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MATRIX TRANSFORMATIONS IN THE SETS x(N,N,)

WHERE x IS OF THE FORM s, OR s;, OR s.”.

BRUNO DE MALAFOSSE AND EBERHARD MALKOWSKY

ABSTRACT. In this paper we deal with matrix transformations
mapping in either of the sets 54(Ny), so(Ny) or sgf)(ﬁq). Then
we study some properties of the sets s,(N,N,) and s.(N,N,)
and give a characterization of matrix transformations in these

spaces. These results generalize those given in [11, 14, 16].

1. NOTATIONS AND PRELIMINARY RESULTS.

For a given infinite matrix A = (anm)%‘jmzl we define the operators A,
for any integer n > 1, by

(1.1) Ap(X) = Z AnmTm
m=1

where X = (z,,)52,, the series being assumed convergent. So we are led to

the study of the infinite linear system
(1.2) Ap(X)=b, n=12, ..

where B = (b,,)22 is a one-column matrix and X the unknown, see [5, 6,
7, 8,9, 11]. The ssytem (1.2) can be written in the form AX = B, where

AX = (An(X))52 ;. In this paper we shall also consider A as an operator

n=1-
from a sequence space into another sequence space.
A Banach space E of complex sequences with the norm ||| g is a BK space
if each projection P, : X — P, X = x,, is continuous. A BK space F is said
to have AK if every sequence X = (z,)52; € E has a unique representation
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X = Y02 zpe, where e, is the sequence with 1 in the n-th position and 0
otherwise.

We write s for the set of all complex sequences, ¢, ¢, ¢y for the sets
of bounded, convergent and null sequences, respectively. By cs and £, we
denote the sets of convergent and absolutely convergent series respectively.
We use the set

Ut = {(un)2, € 5:u, >0 forall n}.

Using Wilansky’s notations [16], given any sequence o = (a,,)%2; € UT and
any subset E of s,we define the sets

(1/a) "+ B = {(mn);ol €s: (m—")oo e E}

Qn / p=1
Writing o * E = (1/a)~! x E, we put

Sa it E ="V,
ax F = 8; ifE:C(),
st(f) if £ =c;

we have for instance
(1.3) axcog=s,={(xn), €5:2p=o0(ay) (n— o0)}.

Each of the spaces a * E, where E € {{,co,c}, is a BK space normed by

14 Xlsq = )
(14) X[, = sup (5

and s_ has AK, see [11].

Now let o = ()02, and 8 = (5,)22, € UT. By S, we denote the set
of infinite matrices A = (anm)nm=1 such that sup,>; (32751 [anm|F*) < oo;
Sa,p is a Banach space normed by [[Al|s, ;, = sup,>1 (3 5=y [anm|%2). Let
E and F be any subsets of s. When A maps FE into F' we write A € (E, F),
see [4]. So A € (E,F) if and only if the series y, = > 0°_{ apmTy, converge
foralln and all X € F and AX = (y,)2; € F for all X € E. It was proved
in [14] that A € (sq,5p) if and only if A € S, 3. So we have (sq, 53) = Sa. 3.

When s, = s3 we obtain the Banach algebra with identity S,z = Sa,
(see [6, 7, 8, 10, 11]) normed by ||Al|s, = [|A]|s...-

If o = (r™)22 for r > 0, then Sy, sq, 5., and s are denoted by Sy, s, s,
and s,(»c), respectively (see [5, 10]). When 7 = 1, we obtain s; = £s, 57 = o
and sgc) = ¢, and putting e = (1,1, ...) we have S; = S..

For any subset E of s, we put A(E) ={Y : Y = AX for some X € E}.
If F'is a subset of s, then Fy = {X € s:Y = AX € F} denotes the matriz
domain of A in X.
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2. THE OPERATOR A MAPPING IN THE SETS S, s;, OR s((f)

Now recall that the operator of first difference [5], [7]-[12] is defined by
A = (Unm)nm>1, with v, =1 forall n > 1, v, ,1 = —1 for all n > 2 and
Vnm = 0 otherwise. An infinite matrix 7" = (,)50n—1 is said to be a triangle
if tm = 0 for m > n and t,, # 0 for all n. If £ is the set of all triangles, it
can easily be seen that £ is a group with respect to matrix multiplication.

The infinite matrix X = (v, )55,=1 defined by v, =1 for all m < n and

v! = 0 otherwise is the inverse of A in £, and we may write ¥ = A~

see [3]. For any given sequence § = (£,)p2, we put DE = (§n0nm)pom=1
where dpm = 0 if m # n and 0py, = 1 for m = n. If U is the set of all
sequences X = (x,,)°2; such that z, # 0 for all n, we define the triangle
C\) = D%E = (Cam)mom=1 for A = (A\n)p2; € U. We have cup = 1/A,, for
m < n and ¢y = 0 otherwise. Writing C(AM)A = (32721 Ak)/ )02y, we
define the sets

Ci={acUt:Cla)acly}, C={acUt:Cla)acc}

I'= {a€U+: lim <an1) < 1}.
n— oo oy,

Recall that o € T' if and only if there is an integer ¢ > 1 such that v4(a) =
SUp,,>4+1(an—1/an) <1 (see [7]). The following result was given in [10].

