
transactions of the
american mathematical society
Volume 233, 1977

MATRIX REPRESENTATION OF SIMPLE HALFRINGS
by

H. E. STONE

Abstract. The structure of halfrings which are strong direct sums of
minimal subtractive right ideals is studied. A class of right simple hemirings
which contains both division hemirings and differential subsemirings of
division rings is introduced and studied extensively as a tool in this investi-
gation. A matrix representation is obtained for a class of halfrings which
properly includes differential subsemirings of simple Artinian rings.

1. Introduction. A semiring is a triple (H, +, • ) such that (H, + ) is a
semigroup with identity 0, (H, • ) is semigroup with zero 0, and multiplication
distributes over addition. If the addition is commutative, H is called a
hemiring. A subsemiring S of a hemiring H is differential in HifVhEH 3s,
t G S with s + h = t. A halfring is a hemiring H which is differential in some
ring H, which is then uniquely determined. This paper continues the point of
view of [9], and terminology introduced there will be extended without
comment to hemirings generally.

A hemiring is [right, left] simple if it has no nontrivial subtractive [right,
left] ideals. It is [right, left] ideal-free if it has no nontrivial [right, left] ideals.
A division semiring is a semiring with 1 =£ 0 all of whose nonzero elements
have multiplicative inverse. It is clear that division hemirings may be charac-
terized among nonzero hemirings as those which are right and left ideal-free,
and among hemirings with identity as those which are right ideal-free. Grillet
and Grillet [4], [5] have recently studied ideal-free and semisimple semirings
very successfully using the techniques of semigroup theory. Earlier, Bourne
[1], Bourne and Zassenhaus [2], [3], Steinfeld [8], and Wiegant [10] had
studied semirings which are direct sums of minimal right ideals. The
culmination of that study is an analogue of the Wedderburn theorem which
may be paraphrased as follows:

An ideal-free semiring with identity which is a strong direct sum of finitely
many minimal right ideals is isomorphic to a full semiring of matrices over a
division semiring.

Presented to the Society, January 23, 1975; received by the editors September 24, 1973
and, in revised form, March 15, 1977.

AMS (MOS) subject classifications (1970). Primary 16A78; Secondary 16A40, 16A42.
Key words and phrases. Hemiring, half ring, entire, cancellative, simple, semisimple, Artinian,

division semiring, full matrix halfring.
C American Mathematical Society 1977

339

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



340 H. E. STONE

Here a semiring is said to be a direct sum of a family [Sa) of subsemirings
if it is the sum of the subsemirings and 0 has a unique representation. In case
^P is a property of halfrings which is inherited by differential subsemirings,
we adopt_as a general principle the terminology that H is strongly 9 if and
only if 22 is 9. In particular,_a halfring H is a strong direct sum of
subsemirings {Sa} if and only if H is a direct sum of subrings {Sa}. It is easy
to see that H is a strong direct sum of the {Sa} if and only if every element of
27 has a unique representation. We then take this condition as the definition
of strong direct sum for general semirings.

It is the object of this paper to analyze the structure of hemirings which are
strong direct sums of minimal subtractive right ideals, with particular
attention to the possibility of obtaining matrix representations. It is easy to
see that because of the unique representation of elements, a strong summand
of a hemiring must be subtractive. It is considerably less restrictive, however,
to require minimality only among subtractive right ideals, as well as being
more natural as a generalization of the ring theory case.

2. Nilpotent ideals and semi-isomorphisms. In what follows, we will often
have to adapt to hemirings arguments based on the absence of nilpotent
ideals. We will also obtain some results involving semi-isomorphic represen-
tations. Hence we collect here some information regarding the behavior of
these concepts in general hemirings.

Semi-isomorphisms are not very promising tools for structural inves-
tigation, and the author devoted considerable attention in [9] to determining
when they could be strengthened to isomorphisms. The following result is a
dramatic illustration of how little information a semi-isomorphism can reveal.
Construct the free hemiring on a set S as the free Abelian monoid, written
additively, over the free multiplicative semigroup on S, extending the
multiplication by distributivity. This is clearly a halfring, and it is easy to see
that every hemiring is a homomorphic image of a free halfring. But it is also
easy to see that if K is any subtractive ideal of a half ring 27, then H/K is a
halfring. Hence

Proposition 1. Every hemiring is a semi-isomorphic image of a half ring.

