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Abstract
In this paper, we investigate a simple, mistake-
driven learning algorithm for discriminative
training of continuous density hidden Markov
models (CD-HMMs). Most CD-HMMs for auto-
matic speech recognition use multivariate Gaus-
sian emission densities (or mixtures thereof) pa-
rameterized in terms of their means and covari-
ance matrices. For discriminative training of CD-
HMMs, we reparameterize these Gaussian dis-
tributions in terms of positive semidefinite ma-
trices that jointly encode their mean and covari-
ance statistics. We show how to explore the
resulting parameter space in CD-HMMs with
perceptron-style updates that minimize the dis-
tance between Viterbi decodings and target tran-
scriptions. We experiment with several forms
of updates, systematically comparing the effects
of different matrix factorizations, initializations,
and averaging schemes on phone accuracies and
convergence rates. We present experimental re-
sults for context-independent CD-HMMs trained
in this way on the TIMIT speech corpus. Our re-
sults show that certain types of perceptron train-
ing yield consistently significant and rapid reduc-
tions in phone error rates.

1. Introduction
Continuous density hidden Markov models (CD-HMMs)
are widely used in modern systems for automatic speech
recognition (ASR) (Huang et al., 2001). The parame-
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ters of these models must be estimated from phonetically
transcribed speech. The simplest approach to this prob-
lem is maximum likelihood estimation (MLE), which at-
tempts to maximize the joint likelihood of the training data.
At best, however, CD-HMMs provide only an approxi-
mate model of the tremendous variability observed in real
speech. Moreover, the parameters in CD-HMMs must be
estimated from limited amounts of training data. In this
operating regime, MLE does not generally yield model pa-
rameters that minimize the error rate for ASR. This real-
ization has led researchers to explore other methods for pa-
rameter estimation.

A great deal of research in ASR has focused on discrimi-
native training of HMMs (Bahl et al., 1986; Nádas, 1983;
Juang & Katagiri, 1992). Perhaps the most popular frame-
work for discriminative training is maximum mutual in-
formation estimation (MMIE). MMIE attempts to com-
pute model parameters that maximize the conditional prob-
ability of the correct phonetic transcription given the ob-
served speech. More recently, building on the successes of
support vector machines in the machine learning commu-
nity, a number of researchers in ASR have also explored
large margin methods for discriminative training of CD-
HMMs (Jiang et al., 2006; Li et al., 2007; Yu et al., 2007;
Sha & Saul, 2009).

In ASR, a major challenge of discriminative training arises
from the combinatorially large number of possible phonetic
transcriptions per speech utterance. To succeed, discrimi-
native methods must separate the likelihood of the correct
decoding from all incorrect hypotheses. The need to con-
sider incorrect hypotheses makes discriminative training
much more computationally intensive than MLE. MMIE
has been successfully applied to large vocabulary ASR by
using lattices to provide a compact representation of likely
incorrect hypotheses (Woodland & Povey, 2000). Never-
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theless, the scaling of discriminative methods to larger and
larger speech corpora remains an important problem for on-
going research.

A similar problem of scaling confronts researchers in ma-
chine learning, whose algorithms must deal with data sets
of ever increasing size. The demands of large-scale appli-
cations have led to a resurgence of interest in online learn-
ing algorithms (Bottou & LeCun, 2004; Bottou & Bous-
quet, 2008). These algorithms update model parameters
after the presentation of each labeled example, thus elimi-
nating the need to store or manipulate the entire data set in
memory. Not only are these online algorithms simpler to
implement and more feasible for large-scale learning, but
in many cases they converge more quickly and attain better
(generalization) performance than their batch counterparts.

One of the simplest and oldest online learning algorithms
is the perceptron (Rosenblatt, 1958). An exciting line of
recent work has generalized the perceptron algorithm to
discriminative training of discrete HMMs (Collins, 2002).
The perceptron algorithm for discrete HMMs combines
simple additive updates with Viterbi decoding of training
examples. On problems of part-of-speech tagging and base
noun phrase chunking, this algorithm outperformed other
leading discriminative approaches.

