducing the Pan Matrix Profile (PMP), a data structure 
that contains all MP information of a time series with length 𝑛 
for all lengths in a fixed range 𝑟 . In addition, we introduce 
SKIMP (Scalable KInetoscopic1 Matrix Profile), an algorithm 
to compute the PMP with time complexity 𝑂(𝑛2𝑟) and space 
complexity 𝑂(𝑛𝑟). Though untenable for large datasets which 
require an exact solution, SKIMP is computed in an anytime 
fashion allowing for fast approximate solutions [26]. In almost 
all cases, running SKIMP to even one one-hundredth of its full 
convergence time will produce results that are almost 
indistinguishable from the final product. 

Using SKIMP, we believe that all algorithms that exploit the 
MP could be made length-agnostic, that is to say, we can have 
length-agnostic chains [24], snippets, regimes, etc. However, for 
clarity and concreteness, in this work we confine our claims to 
motif and anomaly discovery and leave all other considerations 
for future work. 

The practical application of SKIMP is in facilitating 
interactive time series analytics on practical problems in 
bioinformatics, seismology, medicine and industry. 

The rest of this paper is organized as follows. In Section II 
we introduce the relevant notation, background material, and 
define the PMP data structure. Section III introduces a family of 
algorithms to compute the PMP and several algorithms to 
exploit and visualize it. We conduct an extensive empirical 
evaluation in Section IV. We defer a discussion of related work 
to V, so the readers intuitions for the issues at hand are more 
fully developed, before offering conclusions and directions for 
future work in Section VI. 

II. NOTATION AND BACKGROUND 

A. Time Series Notation 

We begin by introducing all the necessary definitions, 
starting with the data type of interest, time series: 

Definition 1: A time series T is a sequence of real-valued 
numbers ti: T = t1, t2, ..., tn where n is the length of T: 

We are typically interested not in global, but local properties 
of a time series. A local region of a time series is called a 
subsequence: 

Definition 2: A subsequence Ti,m of a time series T is a 
continuous subset of the values from T of length m starting from 
position i. Formally, Ti,m = ti, ti+1,…, ti+m-1, where 1 ≤  i ≤  n-m+1. 

Given a query subsequence Ti,m and a time series T, we can 
compute the distance between Ti,m and all the subsequences in T 
with length 𝑚. We call this a distance profile: 

Definition 3: A distance profile Di corresponding to query 
Ti,m and time series T is a vector of the Pearson correlation 
between a given query subsequence Ti,m and each subsequence 

 

1 A kinetoscope is a sequence of images. As we will show, SKIMP can 

be visualized as producing a sequence of motif-heatmaps. 

in time series T with length 𝑚. Formally, Di = [di,1, di,2,…, di,n-

m+1], where di,j (1 ≤  j ≤ n-m+1) is the distance between Ti,m and 
Tj,m. 

We assume that the distance is measured by Euclidean 
distance between z-normalized subsequences [25][21]. Once we 
obtain Di, we can extract the nearest neighbor of Ti,m in T. Note 
that if the query Ti,m is a subsequence of  T, the ith location of 
distance profile Di is zero (i.e., di,i = 0) and close to zero just to 
the left and right of i. This is called a trivial match in the 
literature (See Definition 7). Most of the community follow the 
suggestion in [4] to avoid such matches by ignoring an 
“exclusion” zone of length m/2 before and after i, the location of 
the query [21].  

We wish to find the nearest neighbor of every subsequence 
in T. The nearest neighbor information for subsequences with 
length 𝑚 is stored in two meta time series, the matrix profile, 
and the matrix profile index: 

Definition 4: A matrix profile P of time series T is a vector 
of the Euclidean distances between every subsequence of Ti,m 
and its nearest neighbor 𝑇𝑗,𝑚  in T. Formally, Pm = [min(D1), 

min(D2),…, min(Dn-m+1)], where Di (1 ≤ i ≤  n-m+1) is the 
distance profile Di corresponding to query Ti,m and time series T. 

The i-th element in the matrix profile P tells us the Euclidean 
Distance from subsequence Ti,m to its nearest neighbor in time 
series T. However, it does not tell us the location of that nearest 
neighbor; this is stored in the companion matrix profile index: 

Definition 5: A matrix profile index I of time series T is a 
vector of integers: I=[I1, I2, … In-m+1], where Ii=j if di,j = min(Di). 

Fig. 2 illustrates the relationship between distance matrix, 
distance profile (Definition 3) and matrix profile (Definition 4). 
Each element of the distance matrix 𝑑𝑖,𝑗 is the distance between 𝑇𝑖,𝑚 and 𝑇𝑗,𝑚 for 1 ≤  𝑖 and 𝑗 ≤  𝑛 − 𝑚 + 1 of time series 𝑇. 

 
Fig. 2. The relationship between the distance matrix, distance profile, and matrix 
profile. A distance profile 𝐷𝑖 is a column (also a row) of the distance matrix. The 
matrix profile stores the minimum (off diagonal) value of each column of the 
distance matrix; the location of the minimum value within each column is stored 
in the companion matrix profile index. 