Hence a semi-isomorphic image of a nice structure need not retain any nice
properties. However, the requirement that a hemiring have a semi-isomorphic
image with nice properties is generally a much greater restriction. The best
illustration of this is LaTorre's observation [7] that a semiring semi-
isomorphic to a ring is itself a ring. Another example is the situation dual to
Proposition 1: the requirement that a hemiring be semi-isomorphic to a
halfring. If 9 is a property of hemirings, we adopt as a general principle the
terminology that 27 is pre-® if and only if H has a semi-isomorphic image
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MATRIX REPRESENTATION OF SIMPLE HALFRINGS 341

with 19. Hence we are discussing the class of prehalfrings. Bourne and
Zassenhaus [3] introduced the zeroid Z(H) = {z G H: x + z = x for some
x G H) of a hemiring H, and Iizuka [6] showed that H/Z is semi-isomorphic
to a halfring. Hence the prehalfrings are exactly the hemirings with zeroid 0.
This is a substantial restriction compared to the liberty allowed by
Proposition 1.

Following Bourne and Zassenhaus we define a hemiring to be potent if no
nonzero one-sided ideal is nilpotent. However, we wish to impose conditions
only on subtractive ideals. If A and B are right ideals in a hemiring, AB is
again a right ideal, but need not be subtractive even if A and B are. We
denote by <S> the subtractive subset of H generated by any additively closed
subset S. The following result, whose proof consists of routine computations,
reconciles these two viewpoints.

Proposition 2. Let A and B be subsemirings of a hemiring H. Then
(AB y = «¿>.B> = C4X5» = «,4X5».

Corollary A. If A is a right ideal of H, then A " = 0 // and only if
(A}" = 0.

It is known that the sum of all nilpotent right ideals of a hemiring H is a
two-sided nil ideal p (H) containing all nilpotent left ideals of H.

Corollary B.p(H) is a subtractive ideal ofH.

Corollary C. Every potent half ring is semi-isomorphic to a strongly potent
halfring.

Proof. If I is a nilpotent ideal of H, then I n H isa nilpotent subtractive
ideal of H. Hencep(H) n H = p(H). If p(H) = 0, thenp(ÂT) belongs to the
type t(0) of 0 as studied in [9], and hence there is some maximal member
M E t(0) ■withp(H) C M. The natural homomorphism v of H into H/M is
a semi-isomorphism. Thenp(Hv) = 0, and p(Hv) G t(0) as above. But by the
maximality of M, t(0) in H/M consists of 0 only, so that p(Hv) = 0. Hence
Hv is a strongly potent halfring.

3. Halffields. The most natural place to look for semirings having matrix
representations is among subsemirings of potent right Artinian rings. An
extension of what we have just done gives

Proposition 3. Every simple potent strongly right Artinian half ring is semi-
isomorphic to a differential subsemiring of the full ring of matrices over afield.

Proof. Since p(H)E t(0), there is a maximal ideal / of H in t(0),
containingp(H), and H/I is a simple, potent Artinian ring, and hence a full
ring of matrices over a field (division ring). The natural homomorphism is a
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342 H. E. STONE

semi-isomorphism carrying 27 onto a differential subsemiring of 27/2.
Q.E.D.

If H is a hemiring, we denote the hemiring of all n x n matrices with
entries in 27 by Mn(H). If a £ Mn(H), we denote the (/,/)th entry of a by
a(i,j). It is easy to see

Proposition 4. If S is a differential subsemiring of a hemiring H, then
Mn(S) is differential in Mn(H). In particular, if H is a halfring, so is Mn(H),
and Mn(H)~ = Mn(H).

Unfortunately we cannot expect to get a full matrix halfring in general, for
many other kinds of differential subsemirings occur in matrix rings.

Example 5. Let 27 = {0} u [a £ M2(F): a(i,j) < ij). Then H is
differential in the full matrix halfring over the nonnegative rationals F, but H
is not a full matrix semiring over any semiring.

Note that Example 5 has no direct summand. We can hope for a more
pleasant situation when we ask that 22_be a strong direct sum_of minimal
subtractive_ideals Hx,..., Hn. Then 27 is the direct sum of 22,,..., Hn.
However, 27, may not be a minimal right ideal of H.

We will say that M is a strongly minimal subtractive right ideal of a halfring
27 if M is a minimal right ideal of 27. If 77 is a potent right Artinian ring, M is
generated by a right identity e, and eMeis a field. It is easy to see that eMe is
a differential subsemiring of the field eMe. In any hemiring 77, we say that an
ordered pair (u, v) is right unital if hu + A = hv for all A £ 27. Hence in a
unital halfring, v - u = I. Finally, we define a haljfield to be a half ring H
such that 27 is a field.

Proposition 6. Let H be a strongly potent haljring and M a subtractive right
ideal oj H with right unital pair (r, s). Then M is strongly minimal ijand.only ij
(s — r)M(s — r) is a haljjield.

