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Matrix-Vector Nonnegative Tensor Factorization for

Blind Unmixing of Hyperspectral Imagery
Yuntao Qian, Member, IEEE, Fengchao Xiong, Shan Zeng, Jun Zhou, Senior Member, IEEE, and

Yuan Yan Tang, Fellow, IEEE

Abstract—Many spectral unmixing approaches ranging from
geometry, algebra to statistics have been proposed, in which
nonnegative matrix factorization (NMF) based ones form an
important family. The original NMF based unmixing algorithm
loses the spectral and spatial information between mixed pixels
when stacking the spectral responses of the pixels into an
observed matrix. Therefore, various constrained NMF methods
are developed to impose spectral structure, spatial structure, and
spectral-spatial joint structure into NMF to enforce the estimated
endmembers and abundances preserve these structures. Com-
pared with matrix format, the third-order tensor is more natural
to represent a hyperspectral data cube as a whole, by which
the intrinsic structure of hyperspectral imagery can be losslessly
retained. Extended from NMF based methods, a matrix-vector
nonnegative tensor factorization (NTF) model is proposed in this
paper for spectral unmixing. Different from widely used tensor
factorization models such as Canonical Polyadic decomposition
(CPD) and Tucker decomposition, the proposed method is derived
from block term decomposition (BTD) which is a combination of
CPD and Tucker decomposition. This leads to a more flexible
frame to model various application-dependent problems. The
matrix-vector NTF decomposes a third-order tensor into the
sum of several component tensors, with each component tensor
being the outer product of a vector (endmember) and a matrix
(corresponding abundances). From a formal perspective, this
tensor decomposition is consistent with linear spectral mixture
model. From an informative perspective, the structures within
spatial domain, within spectral domain, and cross spectral-
spatial domain are retreated inter-dependently. Experiments
demonstrate that the proposed method has outperformed several
state-of-the-art NMF based unmixing methods.

Index Terms—Hyperspectral imagery, Spectral unmixing, Ten-
sor factorization, Spectral-spatial structure

I. INTRODUCTION

Hyperspectral imagery (HSI) has drawn much attention

from various applications. It provides information about both

spectral and spatial distributions of distinct objects owing to

its numerous and continuous spectral bands. In an HSI, each

pixel represents the spectral irradiance of the corresponding
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object materials. Due to limited spatial resolution of HSI and

complicated material constitution, a pixel often covers several

different materials. Therefore, the spectral irradiance is a com-

bined outcome of several materials according to their distribu-

tions and configurations, leading to the existence of “mixed”

spectra in some pixels. Hence, hyperspectral unmixing, which

decomposes a mixed pixel into a collection of constituent

spectra, or endmembers, and their corresponding fractional

abundances, becomes an important task for hyperspectral data

analysis.

Many hyperspectral unmixing methods have been proposed,

ranging from geometry, algebra to statistics [1], [2]. Most of

them are based on linear spectral mixture model, i.e., the

spectrum of a pixel is a linear combination of endmembers

with corresponding abundances. If pure pixels are assumed

to exist in an HSI, convex geometry based approaches such

as Pixel Purity Index (PPI) [3], N-FINDR [4], and vertex

component analysis (VCA) [5], to name just a few, are

used to estimate endmembers. However, in many cases such

assumption is not met or pure pixels have been contaminated

by various factors from environment and devices. Minimum

volume based algorithms [6] can partly tackle this problem. In

other cases, if the endmembers in an HSI are known in advance

or a library of spectral signatures including all endmembers

in the HSI can be obtained, fully constrained least-squares

(FCLS) [7] and sparse regression algorithms [8] can be used.

If very little prior knowledge is available, unmixing can be

considered as a blind source separation (BSS) problem from

the statistics perspective [2], [9]–[11]. Among a number of

BSS methods, nonnegative matrix factorization (NMF) and its

variations have been widely used due to its clear physical,

statistical, and geometric interpretation, flexible modeling, and

less requirement on prior information [12], [13]. NMF usually

provides a part-based representation of data, i.e., NMF based

spectral unmixing decomposes an HSI into two nonnegative

matrices that represent fractional abundances and spectral

endmembers respectively. Though effective, however, NMF

faces some difficulties in real applications. The solution space

of NMF is always very large, which, added to the fact that

the cost function is also not convex, makes the algorithm

prone to noise corruption and computationally demanding. To

reduce solution space, extensions of NMF including symmetric

NMF, semi-NMF, convex NMF, and multi-layer NMF have

been proposed [14]. More recently, sparse NMF assumes that

most of the pixels are the mixtures of only a small number of

endmembers [15]–[17]. This implies that a number of entries

in the abundance map are zeros or very small. In the literature,
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L0, L1, and L1/2 norms have all been utilized to define the

sparsity constraint.

Another problem of NMF based methods is the loss of

spatial location information when unfolding an HSI cube into

a matrix, i.e., the spectral signatures of pixels are stacked as

rows in this matrix, so that the spatial positions of pixels

cannot be fully preserved in the row indices. Furthermore,

the relations between the spatial and spectral domains are

also deteriorated. To address this problem, various constrained

NMF models are proposed [13], [18]–[21]. In [13], sparse

NMF with piecewise smoothness constraint was proposed, in

which the piecewise smoothness of endmember signatures and

abundance fractions was embedded into NMF to overcome

their discontinuity and noise. In [18], a spatial similarity

constraint was added into NMF, by which the abundance

of a pixel was promoted to be consistent with the average

abundance of its surrounding pixels. To make use of the

spectral-spatial joint information, Mei et al [19] presented

a neighborhood preserving regularization approach that was

based on the assumption that each pixel could be linearly

reconstructed by its spatial neighboring pixels. This regulariza-

tion was added into NMF to keep the local geometric structure

of HSI. Lu et al [20] assumed that pixels with similar spectral

signatures often imply similar abundances with respect to the

given endmembers, leading to a manifold regularizer based

NMF. Wang et al [21] constructed a hypergraph to accurately

capture the spectral-spatial joint structure of HSI, and added

this hypergraph to NMF as a constraint. These approaches not

only address the lacking of structural information of NMF,

but also improve the stability of matrix decomposition and

the robustness to noises. However, under matrix factorization

framework, the spectral and spatial structures are employed by

adding the corresponding constraints into NMF model, which

is not straightforward and is not able to convey a complete

HSI structure.

To overcome the limits of NMF and constrained NMF,

extending matrix factorization to tensor factorization is a

potential way. An HSI data cube can be represented as

a third-order tensor without any information loss, therefore

compared with matrix factorization based unmixing methods,

tensor factorization is a more natural and structural model.

