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	e matrix-type network data envelopment analysis (DEA) model is established for evaluating the relative performance of the
matrix-type structure. 	e existence of solution and property of the new model is given. 	e equivalence of DEA e
ciency and
Pareto solutions of corresponding objective programming problem is proved. Using data in input-output tables, the new model is
tested and the results show that the new model can be feasible in evaluating the relative performance of the matrix-type structure.

1. Introduction

In the process of enterprise, logistics, and supply chain man-
agement, we tend to analyze complex systems such as supply
chain systems based on life cycle assessment (LCA), input-
output systems, and others. 	e structure of the systems can
be shown in Figure 1 and the e
ciency scores of these systems
are o�en required to be evaluated for the need ofmanagement
decision making.

	e generally accepted method for evaluating the rela-
tive performance of a set of comparable decision making
units (DMUs) is data envelopment analysis (DEA). 	e
�rst DEA model was introduced in 1978 [1] and several
classic DEA models have been proposed over the past
thirty years [2–5]. In recent years, DEA models were
applied to evaluate the e
ciency scores of complex sys-
tems and the concept of network DEA was put forward.
	e �rst network DEA model was introduced in 2000
[6], and then di�erent models were put forward accord-
ing to di�erent system structure. 	e representative work
includes models for series systems [5, 7–14], models for
the parallel system [15–20], and model for complex system
containing multiple subsystems introduced by Amatatsu
and Ueda [21], Wang et al. [22], and Zhao et al. [23]. How-
ever, the models above cannot e
ciently evaluate the e
-
ciency score of the system shown in Figure 1.

In the following sections, a new model for evaluating the
e
ciency score of the system shown in Figure 1 is presented.
As the model can be transformed into the linear program-
ming problem, the existence of solution and property of the
new model will be given. Computational experiments will
be also presented to study the performances of the proposed
model.

2. Network DEA Model for
Matrix-Type Organizations

In the system shown in Figure 1, each subsystem has its
own external inputs and external outputs, produces goods for
other subsystems, and receives goods from other subsystems
simultaneously. We refer to this type of system as a matrix-
type system. Because of the complex internal structure, the
relative performance of the system cannot be evaluated by the
models mentioned above.

Consider the subsystem �� (� = 1, 2, . . . , �) of DMU� (� =1, 2, . . . , �) shown in Figure 2.Here,���, ��� (� = 1, 2, . . . , �; � =1, 2, . . . , �), respectively, represent the external inputs and
outputs for the subsystem �� (� = 1, 2, . . . , �) of DMU� (� =
1, 2, . . . , �); 	(�,�)� (
 = 1, 2, . . . , �, 
 ̸= �) repre-

sent the internal inputs from other subsystems; and 	(�,�)�
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Figure 1: Matrix-type structure.
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Figure 2: Subsystem �� ofDMU�.

(
 = 1, 2, . . . , �, 
 ̸= �) represent the internal outputs to other
subsystems.

Let ��0 = ���0 , ��0 = ���0 , 	(�,�)0 = 	(�,�)�0 , and 	(�,�)0 = 	(�,�)�0 (� =1, 2, . . . , �; 
 = 1, 2, . . . , �); the e
ciency score of subsystem�� (� = 1, 2, . . . , �) inDMU�0 (�0 ∈ {1, 2, . . . , �}) can be gotten
through the following model:

max Ψ� = ����0 + ∑��=1, � ̸=� ���	(�,�)0
V���0 + ∑��=1, � ̸=� ���	(�,�)0

s.t. ����� + ∑��=1, � ̸=� ���	(�,�)�
V���� + ∑��=1, � ̸=� ���	(�,�)� ≤ 1, � = 1, 2, . . . , �,
��, V�, ���, ��� ≥ 0, 
 = 1, 2, . . . , �, 
 ̸= �,

(1)

where V�, ��� represent the measure of the inputs and ��, ���
represent the measure of the outputs. 	e optimal values
of these parameters can be obtained by the optimization
problem (1).