The nonnegative rationals F are both a halffield and a division halfring.
The example constructed in [9] is a division halfring which is not a halffield.
We now present some examples of halffields which are not division semirings.

Example 7. Let r > 1 be a real number, and let Fr = {x E F: r < x) u
(0). Then Fr is a subhalffield of the rational numbers F, but no Fr is a
division halfring since none even has an identity.

Proposition 8. (a) IJ H is a haljfield, Mn(H) is strongly simple, strongly
potent, and is a strong direct sum of strongly minimal subtractive right ideals.

(b) If a strongly simple, strongly potent halfring H is a strong direct sum of
strongly minimal subtractive left ideals, then H is differential in a full ring of
matrices over a field.
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However, the gap between full matrix halfrings and differential
subsemirings of full matrix rings cannot be closed even in this case.

Example 9. Let H = {a E M2(F): a(i,j) E /}}. Then H is strongly simple,
strongly potent and is a strong direct sum of the strongly minimal right ideals
Hx = {a E H: a(i, 1)= 0} and H2 = {a E H: a(i, 2) = 0}. Nevertheless H
is not a full matrix halfring over any semiring.

This is not what we could wish, but since the subsemiring is differential, it
is closely related to the full matrix ring. This is an additive analogue of the
representation of a ring as an order in a matrix ring, and it is probably as
much as can be expected in this generality. In what follows, we will be
seeking ways to weaken the requirement that the summands be strongly
minimal, and correspondingly the requirement that the halfring be strongly
right Artinian. Nevertheless, the halffields are an interesting and important
class of semirings, and we make a beginning on their study by classifying the
subhalffields of the rationals. This case is made accessible by the fact that a
proper subsemiring of the rationals must be contained in the nonnegative
rationals F, and the fact that since the rationals are a prime field, a
subhalffield must be differential.

Theorem 10. A subsemiring S of the nonnegative rationals F is a half field if
and only if for each prime p there exists n(p) G N, the nonnegative integers,
such thatp\n(p) andp~xn(p) E S.

Proof. If p divides no denominator^ of a fraction in S, it divides no
denominator of a fraction in S; hence 5 ¥= F. Thus mn~x E S for some m,
n E N, where (m, n) = 1 andp | n. Then np~l E N, so that mp-1 G S. Then
p\m, and we take n(p) = m.

Conversely, let S be a subsemiring of F satisfying the condition. It suffices
to show_ S = F, and for this it suffices to show that if 0 ¥= n E N, then
n~x E S. Let I = {n G N: 0 ¥= n E S). Sincep~xn(p) G S for any primep,
n(p) E S C S, so that 7^0. Let m be the least member of I. If m > 1,
there is a prime q such that q \m, and qt = m for some t G N, 0 < t < m.
Since q\n(q), there axe r,s G N with rn(q) + sq = 1. Hence rn(q)t + sqt =
t =jtn(q) + sm E S, which contradicts the minimality of m. Hence m = 1
ES.

Suppose for induction that n~x E S for 0 < n < k, where k > 1. If k is
not prime,_fc = gA, where 1 < g, A < k. Then h~\ g~x E S, so that g-1A-1
= k~x E S. If k is prime, let m be the greatest integer < k~xn(k) E S. Then
k~xn(k) - m =_k~xn'(k) G S, where 0 < n'(k) < k. But then n'(k)~x E S,
so that k~x E S also. Hence by induction, S = F and S is a subhalffield of
F. Q.E.D.
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344 H. E. STONE

4. Entire hemirings. We seek a substitute for the halffields which will be
associated with minimal subtractive right ideals in potent halfrings. The
success of division halfrings and halffields suggests that what we want is a
common generalization of these classes, and the basic nature of fields in ring
theory suggests that conditions of right and left simplicity ought to be
involved.

We define the right annihilator of a set S C H as p(S) - {A £ 27: SA =
0}. Clearly p(S) is a subtractive left ideal, and if 5 is a right ideal, p(S) is a
two-sided ideal. For a, 6 in a halfring 27, we denote by p(a, b) the set
27 n p(a - b), where p(a - b) is the right annihilator of a - b in 27. We
make similar definitions for the left annihilators X(S), X(a, b). Finally, we
define a hemiring to be entire if it is free of zero-divisors.

Proposition 11. Every nonzero right simple hemiring is entire.

Proof. Let xy = 0, x ^ 0. Then x £ X(y), so that X(y) = H. Hence
v £ p(H), and since H2^0, p(H) ¥= H. Then p(H) = 0, so that y = 0.
Q.E.D.