Fig. 3 shows a visual example of a distance profile and a 
matrix profile created from the same time series T. Note that as 
we presented it above, the matrix profile uses the z-normalized 
Euclidean distance [21]. However, this is logically equivalent to 
the Pearson correlation, and we can convert between them with 
ease. Some communities prefer to work with Pearson correlation 



(especially seismologists [11]) while our work remains agnostic 
to such considerations. 

 

Fig. 3. top) A distance profile Di created from Ti,m shows the distance between 
Ti,m and all the subsequences in T. The values in the dark zone are ignored to 
avoid trivial matches. bottom) The matrix profile P is the element-wise minimum 
of all the distance profiles (Di is one of them). Note that the two lowest values in 
P are at the location of the 1st motif in T. 

Definition 6: A Pan Matrix Profile (PMP) of a time series 𝑇 
is a matrix whose rows are the matrix profiles 𝑃𝑖  of some time 
series 𝑇. The PMP is accompanied by a PMP index, recording 
the location of the nearest neighbor for each MP in the PMP. 

To avoid extracting redundant motifs we must understand the 
issue of trivial matches: 

Definition 7: (Trivial matches):  Given a time series T of 
length 𝑛 containing subsequence 𝑇𝑝,𝑚, if 𝑇𝑝,𝑚 scores highly on 

any scoring function, then 𝑇𝑗,𝑚  where 𝑗𝜖[min(1, 𝑝 − 𝑚/2), max(𝑝 + 𝑚/2, 𝑛)] will almost certainly score high on the 
same function. These spurious high scoring subsequences are 
trivial matches. 

To avoid the false positives of trivial matches when finding 
the top-K matches to a query, we discard some of the patterns 
using the concept of an exclusion zone, a standard practice [4]. 

III. COMPUTING THE PAN MATRIX PROFILE 

Before introducing algorithms to compute the PMP, we 
introduce motif-heatmaps, a technique to visualize the PMP. 

A. Visualizing the PMP with Motif Heatmaps  

While many algorithms treat the classic MP as a “black box” 
[24], it can be very helpful to visualize the MP for exploratory 
data analysis. At a quick glance, the MP can be used to visualize 
the frequency and fidelity (how well-conserved), and the 
location of motifs in a time series (Fig. 3.bottom). 

We would like to achieve a similar visualization for the 
PMP. To achieve this, we propose mapping each MP to a one-
dimensional row of a bitmap image, recording 𝑦-axis heights as 
a color gradient using a heatmap. 

We illustrate this, in Fig. 4 using a text string analog. Given 
the text string: 𝑇: d3icdmy19qicdmnu19a 

we compute its “Matrix Profile” at every subsequence length 
from 1 to 5. Here the colors are discrete because subsequences 𝑇𝑖,𝑚  and 𝑇𝑗,𝑚  either match or they do not. Corresponding to 

locations at the apex of each dark triangle, we have maximal 
motifs of length four beginning at location 3 (icdm) and length 

two beginning at location 8 (19) which correspond to locations 

11 and 17, respectively. 

 

5                    
4                    
3                    
2                    
1                    
 d 3 i c d m y 1 9 q i c d m n u 1 9 a 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Fig. 4. A binary valued visualization of the PMP where subsequences either 
match (black) or don’t match (white) for subsequence lengths 𝑚 = 1,2, … ,5. 

In a real-valued time series case, the colors of the PMP can 
take on subtle graduations of color or grayscale to indicate the 
degree of similarity.  

Though motif-heatmaps perform a similar role as the 
ubiquitous dot-plots used in bioinformatics, they are not directly 
comparable, as dot-plots are only defined for discrete data, 
although a handful of papers have suggested discretizing real-
valued time series to avail a dot-plot. 

B. Computing the PMP 

We begin with a concrete statement of the problem we wish 
to address: 

Problem Definition: Given a time series 𝑇 of length 𝑛, and 
a fixed range of subsequence lengths 𝑖 with lower bound 𝐿, 
upper bound 𝑈, and step size 𝑆, we wish to produce the pan 
matrix profile PMP whose rows consist of matrix profiles 𝑃𝑖 : 

PMP = [𝑃𝐿 𝑃𝐿+𝑆 ⋯ 𝑃𝑈]𝑇 

In addition, we wish to produce a matrix PMPI whose rows 
consist of the matrix profile index 𝐼𝑖: 

PMPI = [𝐼𝐿 𝐼𝐿+𝑆 ⋯ 𝐼𝑈]𝑇 

Before outlining our solution to this problem, we dismiss 
two apparently promising directions. Since the matrix profiles 𝑃𝑖  and 𝑃𝑖+1 will be highly related, we may attempt to “cache” 
some calculations used to compute one in order to reduce the 
number of computations required to compute the other; 
however, to produce meaningful results we use z-normalized 
Euclidean distance (or equivalently, Pearson correlation) 
[4][14][25][21] which makes such caching impossible. In 
addition, given a matrix profile 𝑃𝑖 , it is impossible to predict or 
even produce an upper or lower bound for matrix profile 𝑃𝑖+1 

since max(𝐷𝑗)  for 𝑃𝑖+1  may be significantly greater than its 

value in 𝑃𝑖  as shown in Fig. 5 for a toy dataset with embedded 
noisy sine waves. 

 Thus, we believe there is no direct way to exploit the 
redundancy of adjacent matrix profiles to reduce computation. 
However, as we will show, we do exploit this redundancy to 
order our calculations, and achieve a faster convergence in the 
early stages of our anytime algorithm [21][26]. 



