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ABSTRACT
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1.  Introduction

The QR algorithm

&1 - UkI =: Q&k (QR decomposition)
Ak := R&k + UkI (1)

is the standard algorithm for computing the spectral decomposition of a symmet-
ric matrix A =  A0 [6, $88-141,  [7, $41,  [2, $2.3.31.  T h e  a l g o r i t h m  c o m p u t e s  a
sequence {Ak}& of symmetric matrices similar to A converging to a diagonal ma-
trix. Appropriately chosen shifts ok increase the rate of convergence from linear to
cubic [S].

As a QR iteration step costs O(n3)  floating point operations if it is applied to
a dense matrix of order n, the algorithm is practically used only after the original

l We dedicate this paper to Velvel KalUUl and Beresford
understanding of the fundamentals of matrix computations.

Parlett who have led the way in our
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matrix A has been transformed to a similar matrix of simpler form, i.e. with much
fewer nonzero  elements.

It is well-known that the symmetric QR algorithm (1) preserves the banded
structure. It is therefore most often applied to tridiagonal matrices, which reduces
the complexity of one QR step to 0(n2)  or even O(n)  if only the eigenvalues of A
are wanted.

Until now it has remained an open question as to which matrix structures are
preserved using the QR method described by (1). Recently, Arbenz and Golub [3]
have shown that the QR algorithm does not preserve arrow matrices, i.e. matrices
whose elements vanish except those on the diagonal and in the first row and column.

In this note we answer the general question which zero structures ure preserved
by the symmetric QR algorithm (1).

2. Statement of results

In order to state our results we make two definitions.
A matrix A is said to be reducible, if there exists a permutation matrix P such

that

PAPT=( “d 2’).

Otherwise, it is called irreducible. If A is symmetric, Al2 is zero, of course.
A staircase ma1riz is a matrix for which mj(A) 2 mj-l(.4), J’ > 1, where

mj tA) := m={i F${ilaij # 0))

is the index of the last nonzero  element of the j-th column of A. Two staircase

x x x x
x x x x x x X

Al = x x x x A2 = X X

x x x x 1 l I

X x x
x x x x x x

PIG. 1. Examples of staircase matrices with ml = 2,ms = 4,mg = ma = rns = 5.

matrices with the same parameters mj are depicted in Figure 1. (As usual, blank
areas denote zero elements.) To emphasize that there are no zero elements within
the stair, we denote the matrix A1 on the left hand side to be fi/Z staircase.

The following Theorem identifies the matrix patterns preserved under the sym-
metric QR algorithm.

Theorem 1. Let A be a symmetric  matrix.
1. If A is reducible through the permutation matrix P then all QR iterates

A(‘) are reducible by means of the same P.
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2. If A is irreducible then the zero pattern of A is preserved by the QR algo-
rithm if and only if A is a full staircase matrix.
There is fill-in in all other situations: After a number of iterations the QR
iterates will be full staircase matrices, the staircase being the smallest that
contains the nonzero  structure of A.

This
preserved

means that to check whether a
, one first has to permute A into

certain zero pattern of a matrix A is
a direct sum of irreducible submatrices

and then check whether these are full staircase. The determination of irreducible
submatrices of a given matrix or, equivalently, of a connected subgraph  of a graph
is a well-known problem in computer science and is solved by standard algorithms
(see e.g. [l, $71).

Notice that we consider only structures of matrices, here. There are, of course,
instances of initial matrices A = Ato) that lead (by numerical cancellation) to
iterates Ack) that have zeros within the stair (cf. [5,  p. 271).

If A is nonsymmetric, statement 1 in Theorem 1 does not hold. This is imme-
diately seen when applying one QR iteration step to a matrix of the form

x x x x

A = A(O)  = X X

( 1
x x x x  *

X X

In this example, the elements a$‘!,  ayi, and CZ?~ of A(‘) are non-zero. The staircase
form is however a sufficient condition for shape preservation for nonsymmetric ma-
trices. Notice that this means that the upper triangle of a nonsymmetric matrix fills
up. This is even true if A0 is a nonsymmetric tridiagonal matrix which is similar
to a symmetric tridiagonal matrix.

An interesting matrix structure which is preserved by the QR algorithm because
of part one of the Theorem is a bandmatrix of band width 6,
elements vanish except those on the extremal b-th (cf. Fig. 2).

X

X

X

X

whose off-diagonal

X

X

X

FK. 2. &ample of an almost empty bandmatriz (n = 5, b = 2).

3. Proof of Theorem 1

We first show that reducibility is preserved by the symmetric QR algorithm.
Lemma 2. Let A be reducible. Then there is a permutation matrix P such

that PAPT = Al $ A2 and

PA’P= = A; $ A;,
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where A’, A’, , A;, respectively, are obtained from A, Al, AZ, by one QR step with
the same shift.

Proof. Without loss of generality we can set the shift to zero.
Let a be a permutation of the set { 1, . . . , n} c IN. Then we define the permu-

tation matrix P, by P,e,(k) = ek. If P, acts on a vector, the element with index
x(k) is moved to position k. We now choose r such that

P,AP,T = Al $ Aa, Al E lRkxk, A2 E &-‘)X(“-k) 9

and

a(1) < **a < jr(k), 7r(k  + 1) < *.*  < x(n),

i.e. within Al and A2, rows and columns appear in their original order.
Let Aj = &j Rj be a QR factorization of Aj , j = 1,2. Then

A = P,T(Al CEI A2)P,  = P:(Ql a3 Q2)PrP:(R1@ R2)P,T.