Motivated by the potential of this approach for ASR, in this
paper we investigate a similarly inspired online learning al-
gorithm for CD-HMMs. CD-HMMs for ASR are param-
eterized in terms of the means and covariance matrices of
multivariate Gaussian emission densities. The online up-
dating of these parameters raises several issues that do not
arise in perceptron training of discrete HMMs. For in-
stance, perceptron updates in CD-HMMs can violate the
positive definiteness of covariance matrices, thus requir-
ing further computation to maintain these constraints. Our
main contribution (in sections 2.4–2.5) is to propose a par-
ticular reparameterization of CD-HMMs that lends itself
very well to perceptron training. We present experimen-
tal results for CD-HMMs trained in this way on the TIMIT
speech corpus, a standard data set for phoneme recognition
benchmarks. We systematically compare the effects of dif-
ferent matrix parameterizations, initializations, and aver-
aging schemes on recognition accuracies and convergence
rates. Our results reveal the particular formulation of per-
ceptron training that yields the most consistently significant
and rapid reductions in recognition error rates.

The remainder of the paper is organized as follows. Sec-
tion 2 describes our formulation of perceptron training in
CD-HMMs. Section 3 presents experimental results that
reveal the effects of different parameterizations, matrix fac-
torizations, initializations, and averaging schemes. Finally,
section 4 summarizes our most important findings and dis-
cusses various directions for future work.

2. Model
In this section, we begin by reviewing CD-HMMs and in-
troducing our notation. We then present the perceptron al-
gorithm for CD-HMMs in its most general terms. Finally,
we consider how to reparameterize CD-HMMs in a more
sensible way for perceptron training and highlight various
issues that arise from this reparameterization.

2.1. Background

CD-HMMs define a joint probability distribution over se-
quences of hidden states s = {s1, s2, . . . , sT } and obser-
vations x = {x1, x2, . . . xT }. The joint distribution is ex-
pressed in terms of the initial state distribution P(s1 = i),
the hidden state transition matrix P(st+1 =j|st= i), and
the emission densities P(xt|st). In terms of these quan-
tities, the joint distribution is given by:

P(s,x) = Ps1

T−1∏
t=1

P(st+1|st)
T∏
t=1

P(xt|st). (1)

For ASR, each hidden state represents a sub-word linguis-
tic unit (such as a phoneme), and each observation corre-
sponds to an acoustic feature vector. The emission densi-
ties for ASR are usually represented as Gaussian mixture
models (GMMs). The GMM in the sth hidden state is pa-
rameterized by the means µsc and covariance matrices Σsc
associated with the cth mixture component, as well as the
mixture weights P(c|s). In terms of these parameters, the
emission density is given by:

P(x|s) =
∑
c

P(c|s)√
(2π)d|Σsc|

e−
1
2 (x−µsc)>Σ−1

sc (x−µsc). (2)

Given a sequence of observations x, we can infer the most
likely hidden state sequence s∗ as:

s∗ = argmaxs log P(s,x; Θ). (3)

The inference in eq. (3) depends on the parameters of the
CD-HMM, which we collectively denote by Θ. The right
hand side of eq. (3) can be computed efficiently by dynamic
programming. In particular, of all possible sequences of
hidden states, the Viterbi algorithm recursively constructs
the one with the highest log-likelihood.

The simplest form of training for CD-HMMs is max-
imum likelihood (ML) estimation. For joint examples
{(xn,yn)}Nn=1 of observation sequences and target state
sequences, this approach aims to maximize the joint log-
likelihood:

ΘML = argmaxΘ

N∑
n=1

log P(yn,xn; Θ). (4)
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ML estimates of the parameters in CD-HMMs may be
computed by the Expectation-Maximization (EM) algo-
rithm. The EM algorithm monotonically increases the log-
likelihood in eq. (4) with each update, scales well to large
data sets, and does not involve any tuning parameters. All
these properties make it very attractive as a starting point
for ASR. However, one particular drawback of ML esti-
mation is that maximizing the joint likelihood in eq. (4)
does not generally minimize the error rate of the recog-
nizer. To achieve this goal, we therefore seek a mistake-
driven method for parameter estimation in CD-HMMs.

