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MATRIX TRANSFORMATIONS IN THE SETS χ(N pN q)

WHERE χ IS OF THE FORM sξ, OR s
◦

ξ , OR s
(c)
ξ .

BRUNO DE MALAFOSSE AND EBERHARD MALKOWSKY

Abstract. In this paper we deal with matrix transformations

mapping in either of the sets sα(Nq), s
◦

α(N q) or s
(c)
α (Nq). Then

we study some properties of the sets sα(NpN q) and s
◦

α(NpNq)
and give a characterization of matrix transformations in these
spaces. These results generalize those given in [11, 14, 16].

1. Notations and preliminary results.

For a given infinite matrix A = (anm)∞n,m=1 we define the operators An

for any integer n ≥ 1, by

An(X) =
∞∑

m=1

anmxm(1.1)

where X = (xn)∞n=1, the series being assumed convergent. So we are led to
the study of the infinite linear system

An(X) = bn n = 1, 2, ...(1.2)

where B = (bn)∞n=1 is a one-column matrix and X the unknown, see [5, 6,
7, 8, 9, 11]. The ssytem (1.2) can be written in the form AX = B, where
AX = (An(X))∞n=1. In this paper we shall also consider A as an operator
from a sequence space into another sequence space.

A Banach space E of complex sequences with the norm ‖·‖E is a BK space
if each projection Pn : X → PnX = xn is continuous. A BK space E is said
to have AK if every sequence X = (xn)∞n=1 ∈ E has a unique representation
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X =
∑∞

n=1 xnen where en is the sequence with 1 in the n-th position and 0
otherwise.

We write s for the set of all complex sequences, `∞, c, c0 for the sets
of bounded, convergent and null sequences, respectively. By cs and `1, we
denote the sets of convergent and absolutely convergent series respectively.
We use the set

U+ = {(un)∞n=1 ∈ s : un > 0 for all n} .

Using Wilansky’s notations [16], given any sequence α = (αn)∞n=1 ∈ U+ and
any subset E of s,we define the sets

(1/α)−1 ∗ E =

{
(xn)∞n=1 ∈ s :

(
xn

αn

)∞

n=1
∈ E

}
.

Writing α ∗ E = (1/α)−1 ∗ E, we put

α ∗ E =





sα if E = `∞ ,
s
◦

α if E = c0 ,

s
(c)
α if E = c ;

we have for instance

α ∗ c0 = s
◦

α = {(xn)∞n=1 ∈ s : xn = o(αn) (n → ∞)}.(1.3)

Each of the spaces α ∗ E, where E ∈ {`∞, c0, c}, is a BK space normed by

‖X‖sα = sup
n≥1

(
|xn|

αn

)
,(1.4)

and s
◦

α has AK, see [11].
Now let α = (αn)∞n=1 and β = (βn)∞n=1 ∈ U+. By Sα,β we denote the set

of infinite matrices A = (anm)∞n,m=1 such that supn≥1(
∑∞

m=1 |anm|αm

βn
) < ∞;

Sα,β is a Banach space normed by ‖A‖Sα,β
= supn≥1(

∑∞
m=1 |anm|αm

βn
). Let

E and F be any subsets of s. When A maps E into F we write A ∈ (E,F ),
see [4]. So A ∈ (E,F ) if and only if the series yn =

∑∞
m=1 anmxm converge

for all n and all X ∈ E and AX = (yn)∞n=1 ∈ F for all X ∈ E. It was proved
in [14] that A ∈ (sα, sβ) if and only if A ∈ Sα,β. So we have (sα, sβ) = Sα,β.

When sα = sβ we obtain the Banach algebra with identity Sα,β = Sα,
(see [6, 7, 8, 10, 11]) normed by ‖A‖Sα = ‖A‖Sα,α .

If α = (rn)∞n=1 for r > 0, then Sα, sα, s
◦

α and s
(c)
α are denoted by Sr, sr, s

◦

r

and s
(c)
r , respectively (see [5, 10]). When r = 1, we obtain s1 = `∞, s

◦

1 = c0

and s
(c)
1 = c, and putting e = (1, 1, ...) we have S1 = Se.

For any subset E of s, we put A(E) = {Y : Y = AX for some X ∈ E}.
If F is a subset of s, then FA = {X ∈ s : Y = AX ∈ F} denotes the matrix
domain of A in X.
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2. The operator ∆ mapping in the sets sα, s
◦

α, or s
(c)
α

Now recall that the operator of first difference [5], [7]–[12] is defined by
∆ = (νnm)n,m≥1, with νnn = 1 for all n ≥ 1, νn,n−1 = −1 for all n ≥ 2 and
νnm = 0 otherwise. An infinite matrix T = (tnm)∞n,m=1 is said to be a triangle
if tnm = 0 for m > n and tnn 6= 0 for all n. If £ is the set of all triangles, it
can easily be seen that £ is a group with respect to matrix multiplication.
The infinite matrix Σ = (ν ′

nm)∞n,m=1 defined by ν ′
nm = 1 for all m ≤ n and

ν ′
nm = 0 otherwise is the inverse of ∆ in £, and we may write Σ = ∆−1,

see [3]. For any given sequence ξ = (ξn)∞n=1, we put Dξ = (ξnδnm)∞n,m=1,
where δnm = 0 if m 6= n and δnm = 1 for m = n. If U is the set of all
sequences X = (xn)∞n=1 such that xn 6= 0 for all n, we define the triangle
C(λ) = D 1

λ
Σ = (cnm)∞n,m=1 for λ = (λn)∞n=1 ∈ U . We have cnm = 1/λn for

m ≤ n and cnm = 0 otherwise. Writing C(λ)λ = ((
∑n

k=1 λk)/λn)∞n=1, we
define the sets

Ĉ1 = {α ∈ U+ : C(α)α ∈ `∞}, Ĉ = {α ∈ U+ : C(α)α ∈ c}

and

Γ =

{
α ∈ U+ : lim

n→∞

(
αn−1

αn

)
< 1

}
.

Recall that α ∈ Γ if and only if there is an integer q ≥ 1 such that γq(α) =
supn≥q+1(αn−1/αn) < 1 (see [7]). The following result was given in [10].

Lemma 2.1. We have

i) sα(∆) = sα if and only if α ∈ Ĉ1;

ii) s
◦

α(∆) = s
◦

α if and only if α ∈ Ĉ1;

iii) s
(c)
α (∆) = s

(c)
α if and only if α ∈ Ĉ;

iv) ∆α = D 1
α
∆Dα is bijective from c into itself with limX = ∆α−lim X,

if and only if αn−1/αn → 0.

Let us put

Γ̂ =

{
α ∈ U+ : lim

n→∞

(
αn−1

αn

)
< 1

}
.

In the next proof we shall use the set B(s
(c)
α ) of all bounded linear operators

mapping s
(c)
α into itself. Recall that since s

(c)
α is a Banach space with the

norm ‖ · ‖sα , the set B(s
(c)
α ) of all linear operators A ∈ (s

(c)
α , s

(c)
α ) normed by

‖A‖
B(s

(c)
α )

= sup
X 6=0

(
‖AX‖sα

‖X‖sα

)

is the Banach algebra of all bounded linear operators that map s
(c)
α into

itself, see [2].
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Proposition 2.2. We have Ĉ = Γ̂ ⊂ Γ ⊂ Ĉ1.