In order to determine the nature of right simple hemirings, we need to learn
the effect of being entire. The class of entire hemirings has the attractive
property that for any semi-isomorphism a, H is entire if and only if 27o is
entire. However, the absence of subtraction means that entire hemirings do
not enjoy the benefits of multiplicative cancellation as is the case for rings.
Example 5 is an entire halfring which is not right or left cancellative. Even
worse behavior can occur, as in the following example.

Example 12. Let 27 be the set of polynomials over the nonnegative integers
N with degree at most 1. With the polynomial addition and the multiplication
given by (ax + b)(cx + d) - (a + b)(c + d), H is a commutative entire
halfring having no multiplicatively cancellative element.

Proof. It is easy to check that 27 is a commutative halfring. Since
a, b,c,d > 0, (ax + b)(cx + d) = (a + b)(c + d) = 0 implies ax + b = 0
or ex + d = 0, and 27 is entire. For fixed px + q E H, (ax + b)(px + q) =
(ex + d)(px + q) implies (a + b)(p + q) = (c + d)(p + q), and if p + q ^
0, a + b = c + d. For any choice of a, b not both 0 there exists at least one
choice of c, d with (a, b) =£ (c, d) and a + b — c + d. Hence no element of
H is cancellative.   Q.E.D.

The next example shows that the equivalence of right and left cancellation
also fails in halfrings.

Example 13. Let 27 consist of the polynomials in noncommuting indeter-
minates x and v over the nonnegative integers, with the usual addition, but
with multiplication modified by the condition that vx = v. Then 22 is a right
cancellative halfring which is not left cancellative.
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Proof. Since yx = y • 1, y is not left cancellable. To prove right
cancellation, observe that multiplication of monomials is right cancellative
and extend by a straightforward induction.   Q.E.D.

Finally, the example constructed in [9] is a division halfring, hence
cancellative, whose ring of differences is not cancellative.

Proposition 14. Let H be a half ring. Then H is cancellative if and only if H
satisfies the condition that ac + bd= ad + be imply a — A or c = d.

It is then consistent with our terminology to call a hemiring strongly
cancellative if it satisfies this condition.

The misbehavior of multiplication in entire hemirings must be global in
some sense. We borrow from semigroup theory the definition that a hemiring
H is right reductive if when ah = AA for each A G H, then a = A. If H has
even one right cancellative element, or if H is a right unital halfring, H is
right reductive.

Proposition 15. Let H be a nonzero left simple half ring. If H is right
reductive it is right cancellative.

Proof. Suppose ax = bx for 0 ^ x. Then x G p(a, b) =£ 0, and p(a, b) —
H by the left simplicity of H. But then a = A by the right reductivity.
Q.E.D.

We recall that if H is potent, xH = 0 implies x = 0. Hence we have
reductivity automatically in potent rings.

Proposition 16. Let H be a strongly potent halfring. Then H is reductive.

Proof. By hypothesis, H is potent. If a, b E H with ah = AA for every
A G H, then (a — b)x = 0 for every x E H. Hence a — A = 0 and a = b.
Left reductivity follows by a similar argument.   Q.E.D.

Corollary A. Every potent prehalfring is semi-isomorphic to a reductive
halfring.

Proof. There is a semi-isomorphism ox such that Hox is a halfring. But it is
evident that semi-isomorphisms preserve potency. Then there is a further
semi-isomorphism o2 onto a strongly potent halfring, and oxo2 is the desired
semi-isomorphism.   Q.E.D.

Corollary B. Every nonzero left simple prehalfring is semi-isomorphic to a
right cancellative halfring.

These results suggest that we might obtain cancellative representations of
entire semirings in the hemiring case as well. We say that a hemiring H has
the common right multiple property if for every nonzero a, b G H there exist
nonzero x,y E H with ax = Ay.
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346 H. E. STONE

Proposition 17. Let H be an entire hemiring with the common right multiple
property. Then H is semi-isomorphic to a right cancellative hemiring.

Proof. Define a congruence on 77 by a = b if and only if ax = Ax for
some nonzero x £ 27. Since H ¥= 0, a = a. If a = A and A = c, with ax =
Ax, by = cy, choose nonzero x', y' £ 27 with xx' = yy'. Then axx' = Axx' =
byy' = cyy', and a = c. Clearly = is symmetric and compatible with addition
and left multiplication. Let a = b with ax = Ax and suppose c =£ 0. Choose
nonzero c', x' £ 27 with cc' = xx'. Then ace' = axx' = Axx' = Ace', so that
ac = be. Hence the congruence classes form a hemiring 27', and the natural
mapping a: 27 -^ 27' is a semi-isomorphism. If aoxo = Aoxa with xo ^ 0,
then axo = Axo- and axx' = Axx' for some x' =£ 0. Then xx' =£ 0, so that
aa = bo. Hence 27a is right cancellative.   Q.E.D.