2.2. Perceptron Training

Discriminative training of CD-HMMs has a long history in
ASR (Bahl et al., 1986; Nádas, 1983; Juang & Katagiri,
1992), and new work continues to appear in this area. The
fundamental idea behind discriminative training is to seek
parameters that explicitly minimize the error rate rather
than attempting to model the data itself. Discriminative
training of CD-HMMs is more complicated than ML es-
timation for several reasons: (i) log-likelihoods must be
computed not only for desired state sequences, but also
for competing ones; (ii) most update rules involve some
form of gradient descent, requiring careful tuning of learn-
ing rates; (iii) convergence is not generally as fast as the
EM algorithm for ML estimation.

Mindful of these issues, we have explored an online method
for discriminative training of CD-HMMs based on the per-
ceptron algorithm (Rosenblatt, 1958) and its recent use in
discrete HMMs (Collins, 2002). We begin by describing
our framework at a high level, then give further details (in
sections 2.3–2.5) relating to the issue of parameterization.

We start by defining a so-called discriminant function over
observation and hidden state sequences:

D(x, s) = log P(s1) +
∑
t>1

P(st|st−1) +
∑
t

log P(xt|st).

(5)
The discriminant function is essentially the logarithm of the
joint probability distribution in CD-HMMs, eq. (1). How-
ever, for discriminative training, we may adapt the param-
eters of the CD-HMM in such a way that they no longer
define a properly normalized joint distribution. In particu-
lar, we need not enforce sum-to-one constraints on the rows
of the transition matrix nor the mixture weights of GMMs.

In terms of the discriminant function, eq. (5), the target
state sequence yn will be correctly inferred if D(xn,yn)
exceeds D(xn, s) for all competing state sequences s. To
estimate parameters that have this property, we consider the
following online update rule:

Θ← Θ + η
∂

∂Θ
[D(xn,yn)−D(xn, s∗n)] , (6)

where s∗n denotes the most likely state sequence returned
by the Viterbi decoding in eq. (3) and η > 0 is a carefully
chosen learning rate. Eq. (6) is a mistake-driven update
rule that only adjusts the parameters when the Viterbi de-
coding returns an incorrect answer s∗n 6= yn. The gradient
in eq. (6) computes the fastest search direction in parameter
space to close the gap in the discriminant function between
D(xn,yn) and D(xn, s∗n). As in perceptron training, we
update the parameters of the CD-HMM in an iterative fash-
ion, looping through all the training examples until either
the algorithm converges or no longer reduces the average
number of classification errors.

In general, perceptron learning will not converge to a fixed
set of parameter estimates if the training examples cannot
be perfectly classified. However, convergence to a fixed
set of parameter estimates can be obtained by averaging
the results of perceptron training from different updates of
the training examples (Freund & Schapire, 1999). In prac-
tice, this sort of averaging also appears to yield better re-
sults (Gentile, 2002) by damping fluctuations in the deci-
sion boundary that occur during training. Let Θ(j) repre-
sent the parameter estimates after the perceptron update in
eq. (6) has been applied for the jth time. We compute the
averaged parameters Θ̃(r) after r updates as:

Θ̃(r) =
1
r

r∑
j=1

Θ(j). (7)

Note that these averaged estimates are not themselves used
during training; they are only computed after training, then
used for the classification of new test examples.

2.3. Parameterization of GMMs

Conventionally, CD-HMMs are parameterized in terms of
their state transition probabilities and the means and co-
variance matrices of their GMMs. The choice of param-
eterization plays an important role in perceptron training.
For example, consider the update rules for the mixture
weights P(c|s) and the diagonal elements of the covariance
matrices Σsc. Simple additive updates to parameters may
not preserve their nonnegativity, which is necessary for the
discriminant function in eq. (5) to be well-defined for all
possible observation and state sequences. More generally,
the choice of parameterization can significantly affect the
rate of convergence of perceptron training, as well as the
nature of the averaging in eq. (7).