and

Lemma 2.1. We have
i) sa(A) = sq if and only if a € Ch;
ii) s, (A) = s, if and only if a € Ch;
i11) sgf)(A) = s if and only if o € C;
iw) Ay, = D1 AD,, is bijective from c into itself with lim X = A,—1lim X,
if and only ;f p—1/, — 0.

f:{a€U+: lim (an_l) <1}.
n—00 Qi

In the next proof we shall use the set B (s((f )) of all bounded linear operators

(c) (©)

mapping sy’ into itself. Recall that since sy’ is a Banach space with the

Let us put

norm || - ||s,, the set B(s&c)) of all linear operators A € (s&c), 5((;)) normed by
[AXs )
A 0y = Su (7‘*
s =328 VT,

is the Banach algebra of all bounded linear operators that map sgf) into

itself, see [2].
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Proposition 2.2. We have C=T'crlc 6\'1

Proof. The inclusions C C I and T C C; were shown [10] and [7], respec-
tively. It remains to prove that I ¢ C. Assume that a € T. Putting
DiAD, = (&um)sP we get &p =1 for all n, &, 1 = —ap_1/0ay, for all

n > 2, and &y, = 0 otherwise. Then from the characterization of (c,c) (cf.
[14, 14 Theorem 1.36 p. 160]), the condition D1 AD, € (c,c) is equivalent

n,m=1>

to (am—1/0m)n>2 € c. Let us show that A is invertible in B(S&C)). Consider
the matrix

a0 o
»k) = 1 for any given integer k > 1,

where A) is the finite matrix whose entries are those of the k first rows
and columns of A. We get T(WA = (anm)%?m:p with a,, = 1 for all n;
apn—1 = —1 for all n > k + 1; and ap,;, = 0 otherwise. We deduce that

(o)

= sup .

« E>k+1 Qg

So limy, oo (an_1/0n) = lim, oo(an_1/a,) < 1 and ||[I — E(k)AHB(Sa) <1
and we that ©(®)A is invertible in the Banach algebra B(s&c)) and A =

() =1x®) is bijective from s into itself. Thus we have o € C by Lemma
2.1 (ii) and we have shown that I' C C. O

f-0al,,,, - -

B(sa)

3. SETS OF GENERALIZED WEIGHTED MEANS AND MATRIX
TRANSFORMATIONS.

In this section we recall some results given in [15] and apply them to
characterize matrix transformations in either of the sets (N, q)q, (N, q) or

(N, q)g). Then we give some properties of the identity (N, q)a, (N,q)s) =
Sa/ﬂ/.

3.1. Matrix transformations in the sets of weighted means. Let u,
v €U and E C s. Then we define

-1 -1
W(u,v; E) =v *(u *E)E’
the set of generalized weighted means. Consider now the following conditions:

= 1 Gpm Gn,m+1
3.1 sup — (— — ’7>’ < 00;
( ) <Z Um, Um, Um+1

n m=1
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(3.2) lim ( Qnm ) = 0 for all n;
M—00 \ Uy Um
. Anm
(3.3) lim < ) =1, for all n;
M—00 \ U Um
(3.4) sup |l,| < oo;
n
(3.5) sup ( G D < oo for each n;
m UmUm,
1
(3.6) lim (— <aL - M)) = 0 for each m;
N0 \Um \ Um Um+1
1
(3.7) lim (— <an_ - M)) =1} for each m;
n—o0 N\ Um Um Um+1

(3.9) nango<§:%—m<i— ! )):L.

m=1 Um Um, Um—1
We have from [15, Theorem 3.3 p. 651]

Lemma 3.1. We have
(i) A€ (W(u,v;ls), o) if and only if (3.1) and (3.2) hold;
(ii) A € (W(u,v;c),ls) if and only if (3.1), (3.3) and (3.4) hold;
(iii) A € (W(u,v;co),loo) if and only if (3.1) and (3.5) hold;
(iv) A € (W(u,v;cp),co) if and only if (3.1), (3.5) and (3.6) hold;
(v) A€ (W(u,v;cp),c) if and only if (3.1), (3.5) and (3.7) hold;
(vi) A € (W (u,v;c),co) if and only if (3.1), (3.3), (3.4), (3.6) and (3.8)
hold:
(vit) A € (W (u,v;c),c) if and only if (3.1), (3.3), (3.4), (3.7) and (3.9)
hold.

Then if v = ¢ = (gu)72; € U' and u = 1/Q with Qn = 7 _1 qm
(n =1,2,...), we get W(1/Q,q;¢) = (N,q)00s W(1/Q,q;¢0) = (N,q)o
and W(1/Q,q;¢) = (N,q). These sets are called sets o weighted means
that are bounded, convergent to zero or convergent. We shall consider ma-

trix transformations in the sets (N, q)a = 54(Ny), or (N, q),, = s.,(N,), or
(V.0 = s (Wy). see [9].
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We put
Ynm = (anm - an’m+1) A and
dm Am+1 ﬁn
erLm = (aQO - O‘mlemfl) for all n,m
mﬂn

and consider the following conditions

(3.10) sup (i |'7nm|> < oo

n

m=1
(3.11) Jim gy = 0 for all m;
(3.12) 111Ln010 Yo = lm for all m;
o0
(3.13) lim mz_:l Y = 03
o0
(3.14) Jim mz;l Yo = L.