Tensors (or multi-way arrays) are highly suitable for multi-

dimensional data such as HSI, video, social network, array

signal, and so on [22]. Tensor analysis methods, especially

the models and efficient algorithms for tensor decompositions,

have been extensively studied and applied to many real-world

problems ranging from psychometrics and chemometrics to

signal processing, computer vision, neuroscience, and data

mining [23]–[26]. In the field of HSI processing and analysis,

tensor decompositions have been used for data compres-

sion [27], [28], denoising [29]–[31], feature extraction [32],

change detection [33], [34] and classification [35], [36].

All these approaches use a low-rank tensor representation

to approximate the original HSI data. The low-rank tensor

representation can reduce memory storages, remove noises,

and extract discriminative features. Among them, Canonical

Polyadic decomposition (CPD) and Tucker decomposition (or

called higher-order singular value decomposition) are two

widely-used tensor factorization models.

To our best knowledge, the research on tensor factoriza-

tion based spectral unmixing is relatively under explored. In

2007, Zhang et al [37] applied tensor factorization to spectral

unmixing for the first time, and then they published a more

comprehensive paper [38] on tensor based HSI data analysis

for a space object material identification study including

unmixing problem. In their method, nonnegative CPD firstly

decomposes a tensor into a sum of component rank-one

tensors, then these rank-one tensors are grouped by clustering

method according to their similarity. Finally, the rank-one

tensors in each group are combined to form an endmember and

its corresponding abundances. Following this work, Huck et

al [39] proposed that nonnegative Tucker decomposition also

could unmix hyperspectral data. From then on, the studies on

tensor factorization based unmixing seldom appear. Recently,

the use of compression-based nonnegative CPD to analyze HSI

data in temporal series or in multi-angular acquisitions was

presented [40], [41]. In this approach, a third-order tensor

is used to represent several related HSI data sets with one

of its modes denoting the time/angle dimension, i.e., each

HSI cube is still represented by matrix. In [42], a new tensor

based nonlinear mixing model was presented, which extended

the existing bilinear mixing models to an infinite number of

reflections. However, the tensor was used to represent the

multilinear interaction among materials and multiple light

scattering effects, but not for describing the spectral-spatial

structure of HSI.

As we know, HSI data compression, dimension reduction,

feature extraction and noise removal mainly focus on da-

ta reconstruction with minimal error, but spectral unmixing

pays more attention to whether the decomposed factors are

consistent with the physical mechanism of mixing process.

Whichever CPD or Tucker decomposition based unmixing

algorithm is used, its link with linear mixing spectral model is

not as explicit as that of matrix factorization. The CPD based

rank of a tensor is defined as the minimum of rank-one tensors

that are summed to express this tensor, but this tensor rank

cannot be considered as the number of endmembers, which

makes the endmember detection and the corresponding abun-

dance estimation to be not easy. For Tucker decomposition

based algorithm, the spectral mode rank can be directly equal

to the number of endmembers, but orthogonality between

the components does not conform to the characteristics of

endmembers. Moreover, the strong interaction between modes

in Tucker decomposition destroys the properties of part-based

representation and nonnegativity in linear spectral mixture

model. Therefore, it is necessary to develop an effective and

explicit technique to apply tensor factorization for spectral

unmixing.

Under tensor notation, the linear spectral mixture model can

be rewritten so that an HSI data tensor is approximated by

sum of the outer products of an endmember (vector) and its

corresponding abundance map (matrix). This form of tensor

factorization exactly corresponds to matrix-vector (slab-fiber)

third-order tensor factorization which decomposes a tensor

into a sum of component tensors, and each component tensor

is a matrix-vector outer product. The matrix-vector third-order
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tensor factorization can be seen as a specific case of block term

decompositions (BTD) [43]–[45]. BTD is a combination of

CPD and Tucker decomposition. It decomposes a tensor into

a sum of component tensors as CPD, while each component

tensor is factorized as Tucker decomposition. BTD overcomes

the limit of CPD that each of its component tensor must

be rank-one, meanwhile it lifts the restriction of Tucker

decomposition that there is just one component tensor. BTD

provides a flexible frame to construct tensor decomposition

models according to their application-dependent physical inter-

pretation. The matrix-vector third-order tensor decomposition

lets each component tensor be an outer product of a vector (an

endmember) and a matrix (the corresponding abundance map),

by which we construct a straightforward link between tensor

decomposition and linear spectral mixture model. Therefore,

this type of tensor factorization has explicit physical inter-

pretation under the assumption of linear spectral mixture, as

well as preserves a complete spectral-spatial structure without

any information loss. In this paper, we propose a matrix-

vector nonnegative tensor factorization (NTF) based spectral

unmixing method, give its solving algorithm, and discuss

its distinct properties. The main contribution of our work is

cleaning off some very pivotal obstacles when tensor methods

walks into spectral unmixing application.

The rest of the paper is organized as follows. In Section II,

we briefly introduce the linear spectral mixture model and the

background of tensor factorization. This section emphatically

analyzes the limitation of existing tensor-based unmixing

algorithms and leads to the matrix-vector tensor factorization.

In section III, the model and algorithm of matrix-vector

NTF based spectral unmixing are described in detail, and the

uniqueness of model and the convergence of optimization are

also discussed. Results on the synthetic and real-world data are

reported in Sections IV. Finally, Section V draws conclusions

and suggests future research.

II. BACKGROUND AND MOTIVATION

Unmixing aims at detecting the existence of the contributing

materials in a scene and estimating their proportions. To do

so, the mixing/unmixing models are crucial, which should

consider the interpretation of the image formation process,

be physically meaningful, statistically accurate, and compu-

tationally feasible. In this section, we introduce the linear

spectral mixing model and its link with tensor decompositions.

In particular, we give the motivation behind the matrix-vector

tensor decomposition based unmixing method.

A. Notations and concepts

In this paper, scalars are denoted by lowercase letter, e.g.,

x, vectors are written in boldface lowercased, e.g., x, matrices

correspond to boldface capitals, e.g., X, and high-order tensors

(order three or higher) are denoted by Euler script letters, e.g.,

X. A matrix is a second-order tensor, a vector is a first-order

tensor, and a scalar is a tensor of order zero. A tensor can be

represented as a multidimensional array of numerical values.

In this representation, the elements in a k-th order tensor

are identified by a k-tuple of subscripts, e.g., xi1,i2,...,ik . The

operations upon tensor is based on multilinear algebra. Some

important operations and concepts of matrix and tensor that are

used in this paper are listed here, and the others are introduced

later when they appear.

Definition 1: Different dimensions of an array are called

modes. A matrix has two modes (column mode and row

mode), and a kth-order tensor X has k modes.

Definition 2: A tensor fiber is a one-dimensional fragment

of a tensor, obtained by fixing all indices except for one.

Definition 3: A tensor slab is a two dimensional section

(fragment) of a tensor, obtained by fixing all indices except

for two indices.