Proof. The inclusions Ĉ ⊂ Γ̂ and Γ ⊂ Ĉ1 were shown [10] and [7], respec-

tively. It remains to prove that Γ̂ ⊂ Ĉ. Assume that α ∈ Γ̂. Putting
D 1

α
∆Dα = (ξnm)∞n,m=1, we get ξnn = 1 for all n, ξn,n−1 = −αn−1/αn for all

n ≥ 2, and ξnm = 0 otherwise. Then from the characterization of (c, c) (cf.
[14, 14 Theorem 1.36 p. 160]), the condition D 1

α
∆Dα ∈ (c, c) is equivalent

to (αn−1/αn)n≥2 ∈ c. Let us show that ∆ is invertible in B(s
(c)
α ). Consider

the matrix

Σ(k) =




[
∆(k)

]−1
O

1
O .


 for any given integer k ≥ 1,

where ∆(k) is the finite matrix whose entries are those of the k first rows
and columns of ∆. We get Σ(k)∆ = (anm)∞n,m=1, with ann = 1 for all n;
an,n−1 = −1 for all n ≥ k + 1; and anm = 0 otherwise. We deduce that

∥∥∥I − Σ(k)∆
∥∥∥

B(sα)
=
∥∥∥I − Σ(k)∆

∥∥∥
Sα

= sup
k≥k+1

(
αn−1

αn

)
.

So limn→∞(αn−1/αn) = limn→∞(αn−1/αn) < 1 and ‖I − Σ(k)∆‖B(sα) < 1

and we that Σ(k)∆ is invertible in the Banach algebra B(s
(c)
α ) and ∆ =

(Σ(k))−1Σ(k) is bijective from s
(c)
α into itself. Thus we have α ∈ Ĉ by Lemma

2.1 (ii) and we have shown that Γ̂ ⊂ Ĉ. �

3. Sets of generalized weighted means and matrix

transformations.

In this section we recall some results given in [15] and apply them to
characterize matrix transformations in either of the sets (N, q)α, (N, q)

◦

α or

(N, q)
(c)
α . Then we give some properties of the identity ((N, q)α, (N, q)β) =

Sα′,β′ .

3.1. Matrix transformations in the sets of weighted means. Let u,
v ∈ U and E ⊂ s. Then we define

W (u, v;E) = v−1 ∗
(
u−1 ∗ E

)
Σ

,

the set of generalized weighted means. Consider now the following conditions:

sup
n

(
∞∑

m=1

∣∣∣∣
1

um

(
anm

vm
−

an,m+1

vm+1

)∣∣∣∣

)
< ∞;(3.1)
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lim
m→∞

(
anm

umvm

)
= 0 for all n;(3.2)

lim
m→∞

(
anm

umvm

)
= ln for all n;(3.3)

sup
n

|ln| < ∞;(3.4)

sup
m

(∣∣∣∣
anm

umvm

∣∣∣∣
)

< ∞ for each n;(3.5)

lim
n→∞

(
1

um

(
anm

vm
−

an,m+1

vm+1

))
= 0 for each m;(3.6)

lim
n→∞

(
1

um

(
anm

vm
−

an,m+1

vm+1

))
= l ′m for each m;(3.7)

lim
n→∞

(
∞∑

m=1

anm

vm

(
1

um
−

1

um−1

))
= 0;(3.8)

lim
n→∞

(
∞∑

m=1

anm

vm

(
1

um
−

1

um−1

))
= L.(3.9)

We have from [15, Theorem 3.3 p. 651]

Lemma 3.1. We have
(i) A ∈ (W (u, v; `∞), `∞) if and only if (3.1) and (3.2) hold;
(ii) A ∈ (W (u, v; c), `∞) if and only if (3.1), (3.3) and (3.4) hold;
(iii) A ∈ (W (u, v; c0), `∞) if and only if (3.1) and (3.5) hold;
(iv) A ∈ (W (u, v; c0), c0) if and only if (3.1), (3.5) and (3.6) hold;
(v) A ∈ (W (u, v; c0), c) if and only if (3.1), (3.5) and (3.7) hold;
(vi) A ∈ (W (u, v; c), c0) if and only if (3.1), (3.3), (3.4), (3.6) and (3.8)
hold;
(vii) A ∈ (W (u, v; c), c) if and only if (3.1), (3.3), (3.4), (3.7) and (3.9)
hold.

Then if v = q = (qn)∞n=1 ∈ U+ and u = 1/Q with Qn =
∑n

m=1 qm

(n = 1, 2, ...), we get W (1/Q, q; `∞) = (N, q)∞, W (1/Q, q; c0) = (N, q)0
and W (1/Q, q; c) = (N, q). These sets are called sets o weighted means
that are bounded, convergent to zero or convergent. We shall consider ma-
trix transformations in the sets (N, q)α = sα(N q), or (N, q)

◦

α = s
◦

α(N q), or

(N, q)
(c)
α = s

(c)
α (N q), see [9].
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We put

γnm =

(
anm

qm
−

an,m+1

qm+1

)
αmQm

βn
and

γ ′
nm = (αmQm − αm−1Qm−1)

anm

qmβn
for all n,m

and consider the following conditions

sup
n

(
∞∑

m=1

|γnm|

)
< ∞(3.10)

lim
n→∞

γnm = 0 for all m;(3.11)

lim
n→∞

γnm = lm for all m;(3.12)

lim
n→∞

∞∑

m=1

γ ′
nm = 0;(3.13)

lim
n→∞

∞∑

m=1

γ ′
nm = L ′.(3.14)

We deduce the following

Proposition 3.2. We have (i) A ∈ ((N, q)α, sβ) if and only if (3.10) holds
and

lim
m→∞

(
anm

αmQm

qm

)
= 0 for all n;

(ii) A ∈ ((N, q)
(c)
α , sβ) if and only if (3.10) holds,

lim
m→∞

(
anm

αmQm

qmβn

)
= l ′n for all n and sup

n

(
|l ′n|
)

< ∞;

(3.15)

(iii) A ∈ ((N, q)
◦

α, sβ) if and only if (3.10) holds and

sup
m

(
|anm|

αmQm

qm

)
< ∞ for all n;(3.16)

(iv) A ∈ ((N, q)
◦

α, s
◦

β) if and only if (3.10), (3.11) and (3.16) hold;

(v) A ∈ ((N, q)
◦

α, s
(c)
β ) if and only if (3.10), (3.12) and (3.16) hold;

(vi) A ∈ ((N, q)
(c)
α , s

◦

β) if and only if (3.10), (3.11), (3.13) and (3.15) hold;

(vii) A ∈ ((N, q)
(c)
α , s

(c)
β ) if and only if (3.10), (3.12), (3.14) and (3.15) hold.
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Proof. Put u = 1/αQ and v = q ∈ U+. Since ∆−1 = Σ ∈ £ , we get

W (u, v; `∞) = W (1/αQ, q; `∞) = (N, q)α = D 1
q
∆DαQ`∞,

W (1/αQ, q; c0) = (N, q)
◦

α and W (1/αQ, q; c) = (N, q)
(c)
α . Now the conclu-

sion follows from Lemma 3.1 and the fact that, for any set of sequences E,

the condition A ∈ (E,F ) for F = sβ, s
◦

β or s
(c)
β is equivalent to D 1

β
A ∈ (E,G)

where G is any of sets `∞, c0 or c respectively. �

We shall use the following known result given by Malkowsky (cf. [13,
Theorem 1].