In the rest of this section, we flesh out these issues, con-
centrating mainly on the parameterization of the GMMs.
In general, the transition probabilities in CD-HMMs play a
much less important role in ASR than the GMM parame-
ters; moreover, they are easily over-trained. Thus, in prac-
tice, if the transition probabilities are updated at all by dis-
criminative training, they should be adapted by a very small
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learning rate. We did not update the transition probabilities
in our experiments.

The GMMs in CD-HMMs are conventionally parameter-
ized in terms of the mixture weights P(c|s), means µsc, and
covariance matrices Σsc associated with different hidden
states and mixture components. In fact, the most straight-
forward perceptron updates are given in terms of the log-
mixture weights νsc = log P(c|s) and inverse covariance
matrices Σ−1

sc . In particular, the mixture weights are best
updated in the log domain to ensure that they remain non-
negative. Moreover, it is simpler to compute the derivatives
in the perceptron update rule, eq. (6), with respect to the
inverse covariance matrices Σ−1

sc than the covariance ma-
trices Σsc. For the GMM parameters in CD-HMM, these
considerations lead to perceptron updates of the form:

νsc ← νsc + η
∂

∂νsc
[D(xn,yn)−D(xn, s∗n)] , (8)

µsc ← µsc + η
∂

∂µsc
[D(xn,yn)−D(xn, s∗n)] , (9)

Σ−1
sc ← Σ−1

sc + η
∂

∂Σ−1
sc

[D(xn,yn)−D(xn, s∗n)] . (10)

The last update in eq. (10) can violate the constraint that the
inverse covariance matrix Σ−1

sc must be positive definite;
when this happens, the zero or negative eigenvalues of the
updated matrix must be thresholded to some small positive
value so that individual Gaussian distributions remain nor-
malizable (or at least bounded). Though simple in concept,
the updates in eqs. (8–10) do not work as simply as they
appear. Note that the GMM parameters in these updates
have different scales and dimensionalities, suggesting that
gradient-based discriminative training might require care-
ful tuning of multiple different learning rates in order to
succeed. Alternatively, a common strategy is to only opti-
mize the mean parameters of GMMs.

2.4. Reparameterization of GMMs

In this paper, following an earlier approach used in large
margin CD-HMMs (Sha & Saul, 2009), we investigate
a reparameterization that aggregates the mixture weight,
mean, and covariance matrix parameters associated with
each Gaussian mixture component into a single augmented
matrix. Let γsc = − log[P(c|s)/(2π)d|Σsc|] denote the log
of the scalar prefactor that weights each Gaussian mixture
component. Then for each Gaussian mixture component,
consider the matrix:

Φsc =
[

Σ−1
sc −Σ−1

sc µsc
−µ>scΣ−1

sc µ>scΣ
−1
sc µsc + γsc

]
. (11)

In eq. (11), the upper left block of the matrix Φsc is sim-
ply the inverse covariance matrix Σ−1

sc , while the other el-
ements of Φsc are determined by the interaction of the

mean µsc and covariance matrix Σsc. Note that in terms
of this matrix, we can rewrite eq. (2) as:

P(x|s) =
∑
c

e−
1
2 z
>Φscz where z =

[
x
1

]
. (12)

We can use the reparameterization in eqs. (11–12) to adapt
the matrices Φsc by perceptron training, as opposed to the
GMM parameters in the previous section. In this way, we
can replace the three separate updates in eqs. (8–10) by the
single update:

Φsc ← Φsc + η
∂

∂Φsc
[D(Xn, yn)−D(Xn, s

∗
n)] . (13)

Like the earlier update in eq. (10) for the inverse covariance
matrix, the update in eq. (13) can violate the constraint that
the matrix Φsc must be positive semidefinite. When this
happens, the updated matrix must be projected back onto
the cone of positive semidefinite matrices.