Corollary A. If H is an entire hemiring with both the right and left common
multiple properties, H is semi-isomorphic to a cancellative hemiring. Further, if
H is a halfring, the image may be chosen to be a halfring also.

Proof. By the dual result, there is a semi-isomorphism a, of 27 onto a left
cancellative hemiring. If aox, box axe, nonzero, so are a, A, and there exist
a', V EH with aa! = AA'. Then aoxa'ox = boxb'ox, and a'ox, b'ax are
nonzero. Hence 27a, has the right common multiple property, and there is a
semi-isomorphism o2 such that 27a ,a2 is right cancellative. Let ax = ay in
27a, a2, with a =£ 0. Let a' =£ 0, x', y' E Hox so that a'o2 = a, x'o2 = x,
y'o2 = y. Then a'x'z = a'y'z for some z £ 27a„ so that x'z = y'z and x = v
by left cancellation in 77a,. Hence 27a, o2 is cancellative. It is clear that these
congruences preserve additive cancellation when it is present.   Q.E.D.

5. Reciprocal hemirings. We wish to consider a substitute for the existence
of inverses which will make sense in a general hemiring. In order to avoid
technicalities analogous to left inverses with respect to right identities, we will
consider in this section only hemirings having a two-sided unital pair. A left
inversion of x £ 22 is an ordered, pair (a, b) such that (ax, Ax) is unital; x is
called a right reciprocal if it has a left inversion. If every nonzero element of
27 is a right reciprocal, we call H a right reciprocal hemiring. We extend these
definitions to dual and two-sided concepts, but caution that an element which
is both right and left reciprocal need not be two-sided reciprocal. However
this is the case if H is a halfring. Plainly 27 is a right reciprocal halfring if and
only if every nonzero element of 27 is a right unit in 27. Hence every right
reciprocal of a halfring is left cancellable.

Theorem 18. Let H be a unital hemiring. Then H is right simple if and only
if it is right reciprocal.
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Proof. Suppose H is right reciprocal, and let Kbea subtractive right ideal
of H. For 0 ¥= k E K, let (a, A) be a left inversion, so that (ak, bk) is unital.
But ak, bk E K; hence K = H.

Conversely, let H be right simple, and let 0 ¥= x E H. Since H is unital it is
nonzero, and by Proposition 11 it is entire. Then Hx is a nonzero right ideal,
and Hx must be differential in H. Thus there are a, bin H with ax + u = bx
and a', b' in H with a'x + v = b'x. Thus (a' + b)x — a'x + bx = a'x + ax
+ u and (a + b')x = ax + b'x = ax + a'x + v. It is easy to verify that for
every A G H, (u + h, v + h) is unital. Hence (a' + b,a + b') is a left
inversion of x.   Q.E.D.

Proposition 19. Every unital right cancellative right Artinian hemiring is
right reciprocal.

Proof. Let K be a minimal subtractive right ideal of H, and let 0 ¥= x E
K. Then Hx2 C K is a nonzero right ideal of H, hence differential in K. Let
a, A G H such that ax2 + x = bx2. Then for each A G H, hax2 + hx = hbx2,
and cancelling x gives hax + A = AA*. Since hax, hbx E K, H = K.   Q.E.D.

Corollary A. If H is a unital entire right Artinian hemiring with the right
common multiple property, H is semi-isomorphic to a right reciprocal hemiring.

Proposition 20. Let H be a right reciprocal hemiring. Then the hemiring
Mn(H) of n X n matrices over H is simple.

Proof. For 0 =£ h E H and 1 < p, q < n, define epq G M„(H) by epq(i,j)
- A for (/,/) = (p, q), 0 otherwise. Let K be a subtractive ideal of Mn(H),
with 0 =£ e E K. Then e(p, q) =£ 0 for some p, q. For 1 < k < n define
/* = ekPeeqk. Then fk(i,j) = 0 for (/,/) * (k, k); fk(k, k) = Ae(p, q)h * 0.
Let (ak, bk) be a left inversion of fk(k, k), and define uk, vk E Mn(H) by
uk('J) = 0 = vk(i,j) for (/,/) t* (k, k); uk(k, k) = ak, vk(k, k) = bk. Then
u = S «¿4 G A^, ü = 2 %4 G Ä" since A^ is a two-sided ideal. But clearly
(u, v) is a unital pair for Mn(H), and since AT is subtractive, K = Mn(H).
Q.E.D.