Lemma 3.3. Let T ∈ £. Then, for arbitrary subsets E and F of s, A ∈
(E,FT ) if and only if TA ∈ (E,F ).

Consider now the following conditions.

sup
n

(
∞∑

m=1

∣∣∣∣∣
1

Pnβn

n∑

k=1

pk

(
akm

qm
−

ak,m+1

qm+1

)∣∣∣∣∣αmQm

)
< ∞;

(3.17)

lim
n→∞

[
1

Pnβn

n∑

k=1

pk

(
akm

qm
−

ak,m+1

qm+1

)
αmQm

]
= 0 for all m = 1, 2, ...;

(3.18)

lim
m→∞

[
αmQm

qm

(
n∑

k=1

pkakm

Pn

)]
= ξ ′

n for all n = 1, 2, ...;

(3.19)

sup
n

|ξ ′
n| < ∞;(3.20)

sup
m

[
αmQm

βnqm

(
n∑

k=1

pkakm

Pn

)]
< ∞ for all n = 1, 2, ...;

(3.21)

lim
n→∞

1

Pnβn

∞∑

m=1

[(
αmQm − αm−1Qm−1

qm

) n∑

k=1

pkakm

]
= 0;

(3.22)
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lim
n→∞

1

Pnβn

∞∑

m=1

[(
αmQm − αm−1Qm−1

qm

) n∑

k=1

pkakm

]
= L ′.

(3.23)

Proposition 3.4. We have
(i) A ∈ ((N, q)α, (N, p)β) if and only if (3.17) holds and

lim
m→∞

[
αmQm

qm

(
n∑

k=1

pkakm

Pn

)]
= 0 for all n = 1, 2, ...;

(ii) A ∈ ((N, q)
(c)
α , (N, p)β) if and only if (3.17), (3.19) and (3.20) hold;

(iii) A ∈ ((N, q)
◦

α, (N, p)β) if and only if (3.17) and (3.21) hold;

(iv) A ∈ ((N, q)
◦

α, (N, p)
◦

β) if and only if (3.17), (3.18) and (3.21) hold;

(v) A ∈ ((N, q)
◦

α, (N, p)
(c)
β ) if and only if (3.17), (3.21) hold and

lim
n→∞

[
1

Pnβn

n∑

k=1

pk

(
akm

qm
−

ak,m+1

qm+1

)
αmQm

]
= lm for all m = 1, 2, ...;

(3.24)

(vi) A ∈ ((N, q)
(c)
α , (N, p)

◦

β) if and only if (3.17), (3.18), (3.19) and (3.22)
hold;

(vii) A ∈ ((N, q)
(c)
α , (N, p)

(c)
β ) if and only if (3.17), (3.23), (3.24) and (3.19)

hold.

Proof. These results are a direct consequence of Proposition 3.2 and Lemma
3.3. Indeed, for (i) we have A ∈ ((N, q)α, (N, p)β) if and only if N pA ∈

((N, q)α, sβ), where

NpA =

(
n∑

k=1

pkakm

Pn

)∞

n,m=1

.

Then it is enough to replace the entries of A by those of N pA in Proposition
3.2 (i). The remaining parts can be shown in the same way. �

3.2. Properties of matrix transformations between sets of weighted
means. First we need some additional results on the set Sα,β. Recall that,
for any subsets E and F of s, E∗F is the set of all products XY = (xnyn)∞n=1,
where X = (xn)∞n=1 ∈ E and Y = (yn)∞n=1 ∈ F . We can state the following
results.

Theorem 3.5. Let α, β, α ′, β ′ ∈ U+. Then
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(i) αn = O(βn) (n → ∞) if and only if sα ⊂ sβ;
(ii) αn = O(βn) and βn = O(αn) (n → ∞) if and only if sα = sβ;
(iii) sα = sβ if and only if there exist K1 and K2 > 0 such that K1αn ≤
βn ≤ K2αn for all n;
(iv) (a) sα = sβ if and only if s

◦

α = s
◦

β;

(b) αn/βn → l 6= 0 if and only if s
(c)
α = s

(c)
β ;

(c) s
(c)
α = s

(c)
β implies sα = sβ and s

◦

α = s
◦

β;

(v) the identity Sα,β = Sα ′,β ′ is equivalent to sα = sα ′ and sβ = sβ ′.

(vi) (a) The identity (s
◦

α, sβ) = (s
◦

α ′ , sβ ′) is equivalent to
sα = sα ′ and sβ = sβ ′ ,

(b) the identity (s
(c)
α , sβ) = (s

(c)
α ′ , sβ ′) is equivalent to

sα = sα ′ and sβ = sβ ′ .

(vii) sαβ = sα ∗ sβ, s
◦

αβ = s
◦

α ∗ s
◦

β and s
(c)
αβ = s

(c)
α ∗ s

(c)
β .

Proof. (i) Assume that αn = O(βn) (n → ∞). If X = (xn)∞n=1 ∈ sα, then
we have

xn

βn
=

xn

αn

αn

βn
= O(1) (n → ∞)

and X ∈ sβ, hence sα ⊂ sβ. Conversely, α ∈ sα ⊂ sβ implies αn/βn = O(1)
and αn = O(βn) (n → ∞).

(ii) is obvious.
(iii) The conditions sα ⊂ sβ and sβ ⊂ sα are equivalent to αn = O(βn)

and βn = O(αn) (n → ∞). This shows (iii).
(iv) (a) The identity s

◦

α = s
◦

β is equivalent to I ∈ (s
◦

α, s
◦

β) and I ∈ (s
◦

β , s
◦

α).

This means Dα/β , Dβ/α ∈ (c0, c0). From the characterization of the class
(c0, c0), we conclude αn/βn = O(1) and βn/αn = O(1) (n → ∞), that is
sα = sβ.

(b) Similarly the identity s
(c)
α = s

(c)
β is equivalent to Dα/β , Dβ/α ∈ (c, c). So

s
(c)
α = s

(c)
β is equivalent to the following conditions: αn/βn → l, βn/αn → l ′,

αn/βn = O(1) and βn/αn = O(1) (n → ∞).
(v) The sufficiency being obvious, we study the necessity.