We deduce the following

Proposition 3.2. We have (i) A € (N, q)a,s3) if and only if (3.10) holds
and
aQO

m

lim <anm

m—0o0

) =0 for alln;

(ii) A € (N, q)((;),éﬁ) if and only if (3.10) holds,
(3.15)

amQm

GmBn
(iii) A € (N, q)a,55) if and only if (3.10) holds and

lim (anm ) =1, for allm and sup (|l,)]) < oo;

(3.16) sup (]anm\ ) < oo for all n;

(iv) A € ((N, q)a,sﬁ) if and only if (3.10), (3.11) and (3.16) hold;
(v) A€ ((N, )a,sﬁ ) if and only if (3.10), (3.12) and (3.16) hold;
(vi) A € ((N, q)a ,sﬁ) if and only if (3.10), (3.11), (3.18) and (3.15) hold;
(vii) A € ((N, )a ,sﬁ ) if and only if (3.10), (3.12), (3.14) and (3.15) hold.
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Proof. Put u =1/a@Q and v = ¢ € U". Since A™' =¥ € £, we get
W (u,viboo) = W(1/0Q, ¢ loc) = (N, @)a = D1 ADagloo,
W(1/aQ,q;co) = (N,q),, and W(1/aQ,q;c) = (N, q)((f). Now the conclu-
sion follows from Lemma 3.1 and the fact that, for any set of sequences F,

the condition A € (E, F) for ' = sg, s; or s is equivalent to D%A € (E,Q)

where G is any of sets £, ¢g or ¢ respectively. O

We shall use the following known result given by Malkowsky (cf. [13,
Theorem 1].

Lemma 3.3. Let T € £. Then, for arbitrary subsets E and F of s, A €
(E, Fr) if and only if TA € (E, F).

Consider now the following conditions.

(3.17)
m m I
no\,;=1 P.Bn =1 dm dm+1
(3.18)
1 n
nlirglo lp Dk (ak—m — M) aQOl =0 forallm=1,2,..;
- nﬂn k=1 dm dm+1
(3.19)
lim A z": Phlllem ) | _ ¢ foralln=1,2,..;
m—o00 Qm = Pn n P
(3.20) sup |¢] < oo
n
(3.21)
sup O i Pk <oo foralln=12,..
m | Bndm =1 P,
(3.22)

lim 1 io: l(aQO - Oéleml) zn:pkakm] —0:
k=1

n—oo Py 3, m—1 dm
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(3.23)

lim 1 i aQO - Omelcgmfl i a I
00 P, k:1pk Em| = L -

m=1 qm

Proposition 3.4. We have
(i) A€ ((N,q)as (N,p)g) if and only if (3.17) holds and

Tgiinoo laQO <Z pk;:mﬂ =0 foralln=1,2,..;

Im  \r2

1 = Qkm Ok,m+1
lim P (——’7)04 Qm| =1 orallm=1,2,..;
lpnﬂn Z ¥ dm dm+1 e " f

(vi) A€ (N, @)%, (N,p)3) if and only if (3.17), (3.18), (3.19) and (3.22)

(vii) A € (N, )%, (N.p)$) if and only if (3.17), (3.23), (3.24) and (3.19)

Proof. These results are a direct consequence of Proposition 3.2 and Lemma
3.3. Indeed, for (i) we have A € ((V,q)a, (IV,p)g) if and only if N,A €
((W7 ¢)a,53), where

n Prat 0o
N A— 2 Pkkm )
k=1 n,m=1

Then it is enough to replace the entries of A by those of N, A in Proposition
3.2 (i). The remaining parts can be shown in the same way. (]

3.2. Properties of matrix transformations between sets of weighted
means. First we need some additional results on the set S, 3. Recall that,
for any subsets E and F of s, ExF' is the set of all products XY = (z,yn)021,
where X = (z,,)22, € F and Y = (y,,)52, € F. We can state the following
results.

Theorem 3.5. Let o, 3,a’,3' € UT. Then
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(1) o, = O(By) (n — 00) if and only if sq C sp;
(1t) o, = O(By) and B, = O(a,) (n — o00) if and only if sq = sg;
(111) sq = sg if and only if there exist K1 and Ko > 0 such that Koy, <
On < Kooy, for all n;
(iv)  (a) sq = sg if and only if s, = s;;
(b) an/ﬂn — l £ 0 if and only zfsg = sg:),
(c) s = sﬁ implies s = sg and s, sﬁ,
(v) the identity So g = Sar gr is equivalent to So = Sqr and sz = sgr.
(vi)  (a) The identity (s,,s3) = (s./,551) is equivalent to
Sq = Sq/ and sg = sg,
the identity (sa’,85) = (8.7,537) s equivalent to
b) the id © 55 ) s I
Sq = 8o/ and sg = sg.
(vii) 508 = Sa * 53, SZ{B =5, * 5; and sg?g = 549 « sg).
Proof. (i) Assume that a,, = O(8,) (n — 00). If X = (2,)52, € 54, then

we have
xn xn an

and X € sg, hence s, C sg. Conversely, a € s, C sg implies o, /3, = O(1)
and a,, = O(f,) (n — o).

(ii) is obvious.