As written, the update in eq. (13) effectively removes the
constraint that the Gaussian distributions are properly nor-
malized or even of bounded variance. Note that for a prop-
erly normalized Gaussian distribution, the bottom diagonal
matrix element of Φsc in eq. (11) is completely determined
by the mean µsc and covariance matrix Σsc. However,
in discriminative training, we can update these matrix el-
ements independently, no longer enforcing normalization
constraints on each Gaussian mixture component. Unlike
the earlier update in eq. (10) for the inverse covariance ma-
trix, we can also allow the matrix Φsc to have strictly zero
eigenvalues. In particular, though eq. (2) is not defined for
singular covariance matrices, eq. (12) is perfectly well de-
fined for all positive semidefinite matrices Φsc � 0. Thus
the perceptron update in eq. (13) can learn to use unnormal-
ized Gaussians with unbounded variance if they do indeed
lead to fewer classification errors.

2.5. Matrix factorizations

The update in eq. (13) has the potentially serious drawback
that it can violate the constraint that the matrices Φsc are
positive semidefinite. Unlike the constraints of normaliz-
ability or bounded variance discussed in the last section,
these constraints are important to enforce: otherwise a par-
ticular state s and mixture component c could be deemed
more and more likely even as observed acoustic feature
vectors deviated further and further away from its estimated
mean µsc. Though updated matrices can be projected back
into the cone of positive semidefinite matrices whenever
these constraints are violated, projected gradient methods
tend to exhibit considerably slower convergence than un-
constrained methods.

We can reformulate our problem as an unconstrained opti-
mization by a further reparameterization, writing each ma-
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trix Φsc as the product of another matrix Λsc and its trans-
pose Λ>sc. The factorization

Φsc = ΛscΛTsc (14)

makes explicit that Φsc is positive semidefinite. With this
factorization, we can replace the update in eq. (13) by

Λsc ← Λsc + η
∂

∂Λsc
[D(Xn, yn)−D(Xn, s

∗
n)] , (15)

in which the square matrices Λsc (of the same size as Φsc)
are completely unconstrained.

The update in eq. (15) has potential advantages and disad-
vantages. As a form of unconstrained optimization, it has
the potential advantage of faster convergence since it does
not involve a projected gradient step. On the other hand, it
has the potential disadvantage of creating an optimization
landscape with more local minima. In particular, note that
for the special case in which each Gaussian mixture model
has only one mixture component, the difference of discrim-
inant functions is actually linear in the matrices Φsc. This
simple optimization landscape is lost with the factorization
in eq. (15). Our experiments in section 3.2 attempt to deter-
mine which potential advantages and disadvantages of this
matrix factorization are realized in practice.

We note that the factorization in eq. (14) is not unique.
While a matrix square root satisfying eq. (14) can be com-
puted by singular value decomposition, the matrix Λsc is
not uniquely determined unless additional constraints are
imposed. One way to obtain a unique factorization is
by constraining Λsc to be positive semi-definite; however,
such a constraint is precisely what we hoped to finesse by
factorizing the matrix Φsc in the first place. Another way to
obtain a unique factorization – the Cholesky factorization
– is by constraining Λsc to be a lower triangular matrix. In
section 3.2, we evaluate and present results for two ways of
updating the matrices Λsc: one that constrains them to be
lower triangular, and one that does not.

The factorization in eq. (14) raises another issue related to
the averaging of parameter estimates as in eq. (7). For train-
ing, we can update the matrices Φsc directly by eq. (13) or
indirectly by eq. (15). However, the best approach for train-
ing does not necessarily correspond to the best approach for
testing with smoothed parameter estimates. Using the no-
tation of eq. (7), one approach is to average the parameter
estimates for Φsc as:

Φ̃(r)
sc =

1
r

r∑
j=1

Φ(j)
sc =

1
r

r∑
j=1

Λ(j)
sc Λ(j)>

sc . (16)

Another approach is to average the parameter estimates
for Λsc, then to square their average as:

Φ̃(r)
sc = Λ̃(r)

sc Λ̃(r)>
sc , where Λ̃(r)

sc =
1
r

r∑
j=1

Λsc. (17)

In section 3.4, we evaluate and present results for both of
these types of averaging.