Suppose that Sα,β = Sα ′,β ′ . First, we prove that Sα,β = Sα ′,β. For this,
denote by c̃1 = (cnm)∞n,m=1 the infinite matrix defined by cn1 = βn/α1 for all
n ≥ 1 and cnm = 0 otherwise. We immediatly see that c̃1 ∈ Sα,β and since
Sα,β = Sα ′,β ′ , we get c̃1 ∈ Sα ′,β ′ . So c̃1α

′ = ((βn/α1)α ′
1)

∞
n=1 ∈ sβ ′ , that is

βn = β ′
nO(1) (n → ∞),

and we conclude from (i) that sβ ⊂ sβ ′ . By a similar argument, taking

c̃ ′
1 = (c ′

nm)∞n,m=1 with c ′
n1 = β ′

n/α ′
1 for all n ≥ 1 and c ′

nm = 0 otherwise,

we get c̃ ′
1α = ((β ′

n/α ′
1)α1)

∞
n=1 ∈ sβ and sβ ′ ⊂ sβ. Thus we have shown
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sβ = sβ ′ , so Sα,β = Sα ′,β ′ implies Sα,β = Sα ′,β. It remains to show that
the equality Sα,β = Sα ′,β implies sα = sα ′ . For this, we consider the matrix
D β

α

∈ Sα,β. Since Sα,β = Sα ′,β, we deduce that

D β

α

sα ′ = s β

α
α ′

⊂ sβ(3.25)

and α ′
n/αn = O(1) (n → ∞). So we have sα ⊂ sα ′ by (i). Similarly, since

D β

α ′

∈ Sα ′,β = Sα,β, we get

D β

α ′

sα = s β

α ′
α
⊂ sβ.(3.26)

So we have αn = O(α ′
n) and sα ′ ⊂ sα. Now we conclude sα = sα ′ and (v) is

proved.
(vi) (a) Since (c0, `∞) = S1, we easily deduce (s

◦

α, sβ) = Sα,β and (s
◦

α ′ , sβ ′)

= Sα ′,β ′ . Then, by (v), the condition (s
◦

α, sβ) = (s
◦

α ′ , sβ ′) implies sα = sα ′

and sβ = sβ ′ .
Part (b) can be obtained by a similar argument using the fact that (c, `∞) =
S1.

(vii) Let Z = (zn)∞n=1 ∈ sα ∗ sβ. There are X = (xn)∞n=1 ∈ sα and
Y = (yn)∞n=1 ∈ sβ such that Z = XY ∈ sα ∗ sβ.Then zn = xnyn =
αnO(1)βnO(1) = αnβnO(1) (n → ∞) and Z ∈ sαβ. So we have shown
sα ∗ sβ ⊂ sαβ. Conversely if Z ∈ sαβ, there is a sequence h = (hn)∞n=1 ∈ `∞,
such that zn = αnβnhn and since α ∈ sα and βh ∈ sβ, we conclude
Z ∈ sα ∗ sβ. So we have shown sαβ ⊂ sα ∗ sβ. We conclude sα ∗ sβ = sαβ.

Let us show s
◦

αβ = s
◦

α∗s
◦

β. If Z = (zn)∞n=1 ∈ s
◦

α∗s
◦

β then zn = αno(1)βno(1) =

αnβno(1) (n → ∞) and Z = (zn)∞n=1 ∈ s
◦

αβ. Thus we have s
◦

α ∗ s
◦

β ⊂ s
◦

αβ.

Conversely let Z ∈ s
◦

αβ. Then there exists a sequence ε = (εn)∞n=1 ∈ c0

such that zn = αnβnεn = αn

√
|εn|βn

√
|εn|kn, with |kn| = 1. This proves

Z ∈ s
◦

α ∗ s
◦

β and s
◦

αβ ⊂ s
◦

α ∗ s
◦

β. So we have shown s
◦

αβ = s
◦

α ∗ s
◦

β. The last
case can be shown in a similar way. �

Remark 3.6. It can be easily seen that for any given sequences α, β ∈ U +,

the property αn/βn → l 6= 0 implies sα = sβ, s
◦

α = s
◦

β and s
(c)
α = s

(c)
β .

Remark 3.7. We can see from Theorem 3.5 (iii) that if we define the relation
αRβ if and only if sα = sβ for any given α, β ∈ U+, then R is an equivalence
relation. Note that we also have αRβ if and only if 1/αR1/β, and for any
sequence γ ∈ U+, αRβ is equivalent to (αγ)R(βγ).

Theorem 3.8. Let α, α ′, β, β ′ ∈ U+ and assume that αQ, βP ∈ Ĉ1. Then
we have
(i) ((N, q)α, (N, p)β) = ((N, q)

◦

α, (N, p)β) = SαQ/q,βP/p;

(ii) ((N, q)α, (N, p)β) = Sα ′,β ′ if and only if sα ′/α = sQ/q and sβ ′/β = sP/p.
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(iii) Assume that α ′/α, β ′/β ∈ `∞. Then ((N, q)α, (N, p)β) = Sα ′,β ′ implies

p, q ∈ Ĉ1.
(iv) Assume that sα = sα ′ and sβ = sβ ′. Then ((N, q)α, (N, p)β) = Sα ′,β ′ if

and only if p, q ∈ Ĉ1.

Proof. (i) The conditions αQ, βP ∈ Ĉ1 imply (N, q)α = (N, q)
◦

α = sαQ/q

and (N, p)β = (N, p)
◦

β = sβP/p. Indeed, we have (N, q)α = D 1
q
∆DQsα =

D 1
q
∆sαQ and by Lemma 2.1, αQ ∈ Ĉ1 implies that ∆ ∈ £ is bijective

from sαQ into itself and ∆sαQ = sαQ. So we have (N, q)α = sαQ/q. By a

similar argument, we get (N, q)
◦

α = s
◦

αQ/q. Furthermore βP ∈ Ĉ1 implies

(N, p)β = sβP/p and (N, p)
◦

β = s
◦

βP/p. Then we have
((

N, q
)

α
,
(
N, p

)
β

)
=
(
sαQ/q, sβP/p

)
=
(
s
◦

αQ/q, sβP/p

)

=

((
N, q

)◦

α
,
(
N, p

)
β

)
,

and the conclusion follows from the identity (sαQ/q, sβP/p) = SαQ/q,βP/p.

(ii) By Theorem 3.5 (iii), the identity ((N, q)α, (N, p)β) = Sα ′,β ′ is equiv-
alent to sαQ

q

= sα ′ and sβP

p

= sβ ′ . Therefore we have sα ′ ∗ s1/α =

sαQ/q ∗ s1/α = sQ/q and also sβ ′/β = sP/p. This shows (ii).
(iii) Using Theorem 3.5 (iii), we have s αQ

q

= sα ′ , and sβP

p

= sβ ′ imply

together that there are constants K1 and K2 such that

Qn

qn
≤ K1

α ′
n

αn
= O(1) and

Pn

pn
≤ K2

β ′
n

βn
= O(1) for all n.