Considering the relationship among the inputs and out-
puts of subsystems in matrix-type structure, we can get the
�ow balance as follows:

�∑
�=1, � ̸=�

���	(�,�)� = �∑
�=1, � ̸=�

���	(�,�)� . (2)

	en the model in (1) can be rewritten to the following
form:

max Ψ� = ����0 + ∑��=1, � ̸=� ���	(�,�)0
V���0 + ∑��=1, � ̸=� ���	(�,�)0

s.t. ����� + ∑��=1, � ̸=� ���	(�,�)�
V���� + ∑��=1, � ̸=� ���	(�,�)� ≤ 1, � = 1, 2, . . . , �,
��, V�, ��� ≥ 0, 
 = 1, 2, . . . , �, 
 ̸= �.

(3)

According to the properties of CCR model [1], we can

get Ψ�∗ ≤ 1 which is the optimal value of subsystem �� (� =1, 2, . . . , �) and the following de�nition can be made.

De�nition 1. If Ψ�∗ = 1 and �∗� , �∗� > 0 (
 = 1, 2, . . . , �, 
 ̸=�) in model (3), the subsystem �� (� = 1, 2, . . . , �) of
DMU�0 (�0 ∈ {1, 2, . . . , �}) is DEA e
cient.

Furthermore, the e
ciency score of DMU�0 can be
obtained through averaging the e
ciency score of each
subsystem �� (� = 1, 2, . . . , �) with certain weight [17], which
is the proportion of all inputs of subsystem �� (� = 1, 2, . . . , �)
which accounted for the entire inputs of the system. 	en
the e
ciency score of DMU�0 (�0 ∈ {1, 2, . . . , �}) can be
evaluated by the following model:

max Φ = �∑
�=1

��Ψ�

s.t. ����� + ∑��=1, � ̸=� ���	(�,�)�
V���� + ∑��=1, � ̸=� ���	(�,�)� ≤ 1,
� = 1, 2, . . . , �; � = 1, 2, . . . , �,
��, V�, ��� ≥ 0, � = 1, 2, . . . , �; 
 = 1, 2, . . . , �, 
 ̸= �.

(4)

Here, �� = (V���0 + ∑��=1, � ̸=� ���	(�,�)0 )/∑��=1(V���0 +
∑��=1, � ̸=� ���	(�,�)0 ) represents the percentage of the subsystems’
inputs in the total inputs.

	en we can get

�∑
�=1
��Ψ� = �∑

�=1

V���0 + ∑��=1, � ̸=� ���	(�,�)0∑��=1 (V���0 + ∑��=1, � ̸=� ���	(�,�)0 )
∗ ����0 + ∑��=1, � ̸=� ���	(�,�)0
V���0 + ∑��=1, � ̸=� ���	(�,�)0

= ∑��=1 (����0 + ∑��=1, � ̸=� ���	(�,�)0 )
∑��=1 (V���0 + ∑��=1, � ̸=� ���	(�,�)0 ) ;

(5)
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model (4) can be rewritten as

max Φ = �∑
�=1
��Ψ� = ∑��=1 (����0 + ∑��=1, � ̸=� ���	(�,�)0 )

∑��=1 (V���0 + ∑��=1, � ̸=� ���	(�,�)0 )
s.t. ����� + ∑��=1, � ̸=� ���	(�,�)�

V���� + ∑��=1, � ̸=� ���	(�,�)� ≤ 1,
� = 1, 2, . . . , �; � = 1, 2, . . . , �,
��, V�, ��� ≥ 0, � = 1, 2, . . . , �; 
 = 1, 2, . . . , �, 
 ̸= �.

(6)

To reduce model (6) to an ordinary linear programming
problem, we rescale all data by means of the following
formula:

� = 1
∑��=1 (V���0 + ∑��=1, � ̸=� ���	(�,�)0 ) ,

�� = ���, �� = �V�, ��� = ����,
(�, 
 = 1, 2, . . . , �) .

(7)

Using these rescaled data in model (6), we obtain

max Φ = �∑
�=1

(����0 +
�∑
�=1, � ̸=�

���	(�,�)0 )

s.t. �∑
�=1

(����0 +
�∑
�=1, � ̸=�

���	(�,�)0 ) = 1,

����� +
�∑
�=1, � ̸=�

���	(�,�)� ≤ ����� +
�∑
�=1, � ̸=�

���	(�,�)� ,
� = 1, 2, . . . , �; � = 1, 2, . . . , �,
��, ��, ��� ≥ 0, � = 1, 2, . . . , �; 
 = 1, 2, . . . , �, 
 ̸= �.