(iii) The conditions s, C sz and sg C s, are equivalent to a,, = O(fy)
and 5, = O(ay,) (n — oo) ThlS shows (iii).

(iv) (a) The identity s, = sﬁ is equivalent to I € (s,, s;) and I € (s;, 50)-
This means D3, Dg/q € (co,cp). From the characterization of the class
(co, o), we conclude a, /3, = O(1) and B,/an, = O(1) (n — o0), that is
Sa = S3.

(b) Similarly the identity sgf) = s(ﬁc) is equivalent to Dy /g, Dg/q € (c,¢). So
(c) _ SE;)

S is equivalent to the following conditions: /8, — I, B, /can — 1,
Oén/ﬁn = O(l) and ﬁn/an = O(l) (n - OO)

(v) The sufficiency being obvious, we study the necessity.
Suppose that S, 3 = S’ /. First, we prove that S, 3 = S,/ g. For this,
denote by ¢; = (Cnm)%?mzl the infinite matrix defined by ¢,1 = [3,,/aq for all
n > 1 and ¢y, = 0 otherwise. We immediatly see that ¢; € S, g and since
Sa,p = Sarpr, we get 1 € Sy . So éia’ = ((Bn/on) )52, € sgr, that is

ﬁn = ﬁrlbO(l) (n - OO)’

and we conclude from (i) that sz C sg/. By a similar argument, taking

=0(1) (n — o0)

ol = (Chm)mom=1 With ¢,y = B, /af for all n > 1 and ¢,,, = 0 otherwise,

we get c~1’a = ((B)/af) 1)L, € sg and sgr C sg. Thus we have shown
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sg = sgr, SO0 Sq.3 = Sqr g implies S, 3 = S, 3. It remains to show that
the equality S, 3 = S’ implies s, = s,+. For this, we consider the matrix
Dg € S, p. Since Sy 3 = So/,g, we deduce that

(3.25) D§8a128§a, C sp

and o, /a, = O(1) (n — o0). So we have s, C S,/ by (i). Similarly, since
D € Sa/ﬂ = Saﬂ, we get

(3.26) D%SQZS§QC85.

/

So we have o, = O(a;,

proved.

(vi) (a) Since (co, £oo) = S1, we easily deduce (s, s5) = Sa.5 and (s, 85/
= Sar5/- Then, by (v), the condition (s, sg) = (s.,,s5/) implies 84 = 54/
and sg = sg/.
Part (b) can be obtained by a similar argument using the fact that (¢, ) =
Si.

(vil) Let Z = (2,)52, € Sq * s3. There are X = (z,)52, € so and
Y = (yn)p2y € sp such that Z = XY € s, * sg.Then z, = zpy, =

0(1)3,0(1) = a3,0(1) (n — o0) and Z € sq3. So we have shown
Sq* 53 C 8qg. Conversely if Z € s,g, there is a sequence h = (hy, )52 € lo,
such that z, = «,83,h, and since o € s, and Sh € sg, we conclude
Z € 54 * 5. So we have shown s, C 5, * sg. We conclude s, * 55 = s43.
Let us show S;B = s;*sg. IfZ = ()52, € s;*sg then z, = a,o(1)Br0(1) =

) and s, C So. Now we conclude s, = s, and (v) is

anfno(l) (n — o0) and Z = (2,)02; € 5;/3- Thus we have s, * s; C S;ﬁ'
Conversely let Z € 506' Then there exists a sequence ¢ = (€,)02, € ¢
such that Zn = anﬁnan = an\/gﬁn\/akn, with |k | = 1. ThlS proves
Z € s, *sﬁ and s af C s, *sﬁ So we have shown s, o = s, *sﬁ The last
case can be shown in a similar way. O

Remark 3.6. It can be easily seen that for any given sequences o, 3 € UT,

the property ou, /B, — 1 # 0 implies so = sg, s; = 5; and sgf) = sg)

Remark 3.7. We can see from Theorem 3.5 (iii) that if we define the relation
aRB if and only if so = sg for any given o, B € U™, then R is an equivalence
relation. Note that we also have aRf if and only if 1/aR1/3, and for any
sequence v € U, aRf is equivalent to (ay)R(B).

Theorem 3.8. Let a,a’, 3,3 € U™ and assume that aQ, 3P € Cy. Then
we have

(i) (N, @)a, (N, p)g) = ((N Qe (N:D)5) = Saq/q.5p/p;
(i) (N,q)a, (N,p)g) = Sar g if and only if Sarja = 8Q/q and S31/3 = Sp/p.
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(iii) Assume that o' /o, B'/B € ls. Then (N, q)a, (N,p)g) = Sar,g’ implies
p.q € Cr. - -
(tv) Assume that sq = sqr and sg = sgr. Then ((N,q)q, (N,p)g) = Sar g’ if

and only if p,q € Ci.