(3.27)

Then we have p, q ∈ Ĉ1.
(iv) The necessity comes from (ii). For the sufficiency, we assume sα = sα ′

and sβ = sβ ′ . Then there are constants M1,M2 > 0 such that α ′
n/αn ≥ M1

and β ′
n/βn ≥ M2 for all n. Now p, q ∈ Ĉ1 imply that there are constants

M ′
1 ,M ′

2 > 0 such that

1

M ′
1

Qn

qn
≤ 1 ≤

Qn

qn
and

1

M ′
2

Pn

pn
≤ 1 ≤

Pn

pn
for all n.

So sα/α ′ = l∞ = sQ/q and sβ/β ′ = `∞ = sP/p, and we have shown

((N, q)α, (N, p)β) = Sα ′,β ′ .

�

Remark 3.9. Reasoning as above it can easily be shown that the conditions

αQ ∈ Γ and βP ∈ Ĉ1, imply together ((N, q)
(c)
α , (N, p)β) = SαQ/q,βP/p.



96 B. DE MALAFOSSE, E. MALKOWSKY

Corollary 3.10. Assume αQ, βP ∈ Ĉ1 and consider the following hypothe-
ses:

(i) ((N, q)α, (N, p)β) = Sα,β;

(ii) p, q ∈ Ĉ1;
(iii) there are K,K ′ > 0 and γ, µ > 1 such that

pn ≥ Kγn and qn ≥ K ′µn for all n;

(iv) ((N, q)α, (N, p)β) = S1;
(v) sαQ = sq, sβP = sp;
(vi) q/α /∈ c0 or p/β /∈ c0;
(vii) there are constants K1, K2 > 0 such that

K1
βn

αn
≤ Qn

Pn

pn

qn
≤ K2

βn

αn
for all n.

Then (i) and (ii) are equivalent, (i) implies (iii), (iv) is equivalent to (v),
and (iv) implies (vi) and (vii).

Proof. By Theorem 3.8 (iv), conditions (i) and (ii) are equivalent.

Let us show that (ii) implies (iii). First, p ∈ Ĉ1 implies that there exists
a real M > 1 such that

[C(p)p]n =
Pn

Pn − Pn−1
≤ M for all n.

So Pn ≥ (M/(M −1))Pn−1 and Pn ≥ (M/(M −1))n−1p1 for all n. Therefore
we conclude from

p1

pn

(
M

M − 1

)n−1

≤ [C(p)p]n =
Pn

pn
≤ M,

that pn ≥ Kγn for all n, with K = (M − 1)p1/M
2 and γ = M/(M − 1) > 1.

We get the same result for q. Since (ii) implies (iii) and (i) implies (ii) we
conclude that (i) implies (iii).

By Remark 3.7, the conditions s αQ

q

= s1 and sβP

p

= s1 are equivalent to

sαQ

q

∗ sq = sαQ = sq and sαP
p

∗ sp = sαP = sp and then (iv) is equivalent to

(v).
Let us show that (iv) implies (vi). Condition (iv) implies s αQ

q

= s1 and

sβP

p

= s1. Then there are constants K1,K2 > 0 such that K1 ≤ αQ/q ≤ K2

and

0 <
Q1

K2
≤

Qn

K2
≤

qn

αn
for all n.

So q/α /∈ c0. Similarly we obtain that (iv) implies p/β /∈ c0. Condition (iv)
implies that sα = sq/Q and sβ = sp/P and since s1/α = sQ/q we deduce from
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Theorem 3.5 (vii) that s1/α ∗ sβ = sβ/α = sQ/q ∗ sp/P = sQp

Pq

. So we have

shown that (iv) implies (vi) and (vii). �

Remark 3.11. It is easy to show that if α, β ∈ Γ, then ((N, q)α, (N, p)β) =
SQ,P if and only if sα = sq and sβ = sp. This result comes from the identities
sαQ

q

= sQ and sβP

p

= sP .

Note also that α, β ∈ Γ implies αQ, βP ∈ Γ. Then α, β ∈ Γ implies that
((N, q)α, (N, p)β) = Sα,β if and only if p, q ∈ Ĉ1.

Remark 3.12. If β/α ∈ c0,
q
pP ∈ l∞ and αQ, βP ∈ Ĉ1 then ((N, q)α, (N, p)β)

6= S1. Indeed, suppose that ((N, q)α, (N, p)β) = S1. Then, since (iv) implies
(vii) in Corollary 3.10, β/α ∈ c0 implies (Qn/Pn)(pn/qn) = o(1) (n → ∞),
and since qP/p ∈ `∞, we ahve Qn = (Pnqn/pn)o(1) = o(1) (n → ∞). This is
contradictory because Qn ≥ q1 > 0 for all n and so ((N, q)α, (N, p)β) 6= S1.

On the other hand it can easily be shown that if β/α /∈ `∞ and αQ, βP ∈ Ĉ1,
then ((

N, q
)

α
,
(
N, p

)
β

)
= S1 implies Q/q /∈ `∞.

Indeed, if β/α /∈ `∞ then there is a nondecreasing sequence (ni)
∞
i=1 of integers

tending to infinity such that βni
/αni

→ ∞, and since (iv) implies (vii) in
Corollary 3.10, we have Qni

pni
/Pni

qni
→ ∞. From the inequality Qni

/qni
≥

Qni
pni

/qni
Pni

, we conclude Q/q /∈ `∞.

4. Matrix transformations in the sets sα(NpN q), s
◦

α(NpN q) and

s
(c)
α (NpN q).

In this section, we study some properties of the sets sα(N pN q), s
◦

α(N pN q)

and s
(c)
α (NpN q) and give a characterization of matrix transformations map-

ping in either of the sets sα(N pN q), s
◦

α(N pN q), or s
(c)
α (NpN q).

4.1. A study of the equation (N pN q)X = B.

Proposition 4.1. (i) Let B be any given sequence. Then the equation
(NpN q)X = B is equivalent to the infinite linear system

1

Pn

n∑

m=1

(
n∑

k=m

pk

Qk

)
qmxm = bn (n = 1, 2, . . . ).

(ii) Assume that α, α/p ∈ Γ. Then, for any given B ∈ sα, (resp. B ∈
s
◦

α), the equation (N pN q)X = B admits in s
α PQ

pq

, (resp. s
◦

α PQ

pq

) the unique
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solution X = N
−1
q N

−1
p B given by

(4.1) xn =
Qn−1

pn−1

Pn−2

qn
bn−2 −

Pn−1

qn

(
Qn−1

pn−1
+ d

Qn

pn

)
bn−1 +

Qn

qn

Pn

pn
bn

for n = 1, 2, ...,

with the convention bn = 0 for n ≤ 0.

(iii) If αP, αP/p ∈ Γ̂, then, for any given B ∈ s
(c)
α , the equation (N pN q)X

= B admits in s
(c)

α PQ

pq

a unique solution given by (32).