Definition 4: Unfolding a tensor is the process of reordering

the elements of a kth-order tensor into a matrix. For a third-

order tensor X ∈ R
I×J×K , three matrices unfolded from this

tensor are defined by

(XJK×I)(j−1)K+k,i = xijk (1)

(XKI×J)(k−1)I+i,j = xijk (2)

(XIJ×K)(i−1)J+j,k = xijk (3)

Definition 5: Given two matrices A ∈ R
I×J and B ∈

R
K×L, their Kronecker product is a matrix denoted as A ⊗

B ∈ R
IK×JL and is defined as

A⊗B =




a11B a12B · · · a1JB
a21B a22B · · · a2JB

...
...

. . .
...

aI1B aI2B · · · aIJB


 (4)

Definition 6: The Khatri-Rao product of two matrices A ∈
R

I×J and B ∈ R
K×J with the same number of columns J is

a matrix denoted as A⊙B ∈ R
IK×J and is defined as

A⊙B =
(
a1 ⊗ b1 a2 ⊗ b2 · · · aJ ⊗ bJ

)
(5)

Definition 7: The k-mode (matrix) product of a tensor X ∈
R

I1,I2,...,IK with a matrix A ∈ R
J×Ik is denoted by X×k A

and is of size I1×· · · Ik−1×J × Ik+1×· · · IK . The elements

of this product are

(X×k A)i1···ik−1jik+1···iK =

Ik∑

ik=1

xi1i2···iKajik (6)

Definition 8: The outer product of two tensors A ∈
R

I1×I2×...×IP and B ∈ R
J1×J2×...×JQ is the tensor A ◦B ∈

R
I1×I2×...×IP×J1×J2×...×JQ and its elements are defined by

(A ◦B)i1i2...iP j1j2...jQ = ai1i2...iP bj1j2...jQ (7)

For example, the outer product of a matrix A and a vector b

is a third-order tensor.

B. Linear spectral mixture model

The linear mixture model represents the spectrum of a pixel

of K wavelength-indexed bands in the observed scene based

upon R endmembers and their corresponding abundances. It

is given by

x = Ms+ υ (8)

where x denotes a K×1 vector of the observed pixel spectrum

in an HSI, s is a R × 1 vector of abundance fractions for
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each endmember, υ is a K × 1 vector of an additive noise

representing the measurement errors, and M is a K × R
spectrum matrix whose columns correspond to an endmember

spectrum.

Using matrix notation, the mixing model above for the N
pixels in the image can be rewritten as

X = MS+Υ (9)

where the matrices X ∈ R
K×N , S ∈ R

R×N and Υ ∈ R
K×N

represent, respectively, hyperspectral data, the abundances of

all pixels on all endmembers, and additive noise.

Two properties are usually added to the linear spectral

mixed model. The first is nonnegativity which assumes that

the contribution from endmembers should be larger than or

equal to zero, and the spectral irradiance of any material is also

nonnegative, i.e., the matrices M and S are nonnegative. The

second is sum-to-one of s which assumes that the proportional

contributions from the endmembers to every mixed pixel

should be added up to one.

C. The link between linear spectral mixture model and tensor

factorization

Equation (9) can be seen as a matrix factorization problem.

Many matrix factorization based unmixing algorithms have

been proposed. The main trend of this family of approaches

is to incorporate physical and mathematical constraints into

matrix factorization models. Among these constraints, various

spatial and spectral structures such as local and nonlocal

similarity have been proved to be very helpful [19]–[21]. How-

ever, these constraints cannot fully and accurately compensate

for the structure loss during HSI to 2D matrix conversion.

Tensor is a natural extension of matrix to represent multi-

dimensional arrays. Obviously, the third-order tensor is a

lossless representation of an HSI, which directly embeds the

inherent spectral-spatial structure of an HSI into its own struc-

ture and operations. In theory, it provides a more consistent

and comprehensive framework for unmixing problem against

matrix based methods.

Similar to matrix factorization which is an important tool

of linear algebra for two-dimensional data analysis, tensor

factorization is used to analyze the intrinsic/hidden structure

of multi-dimensional array with multi-linear algebra. Here we

briefly introduce two widely adopted and foundational tensor

factorization methods, CPD and Tucker decomposition, and

their applications to spectral unmixing.

Definition 9: The CPD factorizes a tensor into a sum of

component rank-one tensors. For example, the CPD of a third-

order tensor X ∈ R
I×J×K is defined as

X =

R∑

r=1

ωr(ar ◦ br ◦ cr) (10)

The CPD for a third-order tensor is illustrated in Fig. 1(a).

Definition 10: The rank of a tensor X is the minimal number

of rank-one tensors that yield X in a linear combination. A

kth-order tensor is a rank-one tensor if and only if it equals

the outer product of k nonzero vectors. The factor matrices

associated with the CPD in Equation (10) can be expressed as

A = [a1, . . . ,aR] ∈ R
I×R (11)

B = [b1, . . . ,bR] ∈ R
J×R (12)

C = [c1, . . . , cR] ∈ R
K×R (13)

so that Equation (10) can be equivalently written in the form

of unfolded matrices

XIJ×K = (A⊙B)CT (14)

One can observe that Equation (14) and the linear spectral

mixture model under matrix notation in Equation (9) seem to

be identical in form without the noise term, i.e., (A ⊙ B)
is a matrix with the size of IJ × R representing the abun-

dances of all pixels on all endmembers, and CT contains the

endmembers.

Definition 11: The Tucker decomposition factorizes a tensor

to the k-mode product of a small core tensor and factor ma-

trices. For example, given a third-order tensor X ∈ R
I×J×K ,

find a core tensor G ∈ R
Q×T×V with the indices Q ≪ I ,

T ≪ J , and V ≪ K, and three factor matrices: A =
[a1,a2, . . . ,aQ] ∈ R

I×Q, B = [b1,b2, . . . ,bT ] ∈ R
J×T ,

and C = [c1, c2, . . . , cV ] ∈ R
K×V , so that

X =

Q∑

q=1

T∑

t=1

V∑

v=1

gqtv(aq ◦ bt ◦ cv) (15)

which also can be expressed in a compact matrix form using

mode-k multiplications

X = G×1 A×2 B×3 C (16)

Equation (16) can be equivalently unfolded as

XIJ×K = [(A⊗B)GQT×V ]C
T (17)

The Tucker decomposition for a third-order tensor is illus-

trated in Fig. 1(b). We find that Equations (17) and (9) are

also similar in form, i.e., [(A⊗B)GQT×V ] is a matrix with

the size of IJ × R representing the abundances of all pixels

on all endmembers, and CT is the endmembers.