 

Fig. 5. A real-valued visualization of the Pan Matrix Profile of a time series 𝑇 
with length 5000 with a magnified “detached motif,” 𝑃𝑖 < 𝑃𝑖+1 for some index. 

Calculating the PMP for a time series 𝑇  for a range of 
subsequences 𝑟 reduces to the calculation of 𝑟 matrix profiles 𝑃1, 𝑃2, … , 𝑃𝑟. This can easily be calculated using the brute force 
algorithm outlined in TABLE 1. 

TABLE 1: A BRUTE FORCE ALGORITHM TO CREATE THE PMP 

Input: T:  Time series 

  L:  Subsequence length lower bound 

  U:  Subsequence length upper bound 

  S:  Subsequence length range step size 

Output: PMP: Pan matrix profile 
1 

2 

3 

4 

5 

R = L : S : U  // [L, L+S, L+2S, ..., U] 

PMP = [] // |T| x |R| matrix of zeros 

for r in R 

  PMPr = BuildMP(T, r) // (Definition 4) 

return PMP 

In this algorithm we begin by explicitly specifying the range 𝑅 of subsequence lengths we wish to explore (line 1) and then 
calculate the matrix profile 𝑃𝑟  for consecutive subsequence 
lengths 𝐿 + 𝑖𝑆 for 𝑖 = 0, … , (𝑈 − 𝐿)/𝑆 (lines 3-4). In line 4 we 
use the . MP, currently SCRIMP or STOMP [25][21]. Using this 
algorithm, we can generate the complete PMP shown in Fig. 6 
with maximal motifs at subsequence length 𝑚1 = 68 and 𝑚2 =610. An approximation of the PMP is depicted in Fig. 6 after 16 
iterations, that is, after calculating 𝑃1, 𝑃2, … , 𝑃16, about 2% of 
the exact PMP has been calculated. 

 

Fig. 6. The PMP of a time series 𝑇 with length 𝑛 = 8330 where we consider 
susbequence lengths bounded by lower bound 𝐿 = 1, upper bound 𝑈 = 800, 
and step size 𝑆 = 1 . The slice 𝑚 = 610  corresponds to matrix profile 𝑃610 
which has minimal values at 𝑡1 = 7157 and 𝑡2 = 7757. Note that this example 
is based on real data shown in Section IV.B. 

Until relatively recently, computing this would have 
required R invocations of an 𝑂(𝑛2𝑟)  algorithm. As we will 
show in our experimental section, 𝑅  could be over 10,000, 
making this algorithm completely untenable. The STOMP 
algorithm [25] is able to compute a single MP in just 𝑂(𝑛2) 
time, giving us an overall 𝑂(𝑛2𝑅)  algorithm to compute the 
PMP. This may be tenable for small datasets, especially if we 
avail the GPU or multicore versions of STOMP that now exist 
[25]; however, it is clearly limiting given the typical sized 
datasets that modern data analysts need to deal with. 

 

Fig. 7. An approximation of the exact PMP depicted in Fig. 6. After calculating 
16 matrix profiles 𝑃1, 𝑃2, … , 𝑃16 or performing 2% of the required work, a little 
over 2% of the exact PMP has been calculated. 

Though we strongly suspect that 𝑂(𝑛2𝑅) may be optimal for 
the task-at-hand, our key insight is while it may take 𝑂(𝑛2𝑅) 
time to converge to the exact answer, by carefully ordering the 
computations, we can typically allow it to converge to 99% of 
the exact answer, after doing less than 1% of the computations. 
By computing the PMP with a novel anytime algorithm, we can 
increase the size of datasets considered by at least two orders of 
magnitude. 

Before continuing, it is important to ward off a possible 
misunderstanding. There already exist anytime algorithms to 
compute the MP, in particular STAMP [21] and the more 
recently introduced SCRIMP [25]. However, these algorithms 
only compute a single MP. To ensure fast convergence of the 
PMP we must optimize anytime performance at a higher level. 

C. SKIMP: An Anytime Algorithm to Compute PMP 

We are finally in a position to introduce SKIMP, which we 
outline in TABLE 2. Unlike brute-force search, SKIMP 
recursively subdivides the range into equally spaced regions 
with increasing granularity (line 1-2). This has a similar effect 
to iterating through a balanced binary search tree on the range 𝑟 = [1,2, … , (𝑈 − 𝐿)/𝑆] using breadth-first search. 

TABLE 2: THE SKIMP ALGORITHM 

Input: T:  Time series 

  L:  Subsequence length lower bound 

  U:  Subsequence length upper bound 

  S:  Subsequence length range step size 

Output: PMP: Pan matrix profile 
1 

2 

3 

4 

5 

6 

T = BuildBalancedBST(L,U,S) 

R = BFS(T) 

PMP = [] // |T| x |R| matrix of zeros 

for r in R 

  PMPr = BuildMP(T, r)         // (Definition 4) 

return PMP 
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As the initialized PMP (line 3) is approximated for each 
subsequence 𝑟 in 𝑅 (line 4-5), we see a “blocky” approximation 
of triangles being progressively refined exemplified in Fig. 8. 
The example shown is slightly cleaned and contrived for clear 
display in this limited format of presentation, but [27] contains 
videos of this process created on several real-world datasets. 
This process is reminiscent of the classic idea of progressive 
refinement of raster images [17]; however, in that case, the 
limiting factor was bandwidth, while for us it is CPU time.  