(8)

Obviously, the optimal objective values of both model (6)
and model (8) are equal.

	e dual problem of model (8) can be expressed as

min  
s.t. �∑

�=1
���!�� ≤  ��0, � = 1, 2, . . . , �,
�∑
�=1

���!�� ≥ ��0, � = 1, 2, . . . , �,
�∑
�=1

	(�,�)� !�� −
�∑
�=1

	(�,�)� !�� ≤  	(�,�)0 − 	(�,�)0 ,
� = 1, 2, . . . , �, 
 = 1, 2, . . . , �, 
 ̸= �,
!�� ≥ 0, � = 1, 2, . . . , �, � = 1, 2, . . . , �.

(9)

3. Property of New Model

�eorem 2. 	e optimal solution of model (8) exists and the
optimal objective valuesΦ∗ ≤ 1.
Proof. See the Appendix.

De�nition 3. 	e DMU�0 (�0 ∈ {1, 2, . . . , �}) is DEA e
cient

if the optimal objective value of model (8) is 1 and �∗� , �∗� > 0,� = 1, 2, . . . , �.

According to the duality theorem and elastic theorem of
linear programming, we can get the following.

De�nition 4. 	e DMU�0 (�0 ∈ {1, 2, . . . , �}) is DEA e
cient
if the optimal solutions ofmodel (9)which can be represented

as  ∗, !�∗� (� = 1, 2, . . . , �; � = 1, 2, . . . , �)meet

 ∗ = 1, �∑
�=1

���!�∗� =  ∗��0,
�∑
�=1

���!�∗� = ��0,
� = 1, 2, . . . , �.

(10)

�eorem 5. 	eDMU�0 (�0 ∈ {1, 2, . . . , �}) is DEA e�cient if
and only if all subsystems of theDMU�0 are DEA e�cient.

Proof. See the Appendix.

4. Equivalence of DEA Efficiency
and Pareto Solution

Consider the following multiple objective programming
problems:

min " (X,Y) = (X, −Y)
= (�1, �2, . . . , ��; −�1, −�2, . . . , −��)	

s.t. (X,Y) ∈ #.
(11)

Here,

# = {{{
(X,Y) | �∑

�=1
���!�� ≤ ��, �∑

�=1
���!�� ≥ ��,

�∑
�=1

	(�,�)� !�� ≤
�∑
�=1

	(�,�)� !��,

� = 1, 2, . . . , �; 
 = 1, 2, . . . , �, 
 ̸= �}}}

(12)

is the production possibility set of the matrix-type DEA
model.

De�nition 6. Let (Χ∗,Y∗) ∈ # and if there does not exist(Χ,Y) ∈ # which makes "(X,Y) ≤ "(X∗,Y∗), (Χ∗,Y∗) is
de�ned as the Pareto solution of model (11).
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Figure 3: 	e construction of the second industry.

Lemma 7. If (X0,Y0) is the optimal solution of

min(X,Y)∈	 (�0TX − �0TY) and (�0T,�0T) > 0, (X0,Y0)
is the Pareto solution of model (11).

Proof. See the Appendix.

�eorem 8. 	eDMU�0 (�0 ∈ {1, 2, . . . , �}) is DEA e�cient if
and only if (X0,Y0) is the Pareto solution of model (11).

Proof. See the Appendix.

5. Analysis of Efficiencies of the Second
Industry of 27 Provinces in China Based
on Input-Output Tables

Input-output tables are fundamental statistical data in eco-
nomic, social, and environmental issues. Chiang et al. applied
black box DEA programs to input-output tables [24]. Jiang et
al. analyzed the national economy e
ciency through input-
output tables with the DEA method [25] and Amatatsu and
Ueda applied the new SBMmodel to input-output tables of 47
prefectures in Japan and assessed the industrial e
ciencies of
them [21].