Proof. (i) The conditions a@, 3P € Ci imply (N,q)a = (N,q),, = 500Q/q
and (N,p)s = (N,p)ﬁ = sgp/p- Indeed, we have (N,q)a = DiADgs, =
q

DiAs,g and by Lemma 2.1, a@ € C, implies that A € £ is bijective
q

from s,q into itself and Asag = Sag. So we have (N,q) = 5aQ/q- BY a
similar argument, we get (N,q). = S;Q/q. Furthermore 8P € C; implies
(N,p)s = sgpyp and (W,p)z = S;P/p. Then we have

(1), (%.8),) = Gucrmrsars) = (sasemn)

(R0 (7))

and the conclusion follows from the identity (saq/q: $8P/p) = Sa@/q,8P/p-
(ii) By Theorem 3.5 (iii), the identity ((N,q)a, (N,p)sg) = Sa’g’ is equiv-

alent to saq = 8o and sgp = sg. Therefore we have sor * 81/ =
q p
50Q/q * 51/a = 5Q/q and also sgr/g = sp/,. This shows (ii).

(iii) Using Theorem 3.5 (iii), we have S2Q = Sa, and Ser = sp! imply
together that there are constants K and Kg such that
(3.27)
Qn Ba

—<K—:Ol and —<K =0(1) for all n.

Then we have p,q € 6’1.
(iv) The necessity comes from (ii). For the sufficiency, we assume sq = 547
and s3 = sgs. Then there are constants My, My > 0 such that o) /oy, > M

and /B, > M, for all n. Now p,q € c, imply that there are constants
M, My > 0 such that

1 1 P
——— <1< == and —,—glg—" for all n.

S0 Sq/ar = loo = 8g/q and sg/3: = loo = Sp/p, and we have shown
((N7 Q)aa (N7p)ﬂ) = Sa/,ﬁ/-
O

Remark 3.9. Reasoning as above it can easily be shown that the conditions
aQ €T and BP € Cy, imply together (N q)(c) (N, p)g) = S0Q/q,8P/p-
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Corollary 3.10. Assume aQ,BP € Cy and consider the following hypothe-
ses:

(i) ((Waq)aj\(ﬁ7p)6) = Sa,ﬁ;

(”) p, g€ Cl;

(iii) there are K, K' >0 and v, > 1 such that
pn > K" and g, > K'u™ for all n;

(iv) (N, q)a,(N,p)g) = Si;
(v) $a@ = Sq, 58P = Sp;
(vi) q/a & co or p/B & co;

(vii) there are constants K1, Ko > 0 such that

Klg—z < %:% < Kgg—z for all n.
Then (i) and (ii) are equivalent, (i) implies (iii), (iv) is equivalent to (v),
and (iv) implies (vi) and (vii).

Proof. By Theorem 3.8 (iv), conditions (i) and (ii) are equivalent.
Let us show that (ii) implies (iii). First, p € C implies that there exists
a real M > 1 such that

P,
— <
[C(p)p]n = PP, M for all n.

So P, > (M/(M —1))P,_1 and P, > (M/(M —1))"p; for all n. Therefore

we conclude from

p1 M nl P,
il < =— <M
pn(M_l) <[CWpln == < M,
that p, > K~" for all n, with K = (M — 1)p1/M? and vy = M/(M —1) > 1.

We get the same result for ¢q. Since (ii) implies (iii) and (i) 1mphes (ii) we
conclude that (i) implies (iii).
By Remark 3.7, the conditions soq = s; and sgr = s; are equivalent to
q P
SaQ * Sqg = SaQ = Sq and Sap * Sp = Sop = Sp and then (iv) is equivalent to
P

q
v).

( )Let us show that (iv) implies (vi). Condition (iv) implies saq@ = s1 and
spp = s1. Then there are constants K, Ko > 0 such that K; gan/q < Ky
anpd

0<%<%<O¢_n for all n.

So g/« ¢ ¢p. Similarly we obtain that (iv) implies p/3 ¢ co. Condition (iv)
implies that s, = s,/ and sg = s,,/p and since s/, = g/, we deduce from
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Theorem 3.5 (vii) that s1/q * S5 = S3/0 = SQ/q * Sp/p = Sge- So we have

shown that (iv) implies (vi) and (vii). O

Remark 3.11. It is easy to show that if a, 8 € T, then (N, q)a, (N,p)g) =
Sq,p if and only if so = sq and sg = s,. This result comes from the identities
S5a@ = 8g and sgp = Sp.

Note also that o:ﬁ € I' implies aQ,BP € I'. Then o, € I' implies that
(N, @)a, (N, p)g) = Sap if and only if p,q € C1.

Remark 3.12. If B/a € co, 1P € loc and aQ, BP € Cy then (N, q)a, (N,p)g)
# S1. Indeed, suppose that (N, q)a, (N,p)g) = S1. Then, since (iv) implies
(vii) in Corollary 3.10, B/a € co implies (Qn/Pn)(Pn/gn) = o(1) (n — o),
and since qP/p € L, we ahve Qp = (Pngn/pn)o(1) = o(1) (n — o). This is

contradictory because Qn > q1 > 0 for alln and so (N, q)a,(N,p)s) # Si.

On the other hand it can easily be shown that if B/ ¢ l~ and aQ, BP € Ch,
then

((N’ q)a ) (va)ﬁ) =51 implies Q/q ¢ loo.

Indeed, if B/a ¢ oo then there is a nondecreasing sequence (n;)2 of integers
tending to infinity such that By, /an, — o0, and since (iv) implies (vii) in
Corollary 3.10, we have Qn,pn;/ Pn,qn; — 00. From the inequality Qn,/qn; >
Qn;Pn; /[ Gn; Pn;, we conclude Q/q ¢ l.