However, compared with matrix factorization, from the view

of physical interpretation, the link between tensor decomposi-

tion and linear spectral mixture model is still not clear. Fur-

thermore, there are a lot of difficulties in the implementation of

these two tensor factorization algorithms for unmixing. CPD

based unmixing method requires the a priori knowledge of

the tensor rank R. There is no straightforward algorithm to

determine the rank of a given tensor. In fact, this is an NP-

hard problem. In most cases, the number of endmembers can

be obtained by means of statistical/geometrical methods or

domain knowledge, but this estimated number of endmembers

can not be used as tensor rank because it is much smaller

than the real rank. In practice, for simplicity, max(I, J, L)
or its severalfold value is used as the tensor rank R in

CPD. Consequently, each column of C is not identified as

an endmember as in NMF based unmixing methods. In [37]

it is assumed that a group of similar columns in C match

to the same material so that the average or central vector of
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a group can represent an endmember, and the corresponding

abundance matrix of this endmember is the summation of

the columns of A ⊙ B in the same group. The groups are

generated by clustering method. Although the mathematical

justification of this assumption is not very solid, the exper-

imental results on synthetic hyperspectral data sets reported

in [38] are promising. However, it has been not applied to

real HSI data. On the other hand, Tucker decomposition is a

high order extension of singular value decomposition (SVD)

of matrix. Firstly, SVD is not a suitable matrix decomposition

for unmixing problem because its main property, orthogonality,

does not match the physical mechanism of spectral mixing,

i.e., the spectra of endmembers or abundance matrices in an

HSI are not orthogonal to each other. Secondly, the core tensor

G is related to all three mode factors A, B and C, but how

to divide G into abundance and endmember respectively is not

straightforward and its physical mechanism remains uncertain.

Thirdly, the nonnegative property of mixture model is not

easy to be imposed on Tucker decomposition. Hence, Tucker

decomposition based unmixing method is more difficult to

interpret than CPD based method [39].

A main difference between CPD and Tucker decompositions

is that CPD treats all tensor modes equally and processes them

identically while Tucker decomposition can distinguishes the

modes of tensor according to their application-dependent phys-

ical interpretation. Although an HSI can be represented and

processed as a third-order tensor, its modes are distinguishable

in the spectral-spatial manner, in which two spatial indices are

distinguished from a spectral mode. On the other hand, Tucker

decomposition does not clearly divide a tensor into a sum of

a set of component tensors, so that it is difficult to directly

link it to the linear mixture model. Fortunately, several groups

of researchers have proposed models that combine aspects of

CPD and Tucker [22]. Among them, block term decompo-

sitions (BTD) is a typical one for modelling more complex

tensor structures than CPD and Tucker decomposition [43],

[44].

Definition 12: The BTD factorizes a tensor into a sum

of component tensors (or called terms), and each component

tensor is defined as the k-mode product of the core tensor

and factor matrices. For example, given a third-order tensor

X ∈ R
I×J×K ,

X =

R∑

r=1

Gr ×1 Ar ×2 Br ×3 Cr (18)

The BTD for a third-order tensor is illustrated in Fig. 1(c).

Compared with CPD, it does not require that each component

tensor is rank-one. Compared with Tucker decomposition, it

is a sum of several component tensors rather than just one.

Therefore, BTD is the generalization of CPD and Tucker

decomposition, which has been used for decoupling mul-

tivariate polynomials [46], blind deconvoluting DS-CDMA

signals [47], separating mixed audio signal, and so on [45].

According to linear spectral mixture model, it is expected

that an HSI tensor can be approximated by a sum of com-

ponent tensors in which each component tensor is the outer

product of a matrix and a vector (endmember). This matrix

represents abundances of corresponding endmember at each

pixel. As the spatial position information of pixels is kept in

this matrix, it is also called abundance map. To this end, we

only need to set Gr ∈ R
Lr×Lr×1 to be an identity matrix,

Ar ∈ R
I×Lr , Br ∈ R

J×Lr , and cr ∈ R
K×1, leading to a

specific BTD.

Definition 13: The matrix-vector tensor decomposition fac-

torizes a third-order tensor into a sum of component tensors.

Each component tensor is defined as the outer product of a

matrix Er and a vector cr, and Er is the product of two

matrices Ar and Br.

X =

R∑

r=1

Ar ·B
T
r ◦ cr =

R∑

r=1

Er ◦ cr (19)

The matrix-vector tensor decomposition is illustrated in Fig.

1(d), which is also named as BTD in rank-(Lr, Lr, 1) terms.

CPD is a specific BTD with rank-(1, 1, 1) terms.

For matrix-vector tensor decomposition based unmixing, cr
can be considered as the rth endmember and Er is the corre-

sponding abundance map. Now a straightforward link between

matrix-vector tensor decomposition and linear spectral mixture

model has been set up.

III. MATRIX-VECTOR NONNEGATIVE TENSOR

FACTORIZATION BASED UNMIXING MODEL

In the last section, we have built a link between matrix-

vector tensor factorization and linear spectral mixture model

on their form of representation. However, the same form

between them cannot guarantee that the endmembers and

abundances of all the materials could be recovered by such ten-

sor decomposition. Therefore, besides the same factorization

form, matrix/tensor factorization should add some physical

mechanism based conditions to make the result fit in a specific

goal. Among them, nonnegativity based factorization solution

is attractive because it usually provides a part-based repre-

sentation of the data, making the decomposition factors more

intuitive and interpretable. In particular, part-based represen-

tation strongly agrees with the physical mechanism of spectral

mixture. The effectiveness of NMF based unmixing has been

demonstrated in many published literatures [12], [13], [18]–

[20]. Inspired by NMF based unmixing, we add nonnegativity

into matrix-vector tensor factorization. Nonnegativity enables

the tensor decomposition to be a part-based representation as

NMF, leading the factorization result to meet the requirement

of spectral unmixing.

Combining matrix-vertex tensor factorization and nonneg-

ativity property, a spectral unmixing model under tensor

notation can be derived.

X =
R∑

r=1

Er ◦ cr+N =
R∑

r=1

Ar ·B
T
r ◦Cr +N

s.t. Ar,Br, cr � 0

(20)

We call it the matrix-vertex NTF based unmixing model,

in which X ∈ R
I,J,K is a third-order HSI tensor with the

spatial size of I × J and the number of spectral bands K,

cr is considered as an endmember, and the matrix Er as its

corresponding abundance map.
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(a) CPD

(b) Tucker decomposition

(c) BTD

(d) Matrix-Vector tensor decomposition

Fig. 1. Four tensor decomposition models of a third-order tensor.

If the noise term N is ignored, the matrix representation of

Equation (20) can be written as

XIJ×K = [(A1 ⊙B1)1L1
· · · (AR ⊙BR)1LR

] ·CT(21)

XJK×I = (B⊙̄C) ·AT (22)

XKI×J = (C⊙̄A) ·BT (23)

in which A = [A1 . . .AR], B = [B1 . . .BR], and C =
[c1 . . . cR]. 1Lr

is an all-one column vector with length Lr.