In this part, we apply the matrix model to input-output
tables. We consider the e
ciency scores of the second
industry of 27 provinces in China in 2007. Referring to the
statistics speci�cation of the National Bureau of China, there
are four sectors in the second industry including mining,
manufacturing, electricity gas and water production, and
construction. Taking Shanxi for example, the data of four
sectors input-output table can be listed in Table 1.

	e construction of the second industry can be shown in
Figure 3. Conventional DEAmodels construction as a “black
box” as shown in Figure 4.

From Figure 3, we can see that the e
ciency scores of the
second industry of these provinces can be calculated by the
matrix-type model. Using model (8), the e
ciency scores of
the 27 provinces in China can be shown in Table 2.	en, each
sector’s scores can be obtain by the formula

Φ� = �∗� ��0 +
�∑
�=1, � ̸=�

�∗��	(�,�)0 , (13)

and the scores are also shown in Table 2.

Mining

Electricity gas and 

water production

Manufacturing

Construction

Input 1 Input 2 Input 3 Input 4

Output 1 Output 2 Output 3 Output 4

Figure 4: 	e traditional “black model.”

It can be seen that the e
ciency scores obtained from the
matrix-type model are not accurate for ignoring the internal
inputs and outputs among the subsystems. 	ere are �ve
DMUs’ e
ciency scores which are equal to 1 in black model
and only the e
ciency scores of Henan province are equal to
1 in our new model.

	e new model can not only calculate the more accurate
e
ciency scores of the DMUs but also give the e
ciency
score of each subsystem which provides detailed information
for the decision makers. As Hebei, the e
ciency score got
by black model is 0.386. Analyzing the e
ciency score got
by matrix model, not all the sectors are ine
cient. 	e
mining and the electricity gas and water production are both
DEA e
cient, and the low e
ciency score is because of the
manufacture and constructor.

6. Conclusions

	is paper has established a matrix-type DEA model for
matrix-type organization and proved the existence of solu-
tion. Also, the property of the newmodel and the equivalence
of DEA e
ciency and Pareto solutions of corresponding
objective programming problem are given. 	en the new
model has been applied to the input-output tables and got the
meaningful conclusions.

A point that should be stressed is that the newmodel con-
siders the internal linking activities, and the in�uence of the
interaction of the subsystems on the whole e
ciency score
is represented. Based on model (8), the relative performance
of each subsystem can be evaluated. In contrast to the black
model, the new model gives more accurate result.

Finally, in addition to input-output tables, cycle indus-
try is also typical matrix-type organization, such as cycle
automobile industry which includes production, marketing,
repair and recovery, the four sectors are in�uenced each
other. We will give special discussion on the e
ciency of this
kind of industry in the further study.
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Table 1: Example of four sectors of Shanxi’s I-O table (unit: billion).

Mining Manufacturing Electricity gas and water production Construction Output

Mining 3.68 65.26 11.41 20.2 96.72

Manufacturing 20.9 209.6 3.94 82.2 572.3

Electricity gas and water production 5.49 20.4 8.72 1.85 25.3

Construction 0.18 0.24 0.023 0 293.79

Input 132.4 55.7 24.3 57.3

Table 2: E
ciency scores obtained from the “black model” and new model.