4. MATRIX TRANSFORMATIONS IN THE SETS 5,(N,N,), s.(N,N,) AND
sSON,N,).
In this section, we study some properties of the sets s (N,N,), s;(ﬁpﬁq)

and s (N,N,) and give a characterization of matrix transformations map-

ping in either of the sets s,(N,N,), s (N,N,), or s (N,N,).

4.1. A study of the equation (N,N,)X = B.

Proposition 4.1. (i) Let B be any given sequence. Then the equation
(Np,N¢)X = B is equivalent to the infinite linear system

1 n n i

- E Zr = =1,2,...).

Pn < Qk>Qmmm bn (n ) 4y )
r

m=1 \k=m

(ii) Assume that o, /p € Then, for any given B € sq, (resp. B €
So.)s the equation (N,Ng)X = B admits in s_rq, (resp. s;PQ) the unique
Pq pq
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solution X = N;IN;IB given by

(4 1) T :Qn—lpn—Qb 2_Pn—1 <Qn—1+d%> 1—|—%—b
" Pn—-1 d4n " qn Pn—-1 DPn " dn Pn
forn=1,2,..,

with the convention b, =0 for n <0.

(iii) If P, aP/p € T, then, for any given B € s&c), the equation (N,N ;)X
= B admits in SSL_Q a unique solution given by (32).

prq

Proof. (i) We have N,N, = D% EDpDé YD, = D% (ED% ¥)Dg; and putting
ED%E = (anm)fbf’mzl, we get Tpm = > pep (Pk/ Q) for m < n and oy, =0
otherwise. This shows (i).

(ii) Consider the case when B € s,. First, since P is nondecreasing and

T (=t ) < (%) T ()
n—00 o, P, — n—oo o, n—oo P, ’

we deduce that « € I' implies aP € I". Then the operator represented by
——1

N, = D1ADp is bijective from s, into s r. Now, from the inequality
P P
- an_1 pn Pro1Qna —f(ap1 1
lim < lim T |
=00 \ OpPn—1 Pn—1 PnQn n—0oo Qp, P

the condition a/p € T implies that aPQ/p € T and N_l =D ADQ is also

bijective from s _p into s okQ- We conclude that N, N, is bljectlve from s ok9
P

into s,. To obtain (4.1), we need to explicitly obtain the matrix (N,N,)™?
We have N, 'N,' = D1ADgD1ADp = D1 AD,ADp, with u = Q/p and
q P q

A" = DyADp = (Nnm)pom=1, Where
Uy P, for m = n,
Nnm = —% —1 form=n—-1, n>1,
DPn
0 otherwise.

We conclude that N;IN;I = DéAA’ = (Mhm)pom=1, With
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- or m =n,

dn Pn
I(in—i—%) form=n—-1, n>2,

Nom = dn Pn—1 DPn

1P,

On1 Pua form=n—-2, n>3,

Pn—1 dQn

0 otherwise.

Part (iii) can be shown similarly. O

It follows from Part (1) in the previous theorem that

sa(NpN,) = {X €s: 23 Z (Z ) dmTm = @, O(1) (n — oo)} .

We have the following result.
Proposition 4.2. We have
(i) sa(Np,Ng) = s g(ﬁ ) if and only if aP € Cy;
(ii) 55 (N,N,) = sa (N,) if and only if aP € Cr:
(iii) s (N N,) = )E( Ng) if and only if aP € I;
P
(iv) a € T implies so(N,N,) = sag(wq) and s, (N,N,) = S;E(Nq).
P
(v) Assume that o € T'. Then
(a) sa(NpN,) = s, prq if and only if a% € CA'l;
rq
(b) s, (N,N,) = s;& if and only if a& € Cy;
pq
(vi) Let aP € T. Then s (N,N,) = 5 W PQ if and only zfa erl.

PlI

's p =DiAs rg. Thens_p(N,) =
*p ¢ %7 *p

Proof. (i) First we have s » (Ng) = N,
P

N;lﬁljlsa = D%ADQD%ADPSQ if and only if sa% = D%Asap and s,p =
Asqp. The last identity means aP € Ch.

Parts (ii) and (iii) can shown similarly.

(iv) As we have seen in the proof of Proposition 4.1 (ii), the condition
a € T implies P € C; and the conclusion follows from (1) and (ii).

(v)(a) As we have seen in (i), the identity N, N s, = s, Pq is equivalent

pq
to

(4.2) D1 ADQD1 ADpSa =S PQ
pq



100 B. DE MALAFOSSE, E. MALKOWSKY

Since o € I', we have aP € I' and ,by Proposition 2.2, aP € 6\'1 So
Asap = sqp and identity (4.2) is equivalent to ADg/,Asap = ADg /pSapr =
Asq,p = s,rq Which in turn is equivalent to aPQ/p € 6'\1

P P
Assertions (v) (b) and (v) (¢) can be shown similarly.