We now ask about the relationship of right reciprocal halfrings and
halffields. In the commutative case this is easy to answer.

Proposition 21. A commutative nonzero half ring is a halffield if and only if
it is strongly simple.

Corollary A. A commutative reciprocal prehalfring is semi-isomorphic to a
halffield.

Proof. Clearly a semi-isomorphism preserves the property of being a right
or left reciprocal. Hence H is semi-isomorphic to a commutative reciprocal
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halfring. There is a further semi-isomorphism onto a strongly simple halfring,
which is in this case a halffield.   Q.E.D.

It is natural to ask whether only reciprocal halfrings can be so represented.
The following example shows that this is not the case.

Example 22. Let_27 =_{(0, 0)} U {(a, b) E F X TV: a > 0, A > 0}. Then 27
is a halfring with 77 = F X TV, hence not reciprocal. But the projection of 27
onto F is a semi-isomorphism.

In the noncommutative case it is not sufficient to know that 0 is monotypic.
But in [9] it is observed that the condition of being semisubtractive is much
stronger even than having all ideals monotypic.

Proposition 23. A semisubtractive right reciprocal halfring is a division
halfring.

Proof. Let 0 ¥* x E 27, and let (a, A)_be a left inversion of x in 27. Then
(ax, Ax) is unital, and Ax — ax = 1 £ 27. By semisubtractivity, either a = A
+ c or a + c = A for some c E 27. If a = A + c, then ex = (a — b)x = — 1
£ H, and 27 is a ring, hence a division ring. If a + c = A, then ex = (A -
a)x = 1 £ 22, so that x has a left inverse in H. If H is not a ring, this case
must hold for every 0 ¥= x £ 27. Then the inverses are two-sided and 22 is a
division halfring.   Q.E.D.

A similar thing occurs if H is even subtractively embedded in a division
hemiring.

Proposition 24. Let S be a subtractive subsemiring of a division hemiring 27.
If S is right reciprocal, then S is a division hemiring.

Proof. Let 0 *£ x E S, and let (a, b) be a left inversion of x in S. Then
(ax, Ax) is unital in S, so that ax2 + x = Ax2. But x has a (two-sided) inverse
x-1 in 27, and

ax2(x-x)2+ x(x"')2= Ax2(x"')2.

Hence a + x~l = A, and since S is subtractive in 27, x~l £ S.   Q.E.D.
It is reasonable to ask when a right reciprocal hemiring is also left

reciprocal.

Proposition 25. Let H be a right reciprocal hemiring. If H is cancellative, it
is reciprocal.

Proof. Let (a, b) be a left inversion of x £ 27. Then (ax, Ax) is unital and
xax + x = xAx. For every A £ 27, Axax + Ax = AxAx, and cancelling x
gives Axa + A = AxA. Thus (xa, xA) is right unital. Now cancelling on the
other side shows (xa, xb) is unital; hence x is a reciprocal.   Q.E.D.

Corollary A. A cancellative unital right Artinian hemiring is reciprocal.
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Corollary B. A unital right Artinian hemiring with right and left common
multiple property is semi-isomorphic to a reciprocal hemiring.

Clearly for halfrings cancellativity is also necessary. However a very
important but different condition will suffice. We say that (u, v) is a primitive
right unital pair for a halfring 22 if it is a right unital pair and v — u is the
unique nonzero idempotent of (v — u)H(v — u).

Proposition 26. If H is a right reciprocal halfring with a primitive unital
pair, then H is reciprocal.

Proof. For 0 ¥= x £ 27, there is an r £ 27 with rx - 1. Since (xr)2 = xrxr
= xr, by hypothesis xr = 1.   Q.E.D.

We will call a reciprocal halfring with a primitive unital pair aparafield. We
present some examples to show the position of this concept.

Example 27._Let 27 = £(0, 0)} u {(x, v) £ F X F: x,y > I). Then 22 is a
halfring with 27 = F x F; hence 27 is a reciprocal halfring which is not a
parafield.

Example 28. Let H be the halfring of formal power series with nonnegative
rational coefficients, and let P = {p £ H: p0 > 0} u {0}. Then P is a
differential halfring of H and every nonzero element of F is a unit in P. Since
P is not a field, P is not a halffield; but P is cancellative, so that P is clearly a
parafield.

It should be noted that although the class of reciprocal halfrings includes
all division halfrings, this is no longer true of parafields. However, every
halffield is a parafield, and we now investigate conditions when this can be
reversed.

Proposition 29. Let H_be a right reciprocal haljring which is not a ring oj
finite characteristic, then H is a module over the rationals F.