Proof. (i) We have N pN q = D 1
P

ΣDpD 1
Q

ΣDq = D 1
P

(ΣD p

Q
Σ)Dq; and putting

ΣD p

Q
Σ = (σnm)∞n,m=1, we get σnm =

∑n
k=m(pk/Qk) for m ≤ n and σnm = 0

otherwise. This shows (i).
(ii) Consider the case when B ∈ sα. First, since P is nondecreasing and

lim
n→∞

(
αn−1

αn

Pn−1

Pn

)
≤ lim

n→∞

(
αn−1

αn

)
lim

n→∞

(
Pn−1

Pn

)
,

we deduce that α ∈ Γ implies αP ∈ Γ. Then the operator represented by

N
−1
p = D 1

p
∆DP is bijective from sα into sα P

p

. Now, from the inequality

lim
n→∞

(
αn−1

αnpn−1

pn

pn−1

Pn−1Qn−1

PnQn

)
≤ lim

n→∞

(
αn−1

αn

1
pn−1

pn

)
,

the condition α/p ∈ Γ implies that αPQ/p ∈ Γ and N
−1
q = D 1

q
∆DQ is also

bijective from sα P
p

into s
α PQ

pq

. We conclude that N pN q is bijective from s
α PQ

pq

into sα. To obtain (4.1), we need to explicitly obtain the matrix (N pN q)
−1.

We have N
−1
q N

−1
p = D 1

q
∆DQD 1

p
∆DP = D 1

q
∆Du∆DP , with u = Q/p and

∆ ′ = Du∆DP = (ηnm)∞n,m=1, where

ηnm =





unPn for m = n,

−
Qn

pn
Pn−1 for m = n − 1, n ≥ 1,

0 otherwise.

We conclude that N
−1
q N

−1
p = D 1

q
∆∆ ′ = (η ′

nm)∞n,m=1, with
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η ′
nm =





Qn

qn

Pn

pn
for m = n,

Pn−1

qn

(
Qn−1

pn−1
+

Qn

pn

)
for m = n − 1, n ≥ 2,

Qn−1

pn−1

Pn−2

qn
for m = n − 2, n ≥ 3,

0 otherwise.

Part (iii) can be shown similarly. �

It follows from Part (i) in the previous theorem that

sα(NpN q) =

{
X ∈ s :

1

Pn

n∑

m=1

(
n∑

k=m

pk

Qk

)
qmxm = αnO(1) (n → ∞)

}
.

We have the following result.

Proposition 4.2. We have

(i) sα(NpN q) = sα P
p

(N q) if and only if αP ∈ Ĉ1;

(ii) s
◦

α(NpN q) = s
◦

α P
p

(N q) if and only if αP ∈ Ĉ1;

(iii) s
(c)
α (NpN q) = s

(c)

α P
p

(N q) if and only if αP ∈ Γ̂;

(iv) α ∈ Γ implies sα(NpN q) = sα P
p

(N q) and s
◦

α(NpNq) = s
◦

α P
p

(N q).

(v) Assume that α ∈ Γ. Then

(a) sα(NpN q) = s
α PQ

pq

if and only if αPQ
p ∈ Ĉ1;

(b) s
◦

α(N pN q) = s
◦

α PQ

pq

if and only if αPQ
p ∈ Ĉ1;

(vi) Let αP ∈ Γ̂. Then s
(c)
α (NpN q) = s

(c)

α PQ

pq

if and only if αPQ
p ∈ Γ̂.

Proof. (i) First we have sα P
p

(N q) = N
−1
q sα P

p

=D 1
q
∆s

α PQ

p

. Then sα P
p

(N q) =

N
−1
q N

−1
p sα = D 1

q
∆DQD 1

p
∆DP sα if and only if s

α PQ

p

= DQ

q

∆sαP and sαP =

∆sαP . The last identity means αP ∈ Ĉ1.
Parts (ii) and (iii) can shown similarly.
(iv) As we have seen in the proof of Proposition 4.1 (ii), the condition

α ∈ Γ implies αP ∈ Ĉ1 and the conclusion follows from (i) and (ii).

(v)(a) As we have seen in (i), the identity N
−1
q N

−1
p sα = s

α PQ

pq

is equivalent

to

D 1
q
∆DQD 1

p
∆DP sα = s

α
PQ

pq

.(4.2)
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Since α ∈ Γ, we have αP ∈ Γ and ,by Proposition 2.2, αP ∈ Ĉ1. So
∆sαP = sαP and identity (4.2) is equivalent to ∆DQ/p∆sαP = ∆DQ/psαP =

∆sQ

p
αP

= s
α PQ

p

which in turn is equivalent to αPQ/p ∈ Ĉ1.

Assertions (v) (b) and (v) (c) can be shown similarly.

(vi) Reasoning as above we get D 1
q
∆DQD 1

p
∆s

(c)
αP = s

(c)

α PQ

pq

if and only if

∆s
(c)

α PQ

p

= s
(c)

α PQ

p

. This means αPQ/p ∈ Γ̂, and we have shown (vi). �

4.2. Matrix transformations between χ(N pN q) and χ ′(N rN s), where

χ and χ ′ are of the form sξ, s
◦

ξ or s
(c)
ξ . In this section, among other

things, we study matrix transformations between χ(N q) and χ ′(N rN s),

where χ and χ ′ are of the form sξ, s
◦

ξ or s
(c)
ξ for ξ ∈ U+. We also con-

sider the case when a matrix transformation maps χ(N pN q) into χ ′(N rNs)

where χ and χ ′ are of the form sξ, s
◦

ξ or s
(c)
ξ . Note that until now there is

no characterization of the sets (χ(N pN q), χ
′) where χ ′ is sα, s

◦

α or s
(c)
α .

In this part, we use the sequences r = (rn)∞n=1, s = (sn)∞n=1 ∈ U+, R =
(Rn)∞n=1, S = (Sn)∞n=1, with Rn =n

k=1 rk and Sn =
∑n

k=1 sk. From the
previous results, we deduce the following

Proposition 4.3. We have

(i) (sα, sβ(N rN s)) = (s
◦

α, sβ(N rN s)) = (s(c)
α , sβ(N rN s))

and A ∈ (sα, sβ(N rN s))

if and only if

sup
n≥1

(
1

βn

∞∑

m=1

∣∣∣∣∣
∞∑

k=1

ank

Rk

(
k∑

i=m

ri

Si

)
sm

∣∣∣∣∣αm

)
< ∞;(4.3)

(ii) A ∈ (s
◦

α, s
◦

β(N rN s)) if and only if (34) holds and

lim
n→∞

1

βn

[
∞∑

k=1

ank

Rk

(
k∑

i=m

ri

Si

)
smαm

]
= 0 for all m = 1, 2, ...;

(4.4)

(iii) A ∈ (s
(c)
α , s

◦

β(N rN s)) if and only if (4.3) and (4.4) hold and

lim
n→∞

1

βn

∞∑

m=1

[
∞∑

k=1

ank

Rk

(
k∑

i=m

ri

Si

)
smαm

]
= 0 for all m = 1, 2, ...,
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(iv) A ∈ (s
◦

α, s
(c)
β (N rN s)) if and only if (4.3) holds and

lim
n→∞

1

βn

[
∞∑

k=1

ank

Rk

(
k∑

i=m

ri

Si

)
smαm

]
= lm for all m = 1, 2, ...;

(4.5)

(v) A ∈ (s
(c)
α , s

(c)
β (N rN s)) if and only if (4.3), (4.5) hold and

lim
n→∞

1

βn

∞∑

m=1

[
∞∑

k=1

ank

Rk

(
k∑

i=m

ri

Si

)
smαm

]
= l.