 

Fig. 8. A visual trace of the PMP shown in Fig. 6 approximated using known PMP 
values. top) After four iterations a single motif has been located. middle) A new 
motif with a significantly smaller subsequence length is located while the initially 
discovered motif is refined. bottom) The complete PMP as shown in Fig. 6. 

As we will show in Section IV, SKIMP’s approximation of 
the PMP depicted in Fig. 6, and many other real-world datasets 
converge significantly faster than brute-force search, typically 
achieving 99% accuracy in less than 1% of the work. 

D. Ranking Motifs of Different Lengths 

Given that SKIMP will allow us the possibility to find motifs 
of any length in the range r, it is natural to ask how we can rank 
motifs of different lengths. In many cases, we envision that a 
higher-level algorithm will make requests for motifs of different 
lengths, based on its own criteria (which could possibly include 
out-of-band information), thus absolving us of the responsibility 
to address this question. Nevertheless, it is an interesting 
question to answer. For a handful of user cases, especially on 
relatively small datasets, we envision this being an interactive 
process. Thus, we have built an interactive and visual tool to 
allow a user to explore and discover multiple length motifs. 
Nevertheless, we clearly need an algorithm that allows us to 
meaningfully rank motifs of different lengths. 

The question largely reduces to how we trade-off fidelity vs. 
length. For example, which of the following pairs of strings 
should we adjudge more similar, {rat|rod} or 

{rhinoceros|rhinovirus}? A naïve application of string 

edit distance would rank the former more similar, however most 
people would find the latter pair more similar. Normalizing by 
dividing by the length of the strings achieves this [20].  

However, a linear trade-off for fidelity vs. length is not 
appropriate for time series. Using the Euclidean distance, we 
normalize all MPs by dividing by the square root of the 
reciprocal of the length of the subsequence [13]. Of course, if 
we work in the correlation space, this is a non-issue.  

E. Computing PMP with Unbounded U 

The PMP allows for the first truly parameter-free algorithm 
for finding time series motifs (we could envision several 
algorithms to find motifs from the PMP, in Section III.C we gave 
one such example). While L is bounded by the shortest logical 

subsequence length, and 𝑆 simply affects the desired level of 
granularity, the reader may argue that the value of U is a 
parameter and could be as long as n/2. However, 𝑈 is only a 
parameter in a very weak sense, so long as it is larger than the 
length of the longest motif in the data, its value is 
inconsequential. For example, in our termite DNA example in 
Section IV.B the longest motif has length 610. As we did not 
know this in advance, we set U to a very conservative 2,400. 
This clearly worked, but one could argue that about 75% of the 
computations (from 618 to 2,400) were wasted. Can we prevent 
such wasted computations?  

If we assume that we have a test to detect when the first row 
(from L upwards) of the PMP is devoid of meaningful motifs, 
then a simple algorithm suggests itself. We can compute this test 
on the MPi with 𝑖 =  𝐿, then iteratively double 𝑖 , computing 
then testing MPi until the test fails. We can then use i as the value 
of U, and simply call the SKIMP algorithm.  

Note that since we have already computed log2(𝑈) of the |𝑅| = (𝑈 − 𝐿)/𝑆  MPs that SKIMP will compute, we can 
slightly modify SKIMP to ingest these MP and avoid 
recomputing them. 

This idea is predicated on the assumption that we have a test 
to detect when the first row of the PMP is devoid of meaningful 
motifs. One way to achieve this, is to set a threshold for the 
correlation. We can calculate the maximum correlation for each 
subsequence and if the correlation falls below the threshold then 
we stop calculating the PMP for the larger subsequence length 
as outlined in TABLE 3. 

TABLE 3: FINDING A SUITABLE UPPERBOUND FOR U 

Input: T:  Time Series 

  t:  Threshold 

Output: S: Maximum subsequence length 
1 

2 

3 

4 

5 

6 

k = 8           // 8 is the shortest sensible motif 

c = inf      

while(c >= t)   // t is set with domain knowledge 

  c = maximum(PCmatrixProfile(T,k)) 

  k = k * 2     // iteratively double 

return k 

Using this algorithm Fig. 9 indicates a suitable upper bound 
at subsequence length 660 when using a maximum correlation 
threshold of 𝑡 = 0.988 on a mtDNA sequence of Coptotermes 
suzhouensis (a termite) depicted in Fig. 14. Gratifyingly, we see 
dip just after 612, the objectively correct location [12].  

Fig. 9. The maximum correlation for different subsequence length from a 
mtDNA sequence of C. suzhouensis depicted in Fig. 14. Setting the threshold to 
0.988 stops calculation of PMP for lengths greater than 660. 

This opens the question of how we can set t. While this is a 
domain dependent value, it seems to be robust within a single 
domain. For example, 𝑡 = 0.988 worked well on the termite 
DNA, the soybean DNA (Fig. 18), and all other DNA data we 
considered.  
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F. Extracting the Top-K motifs 

An almost trivial application of the PMP is our algorithm for 
extracting the length agnostic top- 𝐾  motifs as outlined in 
TABLE 4.  