Definition 14: The operation ⊙̄ is a generalized Khatri-Rao

product for partitioned matrices with the same number of sub-

matrices. For example, both matrices A and B have R sub-

matrices, so their generalized Khatri-Rao product is defined

as

A⊙̄B = (A1 ⊗B1 . . .AR ⊗BR) (24)

The matrix-vector NTF based unmixing is to estimate cr
and Er, r = 1, . . . , R, which can be defined as an optimization

problem of minimizing the mean square error (MSE) with

nonnegative constraints

min
E,c
‖X−

R∑

r=1

Er ◦ cr‖
2
F s.t. Ar,Br, cr � 0 (25)

in which Frobenius norm of a third-order tensor is defined as

‖X‖F =

√∑

i

∑

j

∑

k

x2
ijk (26)

Alternating least square minimization algorithm is used

to solve this optimization problem [48], [49], i.e., the cost

function is minimized in an alternating way for each factor

matrix while the others are fixed. If we fix B and C, the

sub-optimization problem is

min
A

‖XJK×I − (B⊙̄C) ·AT ‖2F s.t. A � 0 (27)

We deduce the multiplicative update rule using the method

of Lagrange multipliers. Let S = B⊙̄C, and the Lagrange

function Ψ is given by

Ψ = ‖XJK×I − S ·AT ‖2F +ΘA (28)

Taking the partial derivatives of Ψ with respect to A, we get

∇AΨ = (SAT −XJK×I)
TS+Θ (29)

According to the Karush-Kuhn-Tucker (KKT) conditions,

ΘA = 0, the multiplicative update rule for A is obtained.

A← A. ∗XT
JK×IS./(ASTS) (30)

Similarly, the sub-optimization problem and its multiplicative

update rule for B are

min
B

‖XKI×J − (C⊙̄A) ·BT ‖2F s.t. B � 0 (31)

B← B. ∗XT
KI×JS./(BSTS) (32)

where S = C⊙̄A.

The sub-optimization problem and the multiplicative update

rule for C are

min
C

‖XIJ×K−[(A1 ⊙B1)1L1
· · · (AR ⊙BR)1LR

] ·CT ‖2F

s.t. C � 0
(33)

C← C. ∗XT
IJ×KS./(CSTS) (34)

where S = [(A1 ⊙B1)1L1
· · · (AR ⊙BR)1LR

].
The alternating least square optimization algorithm for

Equation (25) is shown in Algorithm 1. Step 4 is used to avoid

the overflow or underflow of A and B during computation

process of Algorithm 1.
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Algorithm 1 Alternating least square algorithm for matrix-

vector NTF

Input: An HSI cube (third-order tensor) X

Parameters R, Lr, r = 1, . . . , R. For simplicity, Lr = L
for all r.

Output: A, B, and C.

1: Initialize A, B and C.

2: Update A with Equation (30)

3: Update B with Equation (32)

4: Column scaling of A and B.

A:,i ← A:,i/‖A:,i‖, B:,i ← B:,i · ‖A:,i‖
5: Update C with Equation (34)

6: Repeat steps 2-5 until convergence of the cost function in

Equation (25).

The number of endmembers R can be determined a prior

by domain knowledge or endmember extraction methods [50],

[51].

Lr is an important parameter, which controls the rank of

abundance matrix of the rth endmember. As we know the

rank of Er = Ar · B
T
r is not always equal to parameter

Lr where Lr ≤ min(I, J). Instead, the rank of Er must be

equal to or less than Lr, because the rank of the product of

two matrices is less than the smaller rank of these two factor

matrices, and the rank of Ar or Br is also equal to or less

than Lr. Therefore, in theory Lr is only required to be equal

to or larger than the actual rank of abundance matrix Er and is

equal to or less than min(I, J). However, from the perspective

of implementation, closer value of Lr and the actual rank of

Er leads to more stable and accurate results of optimization,

because the sizes of Ar and Br (number of variables need to

be estimated) become small when Lr approximates the actual

rank of abundance matrix. In practice, accurate determination

of the rank of abundance matrix Er of the rth endmember is

impossible. We only know this matrix has low-rank or sparse

property in most real cases due to its spatial correlation and

sparse distribution. On the other hand, in general the ranks

of the all abundance matrices Er for r = 1, 2, . . . , R are not

the same, so determination of these ranks is a more difficult

task. Therefore, we can assign a relative small value to Lr

compared with I and J . For simplicity, Lr is set the same

value for r = 1, . . . , R. In the experiments, we will analyze

the unmixing performance with respect to different values of

Lr.

The convergence of the cost function in Equation (25) is

easy to prove. The cost functions in Equations (27), (31)

and (33) are non-increasing under the update rules (30),

(32), and (34) respectively, which has been proved in the

convergence analysis of NMF algorithm with multiplicative

update rules [52], as their update rules are identical. Obvi-

ously, iteratively using these update rules, the cost function

in Equation (25) will converge to a point and then cease to

decrease.

Moreover, the uniqueness of matrix-vector NTF is also

an interesting probelm. In [49], several conditions are giv-

en, under which essential uniqueness of BTD with rank-

(Lr, Lr, 1) or rank-(L,L, 1) terms is guaranteed. For example,

one condition of them for BTD with rank-(L,L, 1) terms

is that min(I, J) ≥ LR and C does not have proportional

columns. This condition is sometimes satisfied for spectral

unmixing in application. The number of endmembers R is

limited, and the rank of abundance matrix L is less than

the length I or width J of the image due to the assumption

that the abundance map can be low-rank represented, so that

min(I, J) ≥ LR may be satisfied. At the same time there

is not any pair of endmembers whose spectra are totally the

same but only have scaling difference, which means there is

not any pair of columns of C being proportional. Although

by now a strict condition to guarantee the uniqueness of

the proposed matrix-vector NTF has not been derived, i.e.,

nonnegative BTD with rank-(L,L, 1) terms, some research

works have shown that the conditions of uniqueness for a

specific tensor decomposition can be relaxed to its nonnegative

version [53]. Therefore, the uniqueness of matrix-vector NTF

can be achieved in some cases of spectral unmixing.

No matter whether the uniqueness exists or not, the final

solution of the optimal problem in Equation (25) based on

alternating minimization technique and multiplicative update

rule is dependent on the initialization due to its non-convex

property. Random initialization is usually used, in which A,

B and C are initialized by setting their entries to random

values in the interval [0, 1]. However, it does not well control

the quality of the final unmixing result. In some methods,

an alternative unmixing approach is selected to generate the

initialized result [13], [21], which guarantees an acceptable

final unmixing result. In this paper, in order to objectively eval-

uate the performance of matrix-vector NTF algorithm without

introducing external factors, we use random initialization for

the experiments, and ten times are run to generate an average

result for any experiment.

Besides the nonnegativity constraint, sum-to-one property is

also widely considered. As the method proposed in [16], [21]

for NMF based unmixing model, the sum-to-one constraint can

be embedded into the matrix-vector NTF model in a similar

way, therefore, the cost function in Equation (25) is modified

into

min
E,c
‖X−

R∑

r=1

Er ◦ cr‖
2
F + δ‖

R∑

r=1

Er − 1I×J‖
2
F

s.t. Ar,Br, cr � 0

(35)

where the parameter δ controls the impact of sum-to-one

constraint on the cost function, 1I×J is the all-one matrix

with the size of I × J .