3. Experiments
We performed experiments on the TIMIT speech cor-
pus (Lamel et al., 1986). The speech signals in this corpus
have been manually segmented and aligned with their pho-
netic transcription. We adopted the same front end as recent
benchmarks for phoneme recognition on this data set (Sha
& Saul, 2009). As is common for ASR, we computed 39-
dimensional acoustic feature vectors of mel-frequency cep-
stral coefficients on sliding windows of speech. Finally, we
followed the standard partition of the TIMIT corpus, yield-
ing roughly 1.1 million, 120K, and 57K frames respectively
for training, test, and holdout data.

We experimented with all the methods described in sec-
tion 2 for perceptron training of CD-HMMs. The CD-
HMMs were trained to minimize the number of phonet-
ically misclassified frames in each utterance. The CD-
HMMs had 48 hidden states (one per phone) and GMMs
that varied in size from one to eight mixture components.
In calculating the errors, we follow the standard of mapping
48 phonetic classes down to 39 broader categories (Lee &
Hon, 1988).

We evaluated the performance of each CD-HMM by com-
paring the hidden state sequences inferred by Viterbi de-
coding to the “ground-truth” phonetic transcriptions pro-
vided by the TIMIT corpus. We report two types of errors:
the frame error rate (FER), computed simply as the per-
centage of misclassified frames, and the phone error rate
(PER), computed from the edit distances between ground
truth and Viterbi decodings (Lee & Hon, 1988). While the
perceptron update in eq. (6) is designed to minimize the
frame error rate (which is approximated by differences be-
tween discriminant functions aggregated over frames), the
phone error rate provides a more relevant metric for ASR.

Perceptron training of CD-HMMs raises several issues that
do not arise in perceptron training of discrete HMMs. Our
experiments addressed three main issues: (i) how should
the GMMs be parameterized, in the same way as for MLE
(section 2.3), or by aggregating the parameters for each
mixture component into a single matrix (section 2.4)? (ii)
how should we enforce the positive semidefiniteness con-
straints on matrix parameters, by projected gradient meth-
ods in the original parameter space or by reparameteriz-
ing the matrices using singular value decompositions or
Cholesky factorizations (section 2.5)? (iii) in which param-
eter space should we average to obtain smoothed parame-
ter estimates for testing (section 2.5)? Our experimental
results provide fairly definitive answers to these questions.
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Table 1. Frame and phone error rates for CD-HMMs of varying
size, as obtained by maximum likelihood (ML) estimation, per-
ceptron training (PT), and popular batch methods for discrimina-
tive training. The batch results for conditional maximum likeli-
hood (CML) and minimum classification error (MCE) are repro-
duced from previous benchmarks (Sha & Saul, 2009). The left
column shows the number of mixture components per GMM.

# Frame Error Rate (%) Phone Error Rate (%)
mix ML PT ML PT CML MCE

1 39.3 30.0 42.0 35.2 36.4 35.6
2 37.1 27.6 38.6 33.2 34.6 34.5
4 31.4 26.0 34.8 31.2 32.8 32.4
8 28.1 26.5 32.5 31.9 31.5 30.9

3.1. Overall benefits of perceptron training

We begin by reporting results that confirm the well-known
benefits of discriminative training and online learning. Ta-
ble 1 compares the best performing CD-HMMs obtained by
maximum likelihood (ML) estimation to the best perform-
ing CD-HMMs obtained by perceptron training (PT). The
latter used the matrix update in eqs. (14–15) and the aver-
aging scheme in eq. (16). The results show that perceptron
training leads to significant reduction in both frame and
phone error rates for all model sizes. The improvements in
frame error rates are larger than the improvements in phone
error rates; this discrepancy reflects the fact that the per-
ceptron update more closely tracks the Hamming distance
(not the edit distance) between target and Viterbi phone se-
quences. For reference, Table 1 also shows previously pub-
lished benchmarks (Sha & Saul, 2009) from the two most
popular batch approaches to discriminative training. It is
interesting that for all but the largest model size, online per-
ceptron training outperforms these batch approaches.