TABLE 4: DISCOVERING TOP-K MOTIFS (ANOMALIES)  

Input: PMP:  Pan Matrix Profile 

  T:  Time series 

  k:  Number of motifs 

Output: TM: top-𝐾 motifs 
1 

2 

3 

4 

5 

6 

7 

TM ← {}  
while |TM| < k 

  [idx, s] = maximum(PMP) 

  if TM is not covering T[idx:idx + s]  
     TM ← T[idx: idx + s] 
  Apply exclusion zone // Definition 7 

return TM 

Given a time series 𝑇 , the corresponding 𝑃𝑀𝑃  for some 
range, and a user-defined value for the number of motifs 𝑘, our 
algorithm returns the subsequences 𝑇𝑖,𝑚 which correspond to the 

top- 𝑘  motifs of the PMP. To extract the top- 𝑘  motifs, we 
repeatedly search the 𝑃𝑀𝑃 for its minimum value (line 3) and 
then add the corresponding subsequence to our top-𝑘 motifs 𝑇𝑀 
only if 𝑇𝑀  does not span the subsequence (lines 4-5). 
Afterwards, we apply an exclusion zone using the recovered 
subsequences to ensure we do not find a trivial match (line 6). 
Using this algorithm, we discovered the top-2 motifs for the 
mitochondrial DNA sequence shown in Fig. 14 𝑇7713,615  and 𝑇7092,70  and their respective nearest neighbors 𝑇7148,615  and 𝑇6900,70 which is in near perfect agreement with the ground truth 

noted in [12] and will be illustrated in Fig. 14. 

G. Anomaly Detection 

The previous algorithms for detecting subsequence length 
agnostic top-𝑘 motifs can be easily modified to detect anomalies 
with variable lengths. By “inverting” the PMP, PMP′ = 1 −PMP  the top- 𝑘  motifs produced by the algorithm would 
correspond to the top- 𝑘  anomalies. We exemplify this 
algorithm’s ability to perform anomaly detection on an 
automated pedestrian counting system developed in Taipei to 
better understand pedestrian activity within the municipality. 
This information examines how people use different city 
locations at different times of day to better inform decision-
making and infrastructure planning. We extract data from the 
Xindian District Office as shown in Fig. 10.  

Fig. 10. Pedestrian count data from Taipei Xindian District Office metro station 
starting on December 2015 and ending at March 2017. 

 Fig. 11 shows one fairly typical week of this behavior. 

 

Fig. 11. One fairly typical week data of the pedestrian counting data of Taipei. 

After computing the PMP for this data from L = 20 points 
(~one day) to U = 200 points (~10 days), we can then extract the 
top-𝑘 anomalies using the modified version of the top-𝑘 motifs 
algorithm described in Section F. 

Fig. 12 shows the top-4 anomalies that exist in this dataset 
with the anomaly shown in red.  

Fig. 12. The top-4 anomalies (red) detected for the data shown in Fig. 10.  

Note that these four anomalies represent four different 
lengths. The first anomalies length is 27 points (~one day). We 
found the ground truth for this event which is described by [26] 
as "On September 26/27, 2016 ... Typhoon Megi ... (made) 
landfall on Taiwan’s southeast coast" The second and third 
anomalies belong to Republic day/New year's day and Chinese 
New Year's Eve with a length of 59 (~2.5 days) and 185 points 
(~one week). The last anomalies' length is 32 points (~1.5 days) 
which is reported by [5] as "The storm is predicted to make 
landfall on the island nation on July 7." 

If we set the length of classic anomaly detection algorithm 
to one day, it fails to find Chinese New Year's Eve or Republic 
Day/New year's day. In contrast, if we set the length of classic 
anomaly detection to one week, we cannot detect the other 
anomalies are that are present in Fig. 12. This strongly motivates 
the need for computing similarity search for variable length. 

IV. EXPERIMENTAL EVALUATION  

To ensure that our experiments are reproducible, we have 
built a website [27] which contains all data/code/raw 
spreadsheets for the results, in addition to many experiments that 
are omitted here for brevity. Unless otherwise stated, all 
experiments were run on a Dell XPS 8920, with Intel Core i7-
7700 CPU @ 3.6GHz and 64GB RAM. 

A. A Benchmark for the All-Length Motif Problem 

To concretely ground our ideas throughout this paper, let us 
consider a motivating problem introduced to us by (blinded). 
They are interested in finding motifs in time series from a large 
industrial distillation column. The apparatus is massive with 
great thermal and mechanical inertia, so that it suffices to sample 
it once per minute (1/60 Hertz). When doing analytics, it is 
common for them to consider data from the previous year; thus, 
we have a time series with n = 525,600 points. Let us call this 
dataset DisCol. Occasionally, DisCol is searched for motifs 
which are used in downstream analytics to perform root-cause 
analysis. Though most patterns last for about a day, the fast 
cooling process of the apparatus by a summer rain shown can 
induce patterns lasting for only a few hours; thus, there is great 
uncertainty in the potential length of motifs motivating the 
desire to identify motifs between the length of one hour (𝐿 = 60 

Dec,2015 Mar,2017

Monday Sunday

one week

top-2 Dec 30, 2016

top-3 Feb 5, 2016

Chinese New Year's Eve

top-4 July 7, 2016

top-1 Sep 27, 2016

Typhoon Megi Republic Day/New Year's Day

Typhoon Nepartak



minutes) and one day (𝑈 = 1,440 minutes), a range of |𝑅| =1,380 values. 