DMU� Black box model

Matrix model

Subsystem

Primary Secondary Tertiary Quaternary

Anhui 0.26 0.584 0.683 0.518 0.629

Beijing 0.156 0.586 0.604 1 0.025

Chongqing 0.507 0.446 0.634 0.789 0.498

Fujian 0.328 0.456 0.402 0.266 0.674

Gansu 0.143 0.543 0.558 0.171 0.833

Guangdong 0.576 0.655 1 0.301 0.249

Guangxi 0.161 0.535 0.485 0.368 0.762

Guizhou 0.141 0.636 0.482 0.503 0.819

Hainan 1 0.603 0.211 1 0.887

Heilongjiang 1 0.706 0.88 0.904 0.325

Henan 1 1 1 1 1

Hubei 0.313 0.596 1 0.478 1

Hunan 0.089 0.482 0.66 0.188 0.562

Inner Mongolia 0.268 0.439 0.423 0.268 0.496

Jiangsu 0.274 0.732 0.975 0.557 1

Jiangxi 0.32 0.5 0.669 0.915 0.63

Jilin 0.222 0.435 0.514 0.552 1

Liaoning 0.19 0.46 0.405 0.387 0.509

Ningxia 1 0.822 0.871 0.012 0.067

Shaanxi 0.512 0.566 0.976 0.64 0.478

Shandong 0.174 0.61 0.186 0.546 1

Shanxi 1 0.716 0.594 0.934 0.456

Tianjin 0.399 0.476 0.266 0.426 0.585

Xinjiang 0.612 0.447 0.282 0.578 0.372

Yunnan 0.334 0.511 0.619 0.573 0.579

Zhejiang 0.241 0.528 0.93 0.174 0.755

Appendix

Proof of 	eorem 2. Let  = 1, !�� = {0, � ̸= �0; 1, � = �0},
� = 1, 2, . . . , �; it is easy to see that  �, !��, � = 1, 2, . . . , �, � =1, 2, . . . , �, is the feasible solutions of model (9). Referring to
the linear programming optimal solution existence theorem,
we can know that the optimal solutions of model (9) and
model (8) exist. Denote by

�∗1 , . . . , �∗�, �∗1 , . . . , �∗�, �∗21, �∗31, . . . , �∗�1,
�∗12, �∗32, . . . , �∗�2, . . . , �∗1�, �∗2�, . . . , �∗�−1,� (A.1)

the optimal solutions of model (8); we then obtain

−�∗� ��0 + �∗� ��0 −
�∑
�=1, � ̸=�

�∗��	(�,�)0 + �∑
�=1, � ̸=�

�∗��	(�,�)0 ≤ 0,

� = 1, 2, . . . , �,
(A.2)

�∑
�=1

(�∗� ��0 +
�∑
�=1, � ̸=�

�∗��	(�,�)0 ) = 1. (A.3)
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From (A.2), we can get

�∑
�=1

(−�∗� ��0 + �∗� ��0 −
�∑
�=1, � ̸=�

�∗��	(�,�)0 + �∑
�=1, � ̸=�

�∗��	(�,�)0 ) ≤ 0.
(A.4)

Considering (A.3) and ∑��=1∑��=1, � ̸=� �∗��	(�,�)0 =
∑��=1∑��=1, � ̸=� �∗��	(�,�)0 , (A.4) can be rewritten as

1 − �∑
�=1

�∑
�=1, � ̸=�

�∗��	(�,�)0 + �∑
�=1

�∗� ��0 ≤ 0. (A.5)

	enΦ∗ = ∑��=1(�∗� ��0+∑��=1, � ̸=� �∗��	(�,�)0 ) ≤ 1; the theorem
is con�rmed.

Proof of 	eorem 5.

Su�ciency. If the subsystems of the DMU�0 are all DEA

e
cient, there exist the optimal solutions �∗� > 0, V∗� >0, �∗�� ≥ 0 (
 = 1, 2, . . . , �, 
 ̸= �) which make Ψ�∗ =1 (� = 1, 2, . . . , �) for model (3). Considering the constraint
conditions inmodel (3) andmodel (4), we can know that�∗� >0, V∗� > 0, �∗�� ≥ 0 (
 = 1, 2, . . . , �, 
 ̸= �) are also the feasible
solutions of model (4). According to those feasible solutions,

the value of model (4) is Φ∗ = ∑��=1 ��Ψ�∗ = ∑��=1 �� = 1.
Combined with 	eorem 2, Φ∗ = 1 is the optimal

solutions of model (4) and is also the optimal solutions of
model (8); then the DMU�0 (�0 ∈ {1, 2, . . . , �}) is DEA
e
cient.

Necessity. If the DMU�0 (�0 ∈ {1, 2, . . . , �}) is DEA e
cient,

the optimal solutions �∗� > 0, V∗� > 0, �∗�� ≥ 0, � =1, 2, . . . , �, 
 = 1, 2, . . . , �, 
 ̸= �, of model (4) exist which
make Φ∗ = ∑��=1 ��Ψ̂�∗ = 1.

According to ∑��=1 �� = 1 and Ψ̂�∗ ≤ 1, � = 1, 2, . . . , �, we

can get Ψ̂�∗ = 1, � = 1, 2, . . . , �. Considering the constraint
conditions in model (3) and model (4), we know that �∗� >0, V∗� > 0, �∗�� ≥ 0, 
 = 1, 2, . . . , �, 
 ̸= �, are the feasible
solutions ofmodel (3) when � = 1, 2, . . . , �, respectively.	en

there are Ψ�∗ = Ψ̂�∗ = 1, � = 1, 2, . . . , �, and the subsystems
of theDMU�0 (�0 ∈ {1, 2, . . . , �}) are all DEA e
cient.