PROOF._Since H is unital, 1 £ 27, and clearly 27 contains a copy of the
integers TV. Let 0 ^ x £ 27 and let n > 0. Let r E 77 be a left inverse for
nx £ 27. (Note that if nx = 0 for some n > 0, then H is equal to the ideal of
all its additively invertible elements, hence a ring of finite characteristic.)
Since n is central, rx is a_ two-sided inverse for n, and thus is uniquely
determined^Then clearly 27 contains a copy of the rationals F. Since F is a
subring of 27, H is an F-module.   Q.E.D.

Let the dimension of H as a vector space over F be called the rank of 27.

Corollary A. Let H be a right reciprocal haljring oj finite rank. Ij H is
strongly cancellative, it is a haljfield.

Proof. Since H is cancellative, 27 is a parafield. But since H has finite
dimension over F, it is a field.   Q.E.D.
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6. Matrices over parafields. We now show that the class of right reciprocal
halfrings is the correct class for our purposes.

Theorem 30. Let H be a halfring, and let M be a potent subtractive right
ideal of H with a right unital pair (r, s). Then M is a minimal subtractive right
ideal of H if and only if (s — r)M (s — r) C M C H is a right reciprocal
halfring.

Proof. Let s - r = e E M. Then e_is a right jdentity of M and eMe is a
subsemiring of M with (eMe)~ = eMe. Since He EM = Me, eMe = eHe.
Clearly e is a two-sided identity for eMe.

If M is minimal and O^cG eMe, then c = erne for some m E M. Since
0 =7* em E Mm, Me = Même = Mm =^0. Now_A//n is_a right ideal of H,
hence differential in M. Thus Mm = M, and eMe = eMeme = (eMe)c. Then
c is a right unit in eMe, and hence eMe is right reciprocal.

Conversely, let eMe be a right reciprocal half ring, and suppose M'Q Misa
nonzero subtractive right ideal of H. If eM' = 0, then M'M' C MM' =
MeM' = 0. Since M' is also a right ideal of M, this contradicts the potency of
M; hence 0 ^ em' for some m' E M'. Now em' — em'e has a left inverse
a E eMe, whence e = aem'e E Hm'e Q M'. Hence M' = M, and M is
indeed minimal.   Q.E.D.

Unfortunately, right reciprocal halfrings do not seem to have sufficient
strength to force the matrix representation result we are seeking. It is for this
reason that we have introduced parafields.

Proposition 31. Let H be a half ring. For i = 1, 2 let H¡ be a minimal
subtractive right ideal of H with primitive right unital pair (u¡, v¡), and Jet
e¡ = v¡ —,. If HXH2 =£ 0, there exist elements SX2 E exHe2 and S2X E e2Hex
with Sx2S2l = ex and S2XSX2 = e2.

Proof. Since H2 is differential in Hx, H\H2 ¥> 0. Let h, E H¡ with Hxhxh2
¥=0. Since //A,A2 C H2 is a right ideal of H, H2 = (//A.Aj)- = Hhxh2, and
e2Hhxh2 = e2H = (e2He2)~. Then there exists r E H with 0 ^ e2rhxh2 E
e2He2, and hence there exists r' G e2He2 with rXe-fhfaej) = e2. Let SX2 —
exhje2, S2X = r'rhx G e2Hex. Then S2XSX2 = r'rhxexh2e2 = e2- Now SßS^ E
e,./7t?„ and S^Sj! ^ 0- Since

(^12^21) = 5"l2 (^21^12 )^21 = ^12^2^21 = ^12^21

and f] is the only idempotent of exHex, SX2S2X = *?,.   Q.E.D.
We now show that the nonannihilating condition of Proposition 31 occurs

with great frequency.

Proposition 32. Let H be a hemiring. Then the condition HXH2 =£ 0 defines
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an equivalence relation on the class of all nonzero minimal subtractive right
ideals of H.

Proof. Clearly 27,2 ¥= 0. If 27,272 * 0, then (27,272)2 = 22,(27227,)722 * 0,
so that 27227, ¥* 0. Now suppose HxH2¥=0 and 772773 =£ 0. Then 272 g
X(H3), and by minimality, 272 n X(273) = 0. Since 27,222 ç 272, 77,772 n X(H3)
= 0. Thus there are h, E H¡ with A,A2A3 ¥= 0; hence Hx g X(H3).   Q.E.D.

Corollary A. Let H be the sum of nonzero minimal subtractive right ideals.
If the sum of equivalent minimal subtractive right ideals is subtractive, it is a
minimal subtractive two-sided ideal, and H is the sum of these.