(vi) Reasoning as above we get D1 ADgD1 Asg{cl)g = SSLQ if and only if
q P E

ASSL_Q = SSL_Q. This means aPQ/p € ', and we have shown (vi). O
P

P

4.2. Matrix transformations between x(N,N,) and x'(N,N,), where
x and x’ are of the form s, SZ or séc) In this section, among other
things, we study matrix transformations between y(N,) and x'(N,N,),
where x and x’ are of the form s¢, s5 or s( ) for £ € UT. We also con-
sider the case when a matrix transformation maps x(N,N,) into x'(N,Ny)

(c)

where x and x’ are of the form s, 52 or s¢ . Note that until now there is

(©)

no characterization of the sets (x(N,N,), x’) where x/ is s,, s;, or sa .
In this part, we use the sequences r=(rn), s =(5,)2, €U, R=
(Rp)p1, S = (Sn)2y, with R, =}_, rp and S,, = > }_; sg. From the

n=1»
previous results, we deduce the following

Proposition 4.3. We have
(1) (50,58(N+Ns)) = (50,55(N-Ny)) = (ng),Sﬁ(NTNS))

and A € (sq,s3(N,Ny))
if and only if

(4.3) sup (

1 [e'e) k )
lim — lz aR—Tf (Z %) smam] =0 forallm=1,2,..;

7

(iii) A € (s&c),sﬁ(]\f Ny)) if and only if (4.3) and (4.4) hold and

[e'9) [e'9) k
JLHC}O— Z l; R—k (Z %) smam] =0 forallm=1,2,...,
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(iv) A € (s,, s(ﬁc) (N.Ny)) if and only if (4.3) holds and

(4.5)
lim — E “nk Ek 2 s =l for allm=1,2,..;
" n k=1 k i=m SZ - " T

(v) A€ (sg{c),sg)(ﬁrﬁs)) if and only if (4.3), (4.5) hold and
1 & [ & any (&
lim — . — | spam| =1
o T ()

Proof. A short computation yields N, N A = (’{nm)%.jm:l with

k
(4.6) Knm = Z ank Z ;Z> S

By Lemma 3.3, we have A € (sq, sg(N,Ny)) if and only if N,N;A € S, g,
and we have shown (i).
Parts (ii) and (iii) follow in a similar way using the characterizations of

(co,co) and (c,c), (cf. [14, Theorem 1.36, p.160]). O
We also have the following
Corollary 4.4. Let o, 3 € UT. Then A € (so(Ny), sg(N,Ny)) if and only

if

1 X | Ak | TS s Sm+1 LI
4.7) sup n mm—i—(—m—m ) —
( ) n>1 ﬂn mzl lczl Ry | gmSm dm  dm+1 i:%;}—l S;

Q) < 00
and
(4.8)
> Ak o\ sma Q

Proof. Now A € (s4(Ng),s3(N,N;) if and only if N, NsA € (sq(Ny),s5),
and applying Lemma 3.3 (i), we get (4.7) and (4.8). O
Remark 4.5. Reasoning as in the proof of Corollary 4.4 and using Propsition
3.2 and Lemma 3.3, we easily get the characterizations of the sets (E, F),
where E is any of the sets s4(Ny), so(Ng) or s((f)(N ), and F is any of
the sets sg(N,Ny), s;(ﬁrﬁs) or s(ﬁc) (N,.Ny). So we have for instance A €
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(s0(Ny), (C)(N Ny)) if and only if N, NsA € (s,(N,),s (c )) that is if and
only if (4. ’7) holds and

00 k
. Qnk | TmSm Sm Sm+1 i aQO
lim E —_C —i—(—— ) E — =0 for all n.
n—oo R ImSm dm dm+1 P—] S; Bn f

k=1 "'k
Proposition 4.6. (i) Assume that a € T
(a) Then A € (so(NpNy),s3) if and only if

(49) sup [ 1 (i aumQm>] < 00

n>1 Bn me1 Pm

Anm  On,m41

dm dm+1

and
(4.10)
aumQm

QO

limm—>oo(anm ) =0 foralln=12,..

(b) A€ (so(N,N,),sp) if and only if (4.9) holds and
um m
sup <|anm| u) < 0
>1

m> mdm

(i) If aP €T, then A € (s&c) (N,Ny),s5) if and only if (4.9) holds,
um m
lim <anmu> =&, foralln=1,2,... and sup |&,| < oo.
m—oo PmmBn n>1

(iii)  (a) Assume that o, /p € . Then (s4(NpNy),85) = (s0(NpNy),55)
and A € (sa(NpNy),s3) if and only if
(4.11) Sup< Z |anm|am mQ )
Bn m=1
N,)

n>1

(b) If aP,aPQ/p € T, then A € (s&)(ﬁ ), s8) if and only if (4.11)

holds.
Proof. (i) (a) As we have seen in the proof of Proposition 4.1, o € T" implies
aP € T and As,p = sqp. Thus we have so(N,N,) = N;lﬁglsa =
N;ID%ASQP = N;ls E=s p( ) and A € (so(NpN,),sp) if and only if
A€ (s, p(Ng), sp). Then it is enough to apply Propositon 3.2 (i).
P

Part (b) can be shown similarly

(ii) The condition P € I' implies sg{)(w N,) = ic};./p(ﬁq). Then A €
(5((1)(Nqu), sg) if and only if A € (s (I)D/p(ﬁ );53), and the conclusion fol-

lows from Proposition 3.2 (ii).
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(iii) (a) The condition a,a/p € T implies s4(NpNy) = Sqpg/pg and
so(N,N,) = S;PQ/pq. So we have (sa(NpN,),85) = (so(NpNy),s5) =
Sarq/pes-

Part (iii) (b) follows from Proposition 4.2 (vi). O

Remark 4.7. Reasoning as in Proposition 4.6, we get the characterizations
of the sets (E,F), where E is any of the sets so(NpNy), so(N,N,) or
(c)(N Ny), and F is any of the sets sg, 5; or sg).