Proof of Lemma 7. If (X0,Y0) is not the Pareto solution of

model (11), then there exists (X̂, Ŷ) ∈ # which makes ( X̂

−Ŷ ) ≤( X0

−Y0
). Let (�0T,�0T) > 0; we have

(�0T,�0T) [( X̂−Ŷ) − ( X0−Y0

)] ≤ 0. (A.6)

	en �0TX̂ − �0TŶ ≤ �0TX0 − �0TY0, which is contrary
to the hypothesis that (X0,Y0) is the optimal solution of

min(
,�)∈	(�0TX − �0TY).
Proof of 	eorem 8.

Su�ciency. If the DMU�0 is DEA e
cient, the optimal

solutions of model (8) exist which are denoted by �∗� > 0,

�∗� > 0, �∗�� ≥ 0 (
 = 1, 2, . . . , �, 
 ̸= �) and the corresponding
optimal value is Φ∗ = 1. 	en,

�∑
�=1

(�∗� ��0 +
�∑
�=1, � ̸=�

�∗��	(�,�)0 ) = 1, (A.7)

�∑
�=1

(�∗� ��0 +
�∑
�=1, � ̸=�

�∗��	(�,�)0 ) = 1, (A.8)

−�∗� ��� + �∗� ��� −
�∑
�=1, � ̸=�

�∗��	(�,�)� + �∑
�=1, � ̸=�

�∗��	(�,�)� ≤ 0,
� = 1, 2, . . . , �; � = 1, 2, . . . , �.

(A.9)

Let <�� ≥ 0, � = 1, 2, . . . , �, � = 1, 2, . . . , �, and

�∑
�=1

	(�,�)� <�� ≤
�∑
�=1

	(�,�)� <�� ,
� = 1, 2, . . . , �; 
 = 1, 2, . . . , �, 
 ̸= �.

(A.10)

We can rewrite (A.9) as

�∑
�=1

�∑
�=1

(−�∗� ���<�� + �∗� ���<�� −
�∑
�=1, � ̸=�

�∗��	(�,�)� <��

+ �∑
�=1, � ̸=�

�∗��	(�,�)� <��) ≤ 0.
(A.11)

Arranging (A.11) and considering

�∑
�=1

�∑
�=1

(− �∑
�=1, � ̸=�

�∗��	(�,�)� <�� +
�∑
�=1, � ̸=�

�∗��	(�,�)� <��)

= �∑
�=1

(− �∑
�=1

�∑
�=1, � ̸=�

�∗��	(�,�)� <�� +
�∑
�=1

�∑
�=1, � ̸=�

�∗��	(�,�)� <��)

= �∑
�=1

( �∑
�=1

�∑
�=1, � ̸=�

�∗��	(�,�)� (−<�� + <��)) ≥ 0,
(A.12)

we can get ∑��=1∑��=1(−�∗� ���<�� + �∗� ���<��) ≤ 0.
Applying (A.7) and equation ∑��=1∑��=1, � ̸=� �∗��	(�,�)0 =

∑��=1∑��=1, � ̸=� �∗��	(�,�)0 to (A.4), the equality −∑��=1 �∗� ��0 +∑��=1 �∗� ��0 = 0 is gotten.
	at is,

�∑
�=1

�∑
�=1

(�∗� ���<�� − �∗� ���<��) ≥
�∑
�=1

�∗� ��0 −
�∑
�=1

�∗� ��0. (A.13)

So, ∀(X,Y) ∈ # we can get

�∗	@ − �∗	A ≥ �∗	 �∑
�=1

���!�� − �∗	
�∑
�=1

���!��
≥ �∗	@0 − �∗	A0,

(A.14)
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where �∗ = (�∗1 , �∗2 , . . . , �∗�)	 > 0; �∗ = (�∗1 , �∗2 , . . . , �∗�)	 >0. 	en (X0,Y0) is the optimal solution of

min �∗TX − �∗TY
s.t. (X,Y) ∈ #. (A.15)

According to Lemma 7, (X0,Y0) is also the Pareto
solution of model (11).