Proof. A short computation yields N rN sA = (κnm)∞n,m=1 with

κnm =
∞∑

k=1

ank
1

Rk

(
k∑

i=m

ri

Si

)
sm.(4.6)

By Lemma 3.3, we have A ∈ (sα, sβ(N rN s)) if and only if N rN sA ∈ Sα,β,
and we have shown (i).

Parts (ii) and (iii) follow in a similar way using the characterizations of
(c0, c0) and (c, c), (cf. [14, Theorem 1.36, p.160]). �

We also have the following

Corollary 4.4. Let α, β ∈ U+. Then A ∈ (sα(N q), sβ(N rN s)) if and only
if

(4.7) sup
n≥1


 1

βn

∞∑

m=1

∣∣∣∣∣∣

∞∑

k=1

ank

Rk


 rmsm

qmSm
+

(
sm

qm
−

sm+1

qm+1

)


k∑

i=m+1

ri

Si





∣∣∣∣∣∣

αmQm) < ∞

and

lim
m→∞

[
∞∑

k=1

ank

Rk

(
k∑

i=m

ri

Si

)
smαmQm

qm

]
= 0 for all n = 1, 2, ....

(4.8)

Proof. Now A ∈ (sα(N q), sβ(N rN s) if and only if N rN sA ∈ (sα(N q), sβ),
and applying Lemma 3.3 (i), we get (4.7) and (4.8). �

Remark 4.5. Reasoning as in the proof of Corollary 4.4 and using Propsition
3.2 and Lemma 3.3, we easily get the characterizations of the sets (E,F ),

where E is any of the sets sα(N q), s
◦

α(N q) or s
(c)
α (N q), and F is any of

the sets sβ(N rN s), s
◦

β(N rN s) or s
(c)
β (N rN s). So we have for instance A ∈
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(s
◦

α(N q), s
(c)
β (N rN s)) if and only if N rN sA ∈ (s

◦

α(N q), s
(c)
β ), that is if and

only if (4.7) holds and

lim
n→∞

∞∑

k=1

ank

Rk


 rmsm

qmSm
+

(
sm

qm
−

sm+1

qm+1

)


k∑

i=m+1

ri

Si




 αmQm

βn
= 0 for all n.

Proposition 4.6. (i) Assume that α ∈ Γ.
(a) Then A ∈ (sα(N pN q), sβ) if and only if

sup
n≥1

[
1

βn

(
∞∑

m=1

∣∣∣∣
anm

qm
−

an,m+1

qm+1

∣∣∣∣
αmPmQm

pm

)]
< ∞(4.9)

and

lim m → ∞

(
anm

αmPmQm

pmqm

)
= 0 for all n = 1, 2, ...

(4.10)

(b) A ∈ (s
◦

α(NpN q), sβ) if and only if (4.9) holds and

sup
m≥1

(
|anm|

αmPmQm

pmqm

)
< ∞

(ii) If αP ∈ Γ̂, then A ∈ (s
(c)
α (N pN q), sβ) if and only if (4.9) holds,

lim
m→∞

(
anm

αmPmQm

pmqmβn

)
= ξn for all n = 1, 2, ... and sup

n≥1
|ξn| < ∞.

(iii) (a) Assume that α, α/p ∈ Γ. Then (sα(N pN q), sβ) = (s
◦

α(NpN q), sβ)

and A ∈ (sα(NpN q), sβ) if and only if

sup
n≥1

(
1

βn

∞∑

m=1

|anm|
αmPmQm

pmqm

)
< ∞.(4.11)

(b) If αP, αPQ/p ∈ Γ̂, then A ∈ (s
(c)
α (N pN q), sβ) if and only if (4.11)

holds.

Proof. (i) (a) As we have seen in the proof of Proposition 4.1, α ∈ Γ implies

αP ∈ Γ and ∆sαP = sαP . Thus we have sα(N pN q) = N
−1
q N

−1
p sα =

N
−1
q D 1

p
∆sαP = N

−1
q sα P

p

= sα P
p

(N q) and A ∈ (sα(NpN q), sβ) if and only if

A ∈ (sα P
p

(N q), sβ). Then it is enough to apply Propositon 3.2 (i).

Part (b) can be shown similarly.

(ii) The condition αP ∈ Γ̂ implies s
(c)
α (NpN q) = s

(c)
αP/p(N q). Then A ∈

(s
(c)
α (NpN q), sβ) if and only if A ∈ (s

(c)
αP/p(N q), sβ), and the conclusion fol-

lows from Proposition 3.2 (ii).
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(iii) (a) The condition α, α/p ∈ Γ implies sα(N pN q) = sαPQ/pq and

s
◦

α(NpN q) = s
◦

αPQ/pq. So we have (sα(NpN q), sβ) = (s
◦

α(NpN q), sβ) =

SαPQ/pqβ.
Part (iii) (b) follows from Proposition 4.2 (vi). �

Remark 4.7. Reasoning as in Proposition 4.6, we get the characterizations
of the sets (E,F ), where E is any of the sets sα(NpN q), s

◦

α(NpN q) or

s
(c)
α (NpN q), and F is any of the sets sβ, s

◦

β or s
(c)
β .

Proposition 4.8. (i) (a) Assume that α, α/p ∈ Γ. Then we have

(
sα

(
NpNq

)
, sβ

(
N rN s

))
=
(
s
◦

α

(
NpN q

)
, sβ

(
N rN s

))

and A ∈ (sα(NpN q), sβ(N rN s)) if and only if

sup
n≥1

[
1

βn

∞∑

m=1

∣∣∣∣∣
∞∑

k=1

ank

Rk

(
k∑

i=m

ri

Si

)
sm

∣∣∣∣∣
αmPmQm

pmqm

]
< ∞.

(4.12)

(b) If αP ∈ Γ, αPQ/p ∈ Γ̂, then A ∈ (s
(c)
α (N pN q), sβ(N rN s)) if and only

if (4.12) holds.
(ii) (a) Assume that α ∈ Γ.Then A ∈ (sα(NpN q), sβ(N rN s)) if and only

if

(4.13) sup
n≥1


 1

βn

∞∑

m=1

∣∣∣∣∣∣

∞∑

k=1

ank

Rk


 rmsm

qmSm
+

(
sm

qm
−

sm+1

qm+1

)


k∑

i=m+1

ri

Si





∣∣∣∣∣∣

αmPmQm

pm

]
< ∞

and

lim
m→∞

[
∞∑

k=1

(
ank

Rk

(
k∑

i=m

ri

Si

))
αmsmPmQm

pmqm

]
= 0 for all n.

(b) A ∈ (s
◦

α(N pN q), sβ(N rN s)) if and only if (4.13) holds and

sup
m≥1

∣∣∣∣∣
∞∑

k=1

(
ank

Rk

(
k∑

i=m

ri

Si

))
αmsmPmQm

pmqm

∣∣∣∣∣ < ∞ for all n.