Prior to the introduction of the Matrix Profile, the only exact 
algorithm to find all such high-dimensional motifs was brute 
force search, which would take O(n2r2) time. The factor r 
appears both as the subsequence length (more conventionally 
denoted m), and the number of times we must run the motif 
search. Concretely, on our desktop, this would require about 48 
years. Using the recently introduced STOMP algorithm, which 
can find motifs of a fixed length in time independent of that 
length, this can be reduced to O(n2r) time, or about 23 hours. 
However, since STOMP is a batch algorithm, it is natural to ask 
how quickly we can converge to an acceptable approximation of 
the final PMP. 

We have created a proxy for the data in question by editing 
together some publicly available industrial benchmarks from a 
similar process. In Fig. 13 we show how fast SKIMP converges 
on this dataset.     

 

Fig. 13. The root-mean-square error of our approximation of the fully converged 
PMP when using SKIMP and the brute-force algorithms. When compared to the 
ten hours required to fully compute the PMP using the brute-force algorithm 
(TABLE 1), SKIMP required less than 41 min, or 3% of the required effort to 
achieve an approximation with less than 10% error. A video showing the 
convergence of the PMP approximation using SKIMP is available at [27]. 

In an ideal case, there should exist an approximation of the 
PMP which converges to the exact PMP using a small fraction 
of the effort required to compute the complete PMP. In less than 
3% of the required effort, SKIMP was able to approximate the 
full PMP with less than a 10% root-mean-square error. Though 
it may seem as if the root-mean-square error plot depicted in Fig. 
19 converges slower than the plots depicted in Fig. 13 and Fig. 
20, this plot is significantly shorter (by an order of magnitude) 
but still only requires a handful of iterations before converging 
to the complete PMP. 

B. DNA-Based Benchmarks for the All-Length Motif Problem 

To demonstrate the utility and correctness of time series 
motif length discovery, we exploit a technique long used by the 
time series data mining community. By converting discrete 
DNA sequences to real-valued time series, we can explore the 
time series space of the DNA sequence and then attempt to 
confirm our findings with molecular biologists. In Fig. 14 we 
show the complete mitochondrial DNA sequence of 
Coptotermes suzhouensis, a subterranean termite pest of wooden 
structures as a real-valued time series and its corresponding 
PMP as a motif-heatmap in Fig. 15. 

 

Fig. 14. The mitochondrial DNA sequence of five randomly chosen insects, 
including the 16,326 bp mitochondrial DNA sequence of Coptotermes 
suzhouensis (blue). 

These results are suggestive of a strongly conserved motif of 
a length of about 610 in the center of the sequence. In a recent 
paper announcing the complete mitochondrial genome of this 
insect, the authors noted that the mitogenome had two repeat 
units, A and B. Unit A is just 66 bp long, however “The B 
repeats consisted of one complete unit B1 (562 bp) and a partial 
unit B2 (38 bp)” [12]. The reader will appreciate that 562 + 38 
sums to 610, which is just 0.03% less than our suggested motif 
length of 612 for this dataset.  

 

Fig. 15. A motif-heatmap of (the time series representation of) the mitochondrial 
DNA sequence of Coptotermes suzhouensis in Fig. 14 from L= 10 to U = 2,400. 

Moreover, if we zoom in as shown in Fig. 16, the A motif is 
also clearly visible. 

 
Fig. 16. A zoom-in of the center bottom of  Fig. 15 shows that the motif heatmap 
also discovered the much shorter A motif. 

The reader may wonder if DNA time series is “too easy” 
given the level of conservation observed. To address this, we can 
revisit our termite example. This time, before converting the 
DNA string to time series, we randomly changed every base 
with a one in sixty-four probability, simulating a high mutation 
rate. As the motif heatmap in Fig. 17 reveals, this level of noise 
makes no appreciable difference in our ability to find the motifs. 
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Fig. 17. (contrast with Fig. 15) A motif-heatmap of (the time series 
representation of) the mtDNA of sequence Coptotermes suzhouensis after 1-in-
64 bases were randomly changed. 

Above we have demonstrated our technique on an insect 
which was chosen to be visually clear in two-column format, but 
it is arguably too simple to really challenge our algorithms. In 
order to stress test SKIMP, we can turn to plant mtDNA. It has 
long been noted that “Unlike the relatively simple mitochondrial 
genomes of animals, the genomes of nonparasitic flowering 
plant mitochondria are large and complex.” [1]. Thus, we 
consider the mitochondrial genome of Soybean (Glycine max) 
[3]. Because it is 402,540 bp long and has repeats that differ over 
three orders of magnitude in length, it is difficult to do it full 
justice in this paper. In the accompanying web materials [27], 
we show a video of our methods applied to it, and here we 
content ourselves with a figure that allows us to see only the 
longer motifs.   

From the literature we know that repeats in plants may be as 
long as 10,000, thus we consider  𝐿 =  1,000, 𝑈 =  10,000, 
with 𝑆 =  1. To run this dataset to convergence requires about 
42 days, however, as the video at [27] shows, in about half a day, 
the basic shape of the final motif heatmap has already emerged.  