Now three sub-optimization problems in alternating mini-

mization algorithm become

min
A

‖XJK×I−(B⊙̄C) ·AT ‖2F + δ‖ABT − 1I×J‖
2
F

s.t. A � 0
(36)

min
B

‖XKI×J−(C⊙̄A) ·BT ‖2F + δ‖ABT − 1I×J‖
2
F

s.t. B � 0
(37)

min
C

‖XIJ×K−[(A1 ⊙B1)1L1
· · · (AR ⊙BR)1LR

] ·CT ‖2F

s.t. C � 0
(38)
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Their corresponding multiplicative update rules are

A← A. ∗ (XT
JK×IS+ δ1I×JB)./(ASTS+ δABTB) (39)

B← B. ∗ (XT
KI×JS+ δ1T

I×JA)./(BSTS+ δBATA) (40)

C← C. ∗XT
IJ×KS./(CSTS) (41)

Accordingly, in each update step of Algorithm 1, we can

replace Equations (30), (32) and (34) with Equations (39), (40)

and (41) respectively. In general, sum-to-one is an optional

constraint. As the linear spectral mixture model is just an

approximate model in real applications, sum-to-one is also an

approximate constraint. Therefore, with or without sum-to-one

is dependent on the HSI data and their acquisition condition.

Finally, we briefly analyze the computational complexity

of the proposed algorithm. According to Algorithm 1, each

iteration mainly contains three updating steps of Eq. (30),

(32), (34) for three sub-optimization problems respectively.

For Eq. (30), the number of floating-point operations needed

is RL(2I + 2IJK + 2JKRL + 2IRL + JK); for Eq.

(32) the number of floating-point operations is RL(2J +
2IJK + 2IKRL + 2JRL + IK); and for Eq.(34) it is

R(2K + 2IJK + 2IJR + 2KR + 3IJL). Therefore, given

that the algorithm terminates after m iterations, the overall

computational complexity of Algorithm 1 is O(mIJKRL +
mIKR2L2 + mJKR2L2), in which I , J and K are the

width of image, the height of image, and the number of

bands respectively, R is the number of endmembers, and

L is the rank parameter of abundance matrix. It can be

found that the complexity is linear with the size of HSI cube

(I × J × K), which is the same as that of standard NMF

algorithm, because three sub-optimization problems are the

same as NMF problem. For very large HSIs, accelerated hier-

archical alternating least squares, random block-wise methods

and GPU processing schemes can be used.

IV. EXPERIMENTS AND DISCUSSIONS

Having presented our method in the previous sections, we

now turn our attention to demonstrate its utility for unmixing.

A series of experiments on synthetic and real-world HSI data

have been done. We compare the proposed matrix-vector NTF

method with several alternative methods including the basic

NMF method (NMF), L1/2 sparsity regularized NMF (L1/2-

NMF) [16], and manifold regularized sparse NMF (MRS-

NMF) [20]. NMF is a baseline method, and all other ap-

proaches in the experiments are extended from it. L1/2-NMF

has been known as one of the best sparse NMF models for

spectral unmixing. MRS-NMF is derived from L1/2-NMF by

adding spectral-spatial manifold constraint. The main goal

of the experiments is to demonstrate that matrix-vector NTF

itself has the advantage of preserving the spectral and spatial

structure of HSI. On the contrary, in NMF based algorithms

the spectral, spatial or their joint structures must be introduced

from outside as constraints.

The unmixing performance is measured using spectral angle

distance (SAD) and root mean squared error (RMSE). The

SAD evaluates the dissimilarity of the rth endmember signa-

ture ĉr and its estimated signature cr, which is defined as

SADr = arccos

(
cTr ĉr

‖cr‖‖ĉr‖

)
(42)

The RMSE measures the error between the real abundance

map Êr of rth endmember and its estimated map Er, which

is defined as

RMSEr =

(
1

N
| Er − Êr |

2

) 1
2

(43)

where N = I × J is the number of pixels in the image. In

the experiments, we use the average SAD of all endmembers

and the average RMSE of all abundance maps to indicate

the unmixing performance, which are defined as SAD =
1
R

∑R
r=1 SADr and RMSE = 1

R

∑R
r=1 RMSEr over ten runs

with random initialization.

A. Experiments on synthetic data

The synthetic data are generated by the following steps [16]:

1) Six spectral signatures (Carnallite, Ammonio-jarosite, Al-

mandine, Brucite, Axinite and Chlonte) are chosen from

the United States Geological Survey (USGS) digital spectral

library. The selected spectral signatures contain 224 spectral

bands with wavelengths from 0.38 µm to 2.5 µm. Fig. 2 shows

the signatures of them. These six spectral signatures are used

as the endmembers to create mixed pixels. 2) A synthetic

image with size z2×z2 is partitioned into z2 blocks, and each

obtained block has z × z pixels. 3) Each block is assigned

a randomly selected endmember to fill with all the pixels

therein. 4) The image is processed using a (2z+1)× (2z+1)
mean filter to generate the mixed pixels. 5) The pixels with

fractional abundance that is larger than a specified threshold

θ will be replaced by a mixture of all endmembers with

equal abundances, so that the pixels are highly mixed, and

no pure pixel exists. 6) With steps 2-5, the abundance maps

of the synthetic HSI are constructed, so that the clean synthetic

HSI is generated. 7) To evaluate the robustness to noise, the

obtained clean HSI is disturbed by zero-mean white Gaussian

noise having pre-specified signal-to-noise ratio (SNR) that is

defined as

SNR = 10 log10
E[yTy]

E[eT e]
(44)

where y and e are the clean signal and the noise at a pixel.

E[·] denotes the expectation operator.

We have done a number of experiments to analyze the

properties of matrix-vector NTF algorithm and its unmixing

performance against other methods under various situations.

1) Parameter setting: The matrix-vector NTF based unmix-

ing method has two forms: one without sum-to-one constraint

and the other with this constraint. For simplicity, we abbreviate

them as MV-NTF and MV-NTF-S respectively. Here we will

compare MV-NTF and MV-NTF-S on synthetic data to see the

effect of sum-to-one constraint. Therefore, we first present in

Fig. 3 the result of MV-NTF-S on clean synthetic data (z = 8
and θ = 0.7) with respect to the parameter δ that controls

the impact of sum-to-one constraint on the cost function in
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Fig. 2. The spectral signatures of six endmembers used in synthetic data.

Equation 35. It should be noted that MV-NTF-S with δ = 0
equals to MV-NTF without sum-to-one constraint. From Fig.