Proof. By using the (nonunique) representation of elements as a sum, it is
quickly seen that the sum of equivalent minimal right ideals is a two-sided
ideal, and that 27 is the sum of these. Let M = 2 27, be such a two-sided
ideal, and let 7 c Af be a subtractive two-sided ideal of 27. Then 7 n 22, = 0
for at least one of the 27,'s 27,. Then for 2 A, £ 7, with A, £ 27,, we have
(2 A,)27, = 2 A,27, = 0. If 27, is not a ring, A,22, = 0 for each /, whence
2 = 0. If Hx is a ring, so also are all the 27„ and again 7 = 0. Hence Af is
minimal.   Q.E.D.

Proposition 33. Let H be a hemiring which is a strong direct sum of right
ideals 27,, .. ., 27„. Then if (u, v) is any right unital pair for 27, there exist right
unital pairs (u¡, v¡) in 27, such that u — 2 u¡, v = 2 v¡. FaeA 27, is subtractive,
and 22,. = {A £ 22: A«, + A = hv¡). For i ¥= j, huj = hvjjor all A £ 27,-.

Proof. It is clear that there exist «,, t>, £ 77, with u = u = 2 «,-, v = 2 v¡.
For A £ H, hu + A = hv, and 2 ho, - A2 q, - hv = A + hu = A + A2 u¡ =
A + 2 Aw,. If A £ 77,-, / ¥= i, it follows from the uniqueness of the repre-
sentation that A«,- = Aü„ while huj + A = Au, and (up vj) is a right unital pair
for 27;. It is clear that each 77, is subtractive, and that 77, = (A £ 77:
Ah,- + A = hv,).   Q.E.D.

We are now ready to obtain our matrix representation theorem.

Theorem 34. Let H be a simple haljring which is the strong direct sum oj
minimal subtractive right ideals 27,, . . ., H„ with primitive right unital pairs
(u¡, v¡). Let P be the parafield (vx -_ux)Hx(vx - «,) Q 27,. Then H is
isomorphic to a differential subring ojMn(P).

Proof. Since 27 is simple, 22,72; ̂ 0 for all /,/ by Proposition 32A, and
there exist Sy E e¡Hej, SJ, E ejHe¡ such that SySJ¡ = e¡, SJ,Sy = eJt where
e¡ = v, - u¡. Let" 4 = SiX, d¡ = S'Xi, so that d¡d¡ = e¡, d¡d¡ = ex. For A £_27,
define A<p £ M„(P) by [h<b](i,j) = d¡hdj = S'XihSjX E exHeihejHex ç exPex.
Clearly d> preserves addition. If A, A: £ 27, then
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[(hk)<b](i,j) = d¡(hk)dj = dlhekdj

= d,'h(2 em)kdj = 2 (d¡hemkdj) = 2 {d¡hdmd'mkdj)
\ m        I m m

= 2 [**](/, m)[k<p](m,j) =[(h<p)(k<p)](i,j).
m

Hence <b is a homomorphism.
If A<i> = £<f>, then 4'A^. = d',kdj for ail /,/. Henee efa = d¡(d;hdj)dj =

di(d¡kdj)dj = e,Jfcty so that

A = eAe = I 2 */)«( 2 ^} = 2 ^^ = 2 £,&<?, = k-

Hence </> is one-to-ona
Now <í>: i/-» A/„(P)_extends to ^: #-» M„(P), and //> is differential in

Mn(P) if and only if <j> is onto. By Proposition 4, it suffices to show that
M„(P) QÏÏp. Le£ p G M„(P), so that p(i,j) E P for all /,/. Let x =
2tf 4p(/,/)4' G #• Then

[**](/,*) = <x*£ = <Í2<tP('J)4')<4

= 2d;dj>(i,j)djds = rf/aLpir, 5)i/X
(/

= e,p(r,j)e, =p(r,j).

Hence x£ = p, and //<£> is differential in Mn(P).   Q.E.D.
We have paid a price for this generality. In the strongly Artinian case, we

could say that our matrix representation was differential in the full matrix
ring over a field; i.e., a right and left simple ring. Then the matrix ring itself
was simple. Here we do not expect Mn(P) to be simple. Hence instead of
knowing that H is differential in a simple matrix ring, we only know that H is
differential in a matrix ring which is the ring of differences of an even nicer
matrix halfring.

Define halfrings Hx and H2 to be isodiffric if Hx is isomorphic to H2.
Clearly this is an equivalence relation on the class of halfrings which is
coarser than isomorphism. With this terminology, we may summarize our
conclusion as follows: H is isodiffric to the full half ring of matrices over a
parafield.
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