 
Fig. 18. bottom) The mtDBA of Soybean in a time series representation. top) The 
motif-heatmap of Soybean. The location and length of two motifs are 
highlighted. As [3] discovered, the (location/length) of the first occurrence of R2 
is (33,155/4,692), which is very close to our result of (33,129/4,800). Similarly, 
[3] notes the (location/length) of R1d is (255,146/6,502), we discovered a motif 
the exactly the right location 255,146, with a slightly different length 6,850. 

This experiment offers strong evidence of the utility of our 
anytime approach. In addition, SKIMP was able to approximate 
the PMP with less than 10% root-mean-square error when 
performing less than 4% of the required effort as shown in Fig. 19. 

Note that such DNA repeats could also be visualized using 
dot-plots. However, recall that dot-plots require O(n2) space, 
whereas motif-heat maps require only O(nr) space, and their 
long aspect ratio is amenable to panning interactions when 
dealing with long sequences. More importantly, dot-plots are 
only well defined for discrete strings while motif-heat maps 
facilitate the visualization  of real-valued data. 

C. All-Length Motifs in Seismology 

In this section we consider motif discovery in seismic data. 
It may not be obvious, but two earthquakes from the same 
location, even if recorded decades apart, will have similar 
waveforms. The waveform similarity results show that the 

waveform from the source to station is affected by the same 
process (i.e., seismic refraction, reverberation, and reflections). 

 
Fig. 19. The change in the root-mean-square error when approximating the PMP 
after performing a fraction of the work required to compute the PMP to 
convergence on the mtDBA Soybean time series representation. Using less than 
4% of the time required to compute the entire PMP, SKIMP found an 
apporximation to the PMP which had a root-mean-square error of less than 10%. 
A video showing the converging of SKIMP is available at [27]. 

Seismologists can exploit different aspects of seismograms 
(e.g., seismic wave amplitude at various stations) to calculate the 
magnitude of earthquakes. One simple method of calculating 
earthquake magnitudes is to use the duration of the earthquake 
signals, and then apply a formula to map it to magnitude [2][11]. 
One problem of using this method is that although the onset of 
the earthquake signal is usually clear, the tail of earthquake 
signal cannot always be determined clearly as the signal 
saturates in the background seismic noise. Moreover, for distant 
events, the exact timing of the onset may also be difficult to 
determine. This process is usually performed by visual 
inspection of the earthquake waveforms and thus requires 
human effort [2] and can contain bias/error from using different 
analysts.  

Here we tested the PMP as an alternative way of estimating 
duration magnitude for local earthquakes. We picked four 
earthquakes from seismicity in the central San Andreas fault 
near Parkfield, CA and tested our approach using the data 
recorded at a PGH station from the northern California seismic 
network. We considered 260 seconds of the gain controlled 
seismic data at 20 Hz. 

 
Fig. 20. Concatenated seismic waveform (after applying a gain control) recorded 
at PGH seismic station and resampled at 20 Hz for four earthquakes located near 
the Central San Andreas fault, near Parkfield, CA. left) the full dataset. 

It is important to note that we only processed the data by 
deleting irrelevant sections, bringing four events within a 260 
second time span, to allow us to create intuitive plots.   

A classic equation to map duration to amplitude is [11]: 𝑀𝑑 = 2.0(log 𝑇) + 0.0035𝑇 − 0.87 + 𝑠𝑡𝑎𝑐𝑜𝑟 (1) 

Here Md is the earthquake magnitude calculated based on 
duration, T is the earthquake waveform duration, and stacor 
(station correction term) is a constant that depends on the 
station’s characteristics (instrument, near the station structural 
properties) and methods [11].  In this case, we do not have the 
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stacor parameter, and therefore, we cannot calculate the 
absolute magnitude from the PMP. However, if we take the 
difference between magnitude of two events, the stacor term 
cancels, and we can test if the PMP approach can estimate the 
difference between two earthquake magnitudes. With this in 
mind, we computed the PMP as shown in Fig. 21. 

 
Fig. 21. A motif-heatmap of the PGH (Parkfield, CA) seismic data. The events 
shown originate from two distinct locations where Event-1 and Event-3 are from 
one origin and Event-2 and Event-4 are from another. 

We ran our top-𝑘 motif algorithm with 𝑘 = 2. The algorithm 
indicated a length of ~43 seconds for Event-1 and Event-3 and 
~21 seconds for Event-2 and Event-4.  

By plugging these values into (1), we estimated the 
magnitude difference between earthquakes to be 0.70. The 
Northern California Earthquake Catalog Search (NCSN) catalog 
[13] reports the local magnitude of Event-1 (event ID number 
21476722) is 2.00 and Event-2 (event ID number 21432310) is 
1.25. Thus, the values from the NCSN catalog indicate the 
difference between magnitudes to be around 0.75, in close 
agreement with our estimate of 0.70. 

Fig. 22 shows SKIMP approximating the PMP spanning a 
range of subsequence lengths from 10 to 2000 which reduced 
the approximation’s error to less than 10% while performing 
only 15% of the required time and effort. 