R := PT( RI $ R2) PT is upper triangular. In fact, let j > i. Then

Tji  = eTP,(Rl $ R2)PTei = eT-l(j)(Rl 63 R2)e+(+

n-‘(k) is that index, which becomes k after application of PT. If r-‘(j)  > r-‘(i),
rji evidently vanishes. If r-‘(j)  < x -l(i), then PT changes the order of row i
and j. Therefore, r-‘(j)  5 k < r-‘(i),  and rji = 0 as it originates from the the
upper-right zero part of RI $ R2. Let Q := PT(Q1 @Q2)Pf. Then A = QR is a QR
factorization of A. A’ = &=A& is obtained by one QR step applied to A. Then

P%A’P,T = p,Q=AQPF = (p,Q=P:)(P,rAP:)(PxQP:)
= (QT @ Q$-)(A1 @ &)(Ql CB Q2) = A; @ A;,

which is the claimed result. 0

By recursion, Lemma 2 applies to the case where

P

PAP= = a3 Aj, Aj irreducible,
j=l

for arbitrary p. Thus, part 1 of Theorem 1 is proved. The Lemma does not hold for
nonsymmetric matrices as we noted at the end of $2.

Next we prove the evident
Lemma 3. Let 1 5 i < j 5 IZ. Then

Proof. As Qe, E span{Aer  , . . . , Ae,} we have

Qrrl = 0, L 2 j, 77  5 i.
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But
n

a:, = c rbkqkq  = 0,
k=l

= r,k = 0 for k < L and qkrl = 0 for k 2 7. 0
This Lemma shows that the staircase shape is preserved by the QR algorithm.

We did not-  make use of the symmetry of A whence Lemma 3 also holds for non-
symmetric matrices.

We now show that the QR iterates & become full staircase after a certain
number of iteration steps. This statement holds even if we restrict ourselves to the
QR algorithm without shift applied to positive definite matrices.

It is well-known that one QR iteration step applied to positive definite matrices
is equivalent to two Cholesky-LR iteration steps [7, p.3211.  Therefore, we can
make use of the known results concerning the fill-in when computing the Cholesky
decomposition of large sparse matrices [5].

To that end, let GA := (XA,  EA) be the adjacency graph of the matrix A E
nXnIR with node set XA := (1,. . . , n} and edge set EA := {{i, j} C XA 1 ai,j #

0, i > j}. In an analogous way we define the adjacency graph GL := (XL, EL) of
the Cholesky factor L of A = LLT.

From symbolic factorization of large sparse positive definite matrices the fol-
lowing rule is well-known [5, p. 981

RULE 1. {i, j) E EL e There is a path (i, ICI, . . . , kt, j) in EA with
1 5 kl < min{i, j}, 1 5 15 t.

Notice that t may be zero, i.e. that {i, j} E EA already. So, GL I> GA.
On the other hand it is immediately clear from A’ = LTL that

RULE 2. {i, j} E EA’ a {i, j} E EL or there is a k > max{i,  j} with
{k,i} E EL and {k, j} E EL.

In Figure 3 examples are given of matrices which are filled in a single QR iter-
ation step. Left pointing arrow matrices are filled because of rule 1, right pointing
arrow matrices because of rule 2 [4].

Al = 1 A2 =
X

X

X

X

X

1;~.  3. Left pointing (Al) and right pointing (AZ)  arrow matrices.

From the two rules above we see that EA(*) > EACk-‘), k > 0. We now want to
determine at what positions fill-in (if any) occurs in the course of the QR iteration.
As we are not interested in the iteration step at which a particular fill-in actually
happens we do not care about the real sequence with which rules 1 and 2 are applied
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in the algorithm. In contrast to what happens in the real algorithm, we apply the
rules only once per iteration. So, in our analysis, we are lagging behind the real
zero structure. However, as we will end up with a nonzero  pattern, the full staircase
form, which cannot by means of Lemma 3 be exceeded by the real algorithm, the
final nonzero pattern will coincide with the desired one.

Proof of Theorem 1. First, we show that all zero elements ai(cl,  i < ml, fill
(0)in for some Ic. So, let ai,1 = 0, 1 < i < ml. As A is irreducible, there is a path

(k = X0,.  .-. ,xt = i) in EA from k to i. This path may or may not go through
1. By repeated application of rule 1 when “j-1 > xj < xj+l  and rule 2 when

Xj-1  <  Xj  >  Xj+l,respectively, we get a path (k = XL, . . . , xi, = i) in EAcL’) for
some k’ with xb > xi > . s . > xi,. Rule 2 can now be applied t’ times to yield

{i, 1) E EAthi+“‘.
Remark. If i > k, an analogous procedure leads to a path (k = xi, . . . ,

Xi:, = i) in EA(“‘) for some k” with x{ < x7 < .. . < xi:,. Neither of the two rules
are now applicable. Therefore, ml (A(“)) = ml (A(‘)) k > 0, which is in accordance
with Lemma 3.

We have shown that (i, 1) E EA(*) for some k for 1 < i 5 ml. Rule 1 implies that
{i, j} E EA(‘+‘) for 1 5 i < j 5 ml. That means that all elements of the principal
ml x ml block of Atk+‘) are nonzero.  As there is fill-in, certain mj(AcL+‘)), j > 1,
may be larger than rnj (A(‘)). Rules 1 and 2 (and Lemma 3) however imply that

mj (A(‘+‘)) 5 l~~,. rni (A(‘)).
- -

Therefore, by restricting ourselves to the section graph of GAcL+‘)  corresponding to
the node subset (2, . . . , n} we show that there is a m such that Ui 2(m) # 0,2 5 i 5 m2.I
Note that this section graph is connected.

Proceeding in this way with the node sets {i, . . . , n}, i = 3,. . . , n, we get the
desired result. 0
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