3.2. Benefits of reparameterization

As noted in section 2.3, the conventional parameters of
GMMs have different scales and dimensionalities, making
it difficult to apply the perceptron updates in eqs. (8-10).
For example, in the simple case where each GMM has one
mixture component, the discriminant function in eq. (5) has
a quadratic dependence on the mean parameters but a linear
dependence on the inverse convariance matrices. In prac-
tice, it is often necessary (and difficult) to tune separate
learning rates for such different types of parameters. Our
experiments bore out these difficulties. The left column of
Table 2 shows our best results from discriminative train-
ing with this parameterization. In fact, these results were
obtained by updating just the mixture weights and mean
vectors of the CD-HMMs; despite extensive experimenta-
tion, we were unable to obtain further improvements by
updating the inverse covariance matrices in parallel or even
while holding the other parameters fixed. Our results are

Table 2. Frame error rates from perceptron training of CD-HMMs
with different parameterizations: updating (ν, µ,Σ−1) in eqs. (8-
10) versus updating Φ in eqs. (11–13).

# Frame Error Rate (%)
mix (ν, µ,Σ−1) Φ

1 35.7 32.2
2 37.0 31.5
4 33.6 30.7
8 32.9 30.4

Table 3. Frame error rates of perceptron training from the update
in eq. (13) versus the update in eq. (15). For the latter, we stud-
ied two different forms of matrix factorization, one using singu-
lar value decomposition (SVD), one using Cholesky factorization.
For each result, the number of sweeps through the training data is
shown in parentheses.

# Frame Error Rate (%)
mix Φ Λ-SVD Λ-Cholesky

1 32.2 (243) 30.0 (7) 33.1 (142)
2 31.5 (258) 27.6 (4) 31.9 (135)
4 30.7 (296) 26.0 (11) 32.5 (7)
8 30.4 (131) 26.5 (28) 31.4 (18)

consistent with previous anecdotal observations in ASR: in
particular, the common “folklore” is that most of the per-
formance gains in discriminative training are due to opti-
mizing the mean parameters in GMMs.

The reparameterization in section 2.4 greatly simplifies
both the form of the discriminant function, eq. (12), and
the resulting updates for perceptron training. The results
in the rightmost column of Table 2 reveal the benefits of
this approach. These results were obtained using the repa-
rameterization in eq. (11), the update in eq. (13), and the
averaging in eq. (7). Note that perceptron training in the
parameters Φsc from eq. (11) leads to significantly lower
frame error rates across all model sizes.

3.3. Benefits of matrix factorization

We also experimented with the matrix factorization in
eq. (14). Updating the matrices Λsc by eq. (15) led to the
results shown in Table 3. The middle column shows the
results when the matrices Λsc were unconstrained and ini-
tialized by singular value decomposition; the right column
shows the results when the matrices Λsc were constrained
to be lower diagonal and initialized by Cholesky factoriza-
tion. For comparison, the left column repeats the results
from Table 2 for updating the matrices Φsc by eq. (13).
Note how the unconstrained factorization in eq. (14) leads
to consistent further improvements beyond those obtained
by the reparameterization in eq. (11). The factorization also
leads to much faster convergence as measured by the num-
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Figure 1. Comparison of perceptron training with and without the
matrix factorization in eq. (14). See text for details.

bers of sweeps through the training data (shown in paren-
theses). Finally, as an additional benefit, the factorized up-
date also avoids the extra computation required to project
the updated parameters Φsc back into the space of positive
semidefinite matrices.

Fig. 1 graphically illustrates the much faster convergence
of perceptron training using the matrix factorization in
eq. (14). The figure compares the frame error rates on the
training and validation sets during training for the top left
(Φ) and middle (Λ-SVD) results in Table 3. When updat-
ing the matrices Λsc using eq. (15), the training error drops
rapidly, and the CD-HMM appears to start overfitting after
just a few sweeps through the training data. By contrast,
when updating the matrices Φsc using eq. (13), the training
and holdout error rates drop much more slowly.