 

Fig. 22. The root-mean-square error of our PMP approximation using the SKIMP 
and brute-force algorithms on seismic waveform data. SKIMP achieved a root-
mean-square error of less than 10% when using only 15% of the time and effort 
required to fully compute the PMP. A video showing the convergence of the 
PMP approximation using SKIMP is available at [27]. 

 Note that our method is fully automated and can be used at 
large scale. In contrast, traditional methods are subjective and 
require significant human effort. For example [2] noted, “The 
estimate of event duration is visually defined by the analysts 
from P-onset time until the point when the signal envelope 
decays down to the pre-event noise level. Nevertheless, (because 
of human subjectivity) definition of event duration is not 
homogeneous at each observatory.” 

D. Reducing Space Requirements 

Recall our motivating problem was DisCol. For this dataset 
we wish to support length agnostic motif search in the range of 
one hour to one day, at one minute steps, which requires storing 
1,380 Matrix Profiles and Matrix Profile Indices for the PMP. 

Naively, the memory requirement for this is as follows: for 
the Matrix Profiles, 527,040 × 1,380 × 4  bytes = 5.81 
gigabytes and for the Matrix Profiles Indices, 527,040 ×1,380 × 4 bytes = 2.90 gigabytes, totaling 8.72 gigabytes. This 
is not untenable for modern machines, but it is uncomfortably 
large. Can we improve this? 

The first observation is that we do not need the Matrix 
Profiles Indices to create the motif heatmaps. So, as each one is 
computed in line 4 of TABLE 2, we can flush them to disk, just 
in case one of them is later requested by some downstream 
algorithm.  

The second observation is that if our main task is to produce 
a motif-heatmap, then we do not need to keep all 527,040 values 
of each Matrix Profile, as this would give us a finer resolution 
that we could possibly display. We have at most 7,680 pixels 
(the 8K standard) of width to specify. Thus, we can aggregate 
chunks of values, map them to a single pixel, and then flush the 
original higher resolution Matrix Profile to disk in case one of 
them is later requested by some downstream algorithm.   

Given this basic approach, there is no real memory 
bottleneck for computing the PMP. 

V. RELATED WORK 

The literature on time series motif discovery is large and 
growing, see [21] and the references therein. However, to the 
best of our knowledge, there are no other algorithms that can 
approximately or exactly discover all motifs of arbitrary lengths.  

The work closest in spirit to ours is VALMOD [13]. The idea 
of VALMOD is to compute the MP for the shortest length of 
interest, then use the information gleaned from it to guide a 
search through longer subsequence lengths, exploiting lower 
bounds to prune off some calculations. This idea works well for 
the first few of the longer subsequence lengths, but the lower 
bounds progressively weaken, making the pruning ineffective. 
Thus, in the five case studies they presented, the mean value of 
U/L was just 1.24. In contrast, consider that our termite example 
in Fig. 15 has a U/L ratio of 240, more than two orders of 
magnitude larger. Thus, VALMOD is perhaps best seen as 
finding motifs with some tolerance for a slightly (~25%) too 
short user-specified query length, rather than a true “motif-of-
all-lengths” algorithm. Also note that apart from the shortest 
length, VALMOD only gives some information for the other 
lengths, unlike PMP, which contains exact distances for all 
subsequences of all lengths. 

In a sequence of papers, Lin and colleagues introduce a 
series of tools to allow interactive discovery of variable-length 
time series patterns [22]. However, this work is not directly 
comparable to PMP. First, because they use a discretized 
representation of the data (for efficiency), they are always 
condemned to finding approximate answers. Second, the system 
only returns information about a small subset of the patterns, 
whereas PMP contains exact distances for all subsequences of 
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all lengths. Finally, there are many parameters to be set and 
choices to be made in the grammar inference algorithm. 
However, like us, the authors see great value in attempting to 
visualize the results of the motif search. 

Unsurprisingly, given the explosion of interest in deep 
learning, there is at least one paper on “deep” motifs [9]. 
However, in spite of the title of the work, the 
algorithms/representations presented are what the data mining 
community would call (semi-supervised) clustering, not motif 
discovery.  

Note that our ability to find motifs without specifying their 
length ahead of time, removes the final parameter in time series 
motif discovery. While progress in data mining is often 
measured only in time or accuracy, we would argue that this is 
a significant milestone. The first paper to propose time series 
motif discovery required the user to set five parameters (length, 
SAX cardinality, SAX dimensionality, mask size, iterations) [4]. 
Mueen managed to reduce this to just two (length, number of 
reference points) [14], and the original Matrix Profile reduced it 
to just one (length) [21]. Every reduction in the number of 
parameters seems to have been accompanied by a dramatic 
increase in the number of practitioners exploiting motif 
discovery.  We hope that this final reduction will continue this 
trend. 

VI. CONCLUSIONS 

We have introduced the first practical technique to find 
motifs and discords [21] for all lengths. Given the glut of 
information that this provides, we have also introduced a novel 
visualization that allows a practitioner to understand the 
location, length, and fidelity of all motifs in her dataset. We have 
shown that these new tools allow us to find useful conserved 
structures and anomalies in domains as diverse as 
bioinformatics, transportation, and seismology. 

In future work plan to investigate the implications of our 
ideas for other algorithms that exploit the matrix profile, 
including chain discovery [24] and segmentation. 
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