3, we can see that when δ < 1, SAD has very little change,

and RMSE is stable when 0.2 < δ < 1. In the following

experiment, we set δ = 0.4 for MV-NTF-S.
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Fig. 3. SAD and RMSE with respect to the impact of sum-to-one constraint.

For matrix-vector NTF based unmixing algorithm, the num-

ber of endmembers R and the rank of abundance matrix Lr

are two important model parameters. In practice, the number

of endmembers can be obtained by the domain knowledge

or other estimation methods, so here we only discuss the

impact of Lr on the unmixing performance. A lot of studies

have demonstrated that the distribution of abundances in an

HSI is always low rank, so Lr is a good index to reflect

the distribution of abundance. Here we evaluate the unmixing

performance with respect to rank changes. For simplicity, we

let Lr = L for r = 1, 2, . . . , R, which can greatly reduce

the complexity of model. In the experiment, we set z = 8,

SNR = 30 and θ = 0.7 for the synthetic data.

Fig. 4 shows the unmixing results with different ranks of

abundance matrix, from which we find that both SAD and

RMSE do not simply decrease or increase with the rank

changes, but have little oscillations. However, in a large range

of 20 ≤ L ≤ 60, the unmixing performance is basically

stable on a high level (some oscillations might be caused by

initialization of optimization and noise disturbance), which

implies that the determination of the parameter L is not a

difficult problem for the matrix-vector NTF based unmixing

algorithm. The spatial size of the synthetic HSI is 64 × 64,

i.e., the maximal rank of the abundance matrix is 64. The

experimental results give us a simple guidance on choosing

the value of rank: except for very large or very small ranks, all

other values can be accepted. Compared with other sparsity or

low rank based unmixing algorithms, the parameter setting of

our method is much easier in real applications. In the following

experiments, we set L ≈ 2
3 min(I, J).

2) Method comparison under different noise levels: In this

experiment, we compare the unmixing performance of four

methods NMF, L1/2-NMF, MRS-NMF, MV-NTF and MV-

NTF-S under different noise levels. Adding Gaussian noise

into clean HSI might cause some pixels to have negative values

in their spectral signatures, especially the noise level is high.

In this case, these negative values are simply reset to zero.

The parameters z = 8 and θ = 0.7 are set for all noisy data.

In order to ensure fair comparison, we first randomly initialize

Ar,B
T
r , r = 1, . . . R for matrix-vector NTF, and then use

ArB
T
r as the initialized abundance maps of NMF, L1/2-NMF,

and MRS-NMF. At the same time, all five methods have

the same randomly initialized endmembers. The comparison

results are shown in Tables I and II, and Fig. 5, from which

it can be found that matrix-vector NTF is much better than

other algorithms under different noise levels. As expected,

NMF delivers the worst results in terms of both SAD and

RMSE because it does not have a sparsity regularizer and

misses spectral-spatial structure. L1/2-NMF and MRS-NMF

have very similar SAD results, but MRS-NMF has less RMSE

than L1/2-NMF, which shows the spectral-spatial informa-

tion embedded in MRS-NMF is beneficial to the abundance

estimation of a whole image. Meanwhile, their L1/2 norm

based sparsity constraint is very helpful to both endmember

and abundance estimation. Our matrix-vector NTF not only

preserves the intrinsic spectral-spatial joint structure of an HSI,

but also allows low-rank representation for abundance maps,

which makes it more effective than other unmixing methods

such as L1/2-NMF and MRS-NMF that externally enforce the

constraints of spectral-spatial structure and sparsity into NMF

model. In general, the performance of all unmixing methods
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Fig. 4. SAD and RMSE with respect to the rank of abundance matrix.

TABLE I
SAD OF THE UNMIXING METHODS WITH RESPECT TO THE NOISE LEVEL.

SNR 15 20 25 30 35 Inf

NMF 0.3373 0.3275 0.3189 0.2738 0.2736 0.2734
L1/2-NMF 0.2187 0.2022 0.2015 0.1813 0.1806 0.1816

MRS-NMF 0.2152 0.2020 0.2016 0.1807 0.1795 0.1794
MV-NTF 0.1747 0.1732 0.1689 0.1520 0.1525 0.1512

MV-NTF-S 0.1757 0.1700 0.1648 0.1519 0.1526 0.1512

TABLE II
RMSE OF THE UNMIXING METHODS WITH RESPECT TO THE NOISE LEVEL.

SNR 15 20 25 30 35 Inf

NMF 0.1509 0.1485 0.1486 0.1481 0.1480 0.1480
L1/2-NMF 0.1450 0.1393 0.1367 0.1357 0.1349 0.1348

MRS-NMF 0.1435 0.1371 0.1357 0.1346 0.1328 0.1231
MV-NTF 0.1018 0.1021 0.1026 0.0972 0.1012 0.1035

MV-NTF-S 0.0925 0.0901 0.0906 0.0868 0.0865 0.0887

is becoming worse as the noise level increases, but both of

MV-NTF and MV-NTF-S are more robust to the noise than

other methods.

3) Method comparison under different mixing levels: This

experiment aims at evaluating the performance of five unmix-

ing algorithms in the synthetic HSI data with different mixing

levels. The mixing level is controlled by the parameter θ in

data generation, i.e., a larger θ implies smaller mixing level. In
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Fig. 5. SAD and RMSE with respect to the noise level.

TABLE III
SAD OF THE UNMIXING METHODS UNDER DIFFERENT MIXING LEVELS.

θ 0.5 0.6 0.7 0.8 0.9

NMF 0.2383 0.2580 0.2528 0.2485 0.2871
L1/2-NMF 0.2071 0.1920 0.1855 0.1967 0.1936

MRS-NMF 0.2064 0.1902 0.1848 0.1967 0.1937
MV-NTF 0.1921 0.1922 0.1781 0.1724 0.1903

MV-NTF-S 0.1875 0.1887 0.1794 0.1709 0.1788

TABLE IV
RMSE OF THE UNMIXING METHODS UNDER DIFFERENT MIXING LEVELS.

θ 0.5 0.6 0.7 0.8 0.9

NMF 0.1219 0.1411 0.1426 0.1423 0.1346
L1/2-NMF 0.1421 0.1363 0.1356 0.1331 0.1319

MRS-NMF 0.1197 0.1321 0.1332 0.1322 0.1318
MV-NTF 0.1121 0.1161 0.1152 0.1134 0.1149

MV-NTF-S 0.1139 0.1142 0.1121 0.1090 0.1180

the experiment, we set z = 8 and SNR = 25 for all synthetic

HSI data. The SAD and RMSE of five unmixing methods

in the synthetic HSI data with θ = 0.5, 0.6, 0.7, 0.8, 0.9
respectively are shown in Tables III, IV and Fig. 6. We found

that both of MV-NTF and MV-NTF-S are better than other

three methods in terms of SAD and RMSE. Generally, all

five methods under comparison are not sensitive to the mixing

level.
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Fig. 6. SAD and RMSE with respect to the mixing level.