3.4. Benefits of averaging

Parameter averaging is an effective technique for reducing
the fluctuations inherent to online learning. Table 4 demon-
strates the benefits of parameter averaging in the setting of
CD-HMMs, where it often leads to significantly reduced er-
ror rates. Intuitively, the perceptron updates on individual
examples can be viewed as a form of stochastic gradient
descent. Parameter averaging smoothes out the random-
ness in this process. Fig. 2 illustrates this intuition graphi-
cally. The figure visualizes the evolution of the parameters
Φsc during training by projecting them onto their first two
principal components. Note how the averaged parameter
estimates “spiral” down more quickly to the final solution.

As mentioned in section 2.5, for perceptron training with
the matrix factorization in eq. (14), there are two possible
averaging procedures. The results generally show that bet-
ter performance is obtained by optimizing the matrices Λsc
while averaging the matrices Φsc. We can offer one possi-
ble intuition for this trend. As noted earlier, the factoriza-
tion in eq. (14) is not unique. Therefore we can imagine a
sequence of parameter estimates that involve different val-
ues for Λsc but equal values for Φsc. (That is, the varying

Table 4. Frame error rates from different forms of parameter av-
eraging: no averaging, averaging in Φ by eq. (16), and averaging
in Λ by eq. (17). See text for details.

# Frame Error Rate (%)
mix no averaging averaging in Φ averaging in Λ

1 38.6 30.0 37.2
2 34.9 27.6 30.9
4 32.5 26.0 25.5
8 30.6 26.5 26.6
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Figure 2. The trajectory of CD-HMM parameters during training.
The figure visualizes the parameters Φsc by projecting them onto
their first two principal components. Parameter averaging leads
to faster convergence.

estimates for Λsc differ only by a unitary transformation.)
In this case, the constant value of Φsc will be returned by
averaging the matrices Φsc using eq. (13), but not by av-
eraging the matrices Λsc using eq. (15). Though this is a
contrived scenario unlikely to occur in practice, it suggests
that averaging in Λsc can lead to nonsensical results.

3.5. Benefits of initialization

For perceptron training in discrete HMMs, parameter val-
ues can simply be initialized as zeroes (Collins, 2002).
However, in CD-HMMs, the discriminant function is not
generally a linear function of the parameters, and the re-
quired optimization is not convex. Thus, depending on
the quality of the initialization, the potential exists to get
trapped in local minima.

Table 3.5 compares perceptron training with two different
initializations: essentially, zero values versus maximum
likelihood estimates. Interestingly, when we update the
parameters Φsc using eq. (13), we observe no significant
difference between these two initializations. On the other
hand, when we update the parameters Λsc using eq. (15),
we observe that much better performance is observed by
initializing with maximum likelihood estimates. These re-
sults suggest that the much faster convergence from the ma-
trix factorization in eq. (14) comes at the expense of creat-
ing a more treacherous optimization.
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Table 5. Frame error rates from perceptron training with different
initializations: zero values versus maximum likelihood (ML) es-
timates. The left results used the Φ-update in eq. (13); the right
results used the Λ-update in eq. (15). See text for details.

# Frame Error Rate (%)
mix Φ(0) =0 Φ(0) =ΦML Λ(0) =0 Λ(0) =ΛML

1 32.5 32.2 32.0 30.0
2 32.3 31.5 32.6 27.6
4 30.2 30.7 34.3 26.0
8 29.4 30.4 34.0 26.5

4. Discussion
In this paper, we have explored various matrix updates for
perceptron training of CD-HMMs. As our main contri-
butions, we analyzed numerous issues of parameterization
and smoothing that do not arise in perceptron training of
discrete HMMs; we also performed systematic experiments
in ASR to understand how these issues play out in prac-
tice. Our results show that not all forms of discriminative
training are equally effective: indeed, matrix reparameter-
izations and factorizations can have a significant effect on
classification performance as well as rates of convergence.
Future work will concentrate on applying the best practices
identified here to larger scale problems in ASR, as well as
exploring low-rank factorizations of eq. (14) that can be
viewed as a form of dimensionality reduction.
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