(4.14)
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(iii) If αP ∈ Γ̂, then A ∈ (s
(c)
α (NpN q), sβ(N rN s)) if and only if (4.13)

holds and

lim
m→∞

[
1

βn

∞∑

k=1

(
ank

Rk

(
k∑

i=m

ri

Si

))
αmsmPmQm

pmqm

]
= ζn

for all n and sup
n≥1

|ζn| < ∞.

Proof. (i) As we have seen in the proof of Proposition 4.1, the condition
α/p ∈ Γ implies that αPQ/p ∈ Γ. So α, α/p ∈ Γ together imply sα(N pN q) =

s
α PQ

pq

. Thus A ∈ (sα(NpN q), sβ(N rN s)) if and only if N rN sA ∈ (s
α PQ

pq

, sβ)

= S
α PQ

pq
,β

. Now the conclusion follows from (4.5) and

(
s
α PQ

pq

, sβ

)
=

(
s
◦

α PQ

pq

, sβ

)
=

(
s
(c)

α PQ

pq

, sβ

)
.

(i) (b) By Proposition 4.2 (vi), the conditions αP ∈ Γ̂ and αPQ/p ∈ Γ̂

together imply s
(c)
α (NpN q) = s

(c)

α PQ

pq

. Thus A ∈ (sα(NpN q), sβ(N rNs)) is

equivalent to N rN sA ∈ (s
(c)

α PQ

pq

, sβ) = S
α PQ

pq
,β

.

(ii) (a) Reasoning as in Proposition 4.6 (i) (a), we get that α ∈ Γ im-
plies sα(N pN q) = sα P

p

(N q). So A ∈ (sα(NpN q), sβ(N rN s)) if and only if

N rNsA ∈ (sα P
p
(N q), sβ), and the conclusion follows from Proposition 3.2

(i).
(ii) (b) Since we have (s

◦

α(NpN q), sβ(N rN s)) = (s
◦

α P
p

(N q), sβ(N rN s)) and

A ∈ (s
◦

α P
p

(N q), sβ(N rN s)) if and only if N rN sA ∈ (s
◦

α P
p

(N q), sβ), the con-

clusion follows by Proposition 3.2 (iii).

(iii) By Proposition 4.2 (iii), the condition αP ∈ Γ̂ implies s
(c)
α (N pN q) =

s
(c)
αP/p(N q) and, as above, A ∈ (s

(c)
α (NpN q), sβ(N rN s)) if and only if N rN sA

∈ (s
(c)

α P
p

(N q, sβ). Now the conclusion follows from Proposition 3.2 (ii). �

Proposition 4.9. (i) Assume that α, β ∈ Γ.
(a) Then A ∈ (sα(N pN q), sβ(N rN s)) if and only if

sup
n≥1

[
∞∑

m=1

∣∣∣∣∣
sn

βnSnRn

n∑

k=1

sk

(
akm

qm
−

ak,m+1

qm+1

)∣∣∣∣∣
αmPmQm

pm

]
< ∞.

(4.15)
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and

lim
m→∞

[
αmPmQm

pmqm

sn

βnRn

(
n∑

k=1

pkakm

Pn

)]
= 0 for all n.

(4.16)

(b) Then A ∈ (sα
◦

(N pN q), sβ(N rN s)) if and only if (4.15) holds and

sup
m≥1

[
αmPmQm

pmqm

(
n∑

k=1

skakm

Sn

)]
< ∞.(4.17)

(ii) If α ∈ Γ̂ and β ∈ Γ, then A ∈ (s
(c)
α (NpN q), sβ(N rN s)) if and only if

(4.15) holds and

lim
m→∞

[
αmPmQm

pmqmβn

(
n∑

k=1

skakm

Sn

)]
= ξ ′

n for all n and sup
n≥1

|ξ ′
n| < ∞.

(4.18)

Proof. The condition α, β ∈ Γ implies

(sα(N pN q), sβ(N rN s)) = (sα P
p

(N q), sβ R
s

(N s)).

Now the conclusiom follows from Proposition 3.4 (i).
The statements (i) (b) and (ii) can be shown similarly. �

Remark 4.10. Reasoning as in the previous corollaries we can easily get the
characterizations of the sets (E,F ), where E is any of the sets sα(N pN q),

s
◦

α(NpN q) or s
(c)
α (NpN q) and F is any of the sets sβ(N rN s), s

◦

β(NpNq) or

s
(c)
β (NpN q).
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[2] A. Böttcher, B. Silbermann, Introduction to large truncated Toeplitz matrices,

Springer New York, Berlin 2000
[3] G. H. Hardy, Divergent Series, Oxford University Press 1973
[4] I. J. Maddox, Infinite matrices of operators, Lecture Notes in Mathematics 780,

Springer-Verlag, Berlin, Heidelberg and New York, 1980
[5] B. de Malafosse, Properties of some sets of sequences and application to the spaces of

bounded difference sequences of order µ, Hokkaido Mathematical Journal 31 (2002),
283–299

[6] B. de Malafosse, B., Recent results in the infinite matrix theory and application to
Hill equation, Demonstratio Matematica 35, No. 1 (2002), 11–26

[7] B. de Malafosse, Sets of sequences that are strongly τ - bounded and matrix transfor-
mations between these sets, Demonstratio Matematica 36, No. 1 (2003), 155–171

[8] B. de Malafosse, Variation of an element in the operator of first difference, Novi Sad

Journal of Mathematics 32, No. 1 (2002), 141-158



106 B. DE MALAFOSSE, E. MALKOWSKY

[9] B. de Malafosse, Matrix transformations between new matrix domains, Soochow Jour-

nal of Mathematics 29, No. 1 (2003), 15–34.
[10] B. de Malafosse, On some BK space, International Journal of Mathematics and Math-

ematical Sciences 28 (2003), 1783–1801
[11] B. de Malafosse, E. Malkowsky, Sequence spaces and inverse of an infinite matrix,

Rend. del Circ. Mat. di Palermo Serie II, 51 (2002), 277–294
[12] E. Malkowsky, The continuous duals of the spaces c0(Λ) and c(Λ) for exponentially

bounded sequences Λ, Acta Sci. Math. Szeged 61 (1995), 241–250
[13] E. Malkowsky, Linear operators in certain BK spaces, Bolyai Soc.Math. Stud. 5

(1996), 259–273
[14] E. Malkowsky, E., Rakočević, V., An introduction into the theory of sequence spaces

and measure of noncompactness, Zbornik radova, Matematički institut SANU 9 (17)
(2000), 143–234

[15] E. Malkowsky, Linear operators between some matrix domains, Rend. del Circ. Mat.

di Palermo Serie II, 68 (2002) 641–655
[16] A. Wilansky, Summability through Functional Analysis, North-Holland Mathematics

Studies 85, Elsevier Science Publishers, 1984.

(de Malafosse) B.D.M: LMAH Université du Havre, BP 4006 I.U.T Le Havre,
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