Necessity.We suppose (X0,Y0) is the Pareto solution ofmodel
(11) and the DMU�0 is not DEA e
cient. 	e following
situations can be gotten as follows.

(a) 	e optimal solution of model (9) is less than 1; that
is,  ∗ < 1.

(b) 	e optimal solution of model (9) is 1 and there
exists at least 1 serial number C which belongs to the array{1, 2, . . . , �} and ∑��=1 ���!�∗� <  ∗��0.

(c) 	e optimal solution of model (9) is 1 and there
exists at least 1 serial number C which belongs to the array{1, 2, . . . , �} and ∑��=1 ���!�∗� > ��0.

Now, we make the proof, respectively, according to the
situations above.

(a) Let �̂�0 =  ∗��0 < ��0, X̂0 = {�̂10, . . . , �̂�0, . . . �̂�0}; then
X̂0 < X0. Considering the constraint conditions inmodel (9),
we can get

�∑
�=1

���!∗�� ≤  ∗��0 = �̂�0, � = 1, 2, . . . �,
�∑
�=1

���!�∗� ≥ ��0, � = 1, 2, . . . �,
�∑
�=1

	(�,�)� !�∗� −
�∑
�=1

	(�,�)� !�∗� ≤  ∗	(�,�)0 − 	(�,�)0 ≤ 0,
� = 1, 2, . . . , �, 
 = 1, 2, . . . , �, 
 ̸= �.

(A.16)

	en (X̂0,Y0) is the feasible solution of model (11) and

( X̂0

−Y0

) ≤ ( X0

−Y0
). 	e conclusion is contrary to the hypothesis

before.
(b)	ere exists � > 0 and∑��=1 ���!�∗� +� = ��0. Let �̂�0 = ��0−� < ��0 and X̂0 = {�10, . . . , �̂�0, . . . ��0}; then we have X̂0 ≤ X0.

Considering the constraint conditions in model (9), we can
get

�∑
�=1

���!∗�� ≤  ∗��0 = ��0, � = 1, 2, . . . , �, � ̸= C,
�∑
�=1

���!∗�� = �̂�0,
�∑
�=1

���!�∗� ≥ ��0, � = 1, 2, . . . , �,

�∑
�=1

	(�,�)� !�∗� −
�∑
�=1

	(�,�)� !�∗� ≤  ∗	(�,�)0 − 	(�,�)0 ≤ 0,
� = 1, 2, . . . , �, 
 = 1, 2, . . . , �, 
 ̸= �.

(A.17)

	en (X̂0,Y0) is the feasible solution of model (9) and

( X̂0

−Y0

) ≤ ( X0

−Y0
). 	e conclusion is contrary to the hypothesis

before.
(c)	ere exists � > 0 and∑��=1 ���!�∗� −� = ��0. Let �̂�0 = ��0+� > ��0 and Ŷ0 = {�10 , . . . , �̂�0, . . . , ��0 }; then we have Ŷ0 ≥ Y0.

Considering the constraint conditions in model (9), we can
get

�∑
�=1

���!∗�� ≤  ∗��0 = ��0, � = 1, 2, . . . , �,
�∑
�=1

���!�∗� ≥ ��0, � = 1, 2, . . . , �, � ̸= C,
�∑
�=1

���!�∗� = �̂�0, � = 1, 2, . . . , �,
�∑
�=1

	(�,�)� !�∗� −
�∑
�=1

	(�,�)� !�∗� ≤  ∗	(�,�)0 − 	(�,�)0 ≤ 0,
� = 1, 2, . . . , �, 
 = 1, 2, . . . , �, 
 ̸= �.

(A.18)

(X0, Ŷ0) is the feasible solution ofmodel (11) and ( X0

−Ŷ0

) ≤
( X0

−Y0
). 	e conclusion is contrary to the hypothesis before.

	en the hypothesis is not set up, and if (X0,Y0) is the
Pareto solution of model (11), theDMU�0 (�0 ∈ {1, 2, . . . �}) is
DEA e
cient.
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