Proposition 4.8. (i) (a) Assume that a,a/p € T'. Then we have
(o (0] 50 (30.)) = (5 (95). 1 (V)

and A € (sa(NpNy),s3(N-Ns)) if and only if

(4.12)

A

Q.

00 k
ank T CVmJDQO
Ry, <z§ Si) ™ dm 1
(b) If aP €T, aPQ/p €T, then A € (sgf) (NpNy),s3(N-Ny)) if and only

if (4-12) holds. o o
(it) (a) Assume that o € I'.Then A € (so(NpNy),s3(N+Ny)) if and only

if
(4.13) sup ii S dnk TmSer(S—m—M) zk: u
. n>1 Bn m=1 k=1 Rk: QmSm dm qm+1 i=m—+1 Sz
P,
Pm
and
00 k
; P,
lim Z Gnk i\ @mSmPn@m =0 for alln.
m—oo | f= \ R \/Z Si Pmdm
(b) A€ (so,(N,N,),s3(N,Ns)) if and only if (4.13) holds and
(4.14)
[e'9) k
Ank T amSumQm
su —_— — —————| <o foralln.
m1 kz:; (Rk (Zz;n Sz)) Pmlm f
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(iii) If aP € T, then A (sg)(ﬁpﬁq),%(ﬁrﬁs)) if and only if (4.13)
holds and

0 k
- 1 ank 7 \ \ mSmPmQm
lim —E nE E -t memimEm
m—00 [ﬁn = <Rk (lm &)) Pmm ] ¢

for all n and sup |(,| < oo.
n>1

Proof. (i) As we have seen in the proof of Proposition 4.1, the condition

a/p € I implies that aPQ/p € T'. So o, a/p € I together imply so(N,N,) =

SaEQ- Thus A € (sa(NpNy), s3(N-Ny)) if and only if N.NA € (s ra,sg)
rq

= S PQ

Y g

Now the conclusion follows from (4.5) and

° ()
s ra,sg| =S ro,Sg) =15 po,53] -
(sazg:95) = (g 00) = (ohg )
(i) (b) By Proposition 4.2 (vi), the conditions aP € T and aPQ/p € T
together imply s (N,N,) = S(CLQ Thus A € (sa(NpNy),s3(N,Ny)) is

pq
equivalent to N, NsA € (s( LQ,sﬁ) S, £Q

B’

7/8
(ii) (a) Reasoning as in Propomtlon 4 6 (i) (a), we get that a € ' im-
plies 54(NpNg) = s, p(Ng). So A € (sa(NpNy),sa(N,Ny)) if and only if
P

N,NA € (s,r(Ny),s3), and the conclusion follows from Proposition 3.2
P
o AP
(i) (b) Since we have (so(NpNg),s3(NrNy)) = (s
A€ (slg(ﬁq), s3(N,Ny)) if and only if N,N,A € (s
clusion follows by Proposition 3.2 (iii).
(iii) By Proposition 4.2 (iii), the condition P € T’ implies s (N,N,) =

S});./ (N,) and, as above, A € (S&C) (N,Ny),s3(N-Ny)) if and only if N, NA

o

r(Ng),53(N,N;)) and
P J—

® »(Ny),55), the con-
P

07

(Ng,s). Now the conclusion follows from Proposition 3.2 (ii). O
Proposition 4.9. (i) Assume that o, 3 € T'.
(a) Then A € (sa(NpNy),s3(N.Ns)) if and only if

(4.15)
am P Qm

Pm

< oQ.

sup [f;

nzlml

n
Z (akm . ak,erl)

dm+1
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and

(4.16)

. amPrnQm  Sn = Prlgm
lim =0 foralln.
e l Pmtm o fin (k_l Pn )]

(b) Then A € (sa’ (N,N,),s3(N,Ny)) if and only if (4.15) holds and

(4.17) sup laumQm i 3k§km>] < 00.

m>1 Pmdm k—1 n

( (z'i)) Ifaoel and B €T, then A € sg{c)(ﬁpﬁq),%(ﬁrﬁs)) if and only if
4.15) holds and

(4.18)

um m - m
lim Lo O Tk =¢) for alln and sup )| < .
m=00 | Pmlmfn =1 Sn, n>1

Proof. The condition «, 8 € I' implies
(5a(NpNg), SB(NTNS)) = (Sag(ﬁq)a Sﬁg(ﬁs»-

Now the conclusiom follows from Proposition 3.4 (i).
The statements (i) (b) and (ii) can be shown similarly. O

Remark 4.10. Reasoning as in the previous corollaries we can easily get the
characterizations of the sets (E, F), where E is any of the sets sq(NpN),

so(N,N,) or s (N,Ny) and F is any of the sets sg(N,Ny), s;(ﬁpwq) or
i (NpN).
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