TABLE V
SAD OF THE UNMIXING METHOD UNDER DIFFERENT IMAGE SIZES.

Sample Size 1296 2401 4096 6561 10000

NMF 0.3515 0.2619 0.2528 0.2614 0.2693
L1/2-NMF 0.2567 0.2479 0.1855 0.1994 0.1771

MRS-NMF 0.2592 0.2509 0.1848 0.1997 0.1741
MV-NTF 0.2256 0.2091 0.1781 0.1720 0.1503

MV-NTF-S 0.2021 0.2008 0.1794 0.1716 0.1355

4) Method comparison under different image sizes: This

experiment is used for evaluating five unmixing methods in

the synthetic data with different sizes of image (number of

pixels in an HSI). The sizes of image are chosen as 36× 36,

49×49, 64×64, 81×81, and 100×100 respectively. The other

parameters are set as SNR = 25 and θ = 0.7. Tables V, VI

and Fig. 7 show the unmixing performance of all methods in

terms of SAD and RMSE. It can be seen that their performance

becomes to be better as the image size increases, which

demonstrates that the spectral, spatial, and their joint structures

of an HSI is very helpful to solve the unmixing problem. Large

image size implies the richness of the structural information

within it. Under all image sizes, MV-NTF and MV-NTF-S are

better than the other three approaches.

After comparing the above experiments results, it can be

found that MV-NTF and MV-NTF-S are very similar and both

of them are better than NMF, L1/2-NMF and MRS-NMF.

TABLE VI
RMSE OF THE UNMIXING METHODS UNDER DIFFERENT IMAGE SIZES.

Sample Size 1296 2401 4096 6561 10000

NMF 0.1573 0.1447 0.1426 0.1434 0.1259
L1/2-NMF 0.1556 0.1388 0.1356 0.1375 0.1133

MRS-NMF 0.1536 0.1368 0.1332 0.1353 0.1077
MV-NTF 0.1260 0.1047 0.1152 0.0805 0.0900

MV-NTF-S 0.1189 0.1093 0.1121 0.1020 0.0968
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Fig. 7. SAD and RMSE with respect to the image size.

B. Experiments on real-world Data

Three real-world data sets were used to evaluate the pro-

posed matrix-vector NTF method: Urban, Jasper, and Cuprite.

These three HSI data have different numbers of endmembers,

sizes of image, and acquisition sensors, which help us compre-

hensively evaluate the unmixing performance. Four unmixing

methods NMF, L1/2-NMF, MRS-NMF, and VCA-FCLS [5]

were chosen for comparison. The parameter settings of these

algorithm were according to their original papers. As the

unmixing performance of MV-NTF-S is slightly better than

MV-NTF on synthetic data, we use matrix-vector NTF with

sum-to-one constraint algorithm for real-world data.

1) HYDICE Urban Data set: This data set was generated

by the Hyperspectral Digital Imagery Collection Experiment

(HYDICE) on an urban area. Its size is 307×307 and it has 210

spectral channels with spectral resolution of 10nm acquired

in the 400nm and 2500nm range. After low SNR bands had
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Fig. 8. The 80th band image of HYDICE Urban data set.

been removed, 162 bands remained for the experiments. Fig. 8

shows its 80th band image. We set the number of endmembers

as 4, including roof, grass, asphalt and tree.

In order to give quantitative evaluation results, we use the

method in [16], [17] to obtain the reference endmembers

and abundances of HYDICE Urban data set. The reference

endmember spectra of various materials are manually chosen

from the hyperspectral data itself, e.g., the spectrum in the

coordinate position of (78, 220) in HYDICE Urban image is

selected as the asphalt spectrum, which is very similar to the

asphalt spectrum in the spectral library. Once the reference

endmembers are determined, their corresponding reference

abundances are computed by the method of least squares,

subject to sum-to-one and positivity constraints [7].

The SAD results of the unmixing methods are shown in

Table VII. It can be seen that matrix-vector NTF is better than

the other four methods. Fig. 9 shows the estimated endmember

signatures of matrix-vector NTF against references. We found

that the estimated endmember signatures are very close to

their corresponding reference ones. Fig. 10 shows the reference

abundance maps and estimated abundance maps respectively.

All these results demonstrate that the proposed matrix-vector

NTF can achieve a competitive unmixing performance com-

pared with the state-of-the-art unmixing approaches on this

data set.

2) Jasper Ridge Data set: Jasper Ridge data set was col-

lected by the Airborne Visible/Infrared Imaging Spectrometer

(AVIRIS) over Jasper Ridge in central California, USA. It

contains 224 bands covering the wavelengths from 0.38µm to

2.5µm, with a 10 nm spectral resolution. The size of original

image is 512× 614. We only used a part of it with the size of

100 × 100, whose 80th band image is shown in Fig. 11. We

removed some low SNR and water-vapor absorption bands so

that 198 bands were retained. Four endmembers are assumed

in the image, which are soil, water, tree and road. Its reference

endmembers and abundances are obtained by the same method

used for HYDICE Urban data.

The comparative SAD results of five methods are given

in Table VIII. Matrix-vector NTF and MRS-NMF are better

than other methods. Matrix-vector NTF outperforms MRS-

NMF in terms of the mean SAD of all four endmembers.

The estimated endmember signatures of matrix-vector NTF

against the references are shown in Fig. 12, from which we
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Fig. 9. Endmembers of HYDICE Urban estimated by matrix-vector NTF.
Solid lines denote the reference endmembers and dashed lines denote the
estimated endmembers.

Fig. 11. The 80th band image of Jasper Ridge data set.

can see that their difference is very small. All abundance maps

generated by five algorithms are shown in Fig. 13.

3) Cuprite Data set: The third real HSI was acquired

by AVIRIS over Cuprite in southern Nevada, USA. As the

minerals are highly mixed in the scene and the number of

main materials is up to 10, this data has been widely used to

investigate the performance of various unmixing algorithms.

The cuprite data contains 224 bands with the wavelength from

0.4µm to 2.5µm. In the experiments, a region with the size of

250×191 selected from the original data set was used. Fig. 14

shows the 80th band image of this data set. After removing

the low SNR and water vapor absorption bands, 188 bands

remained for the experiments.

For Cuprite data set, the reference endmembers and abun-

dances about this scene have been reported in [54] which used

the spectral correlation between a scaled laboratory reference

spectrum and ground calibrated Cuprite data for each pixel,

and the library spectrum with the highest correlation is chosen

as the best match. The library spectra of the main minerals in

the scene are selected as the ground truth of endmembers, and

the quality of fit for each mineral is calculated for each pixel

and the results are considered as the reference abundances.



13

TABLE VII
MEANS AND STANDARD DEVIATIONS OF SAD ON HYDICE URBAN DATA.

Algorithm NMF L1/2-NMF MRS-NMF VCA-FCLS MV-NTF

Asphal 0.1347± 4.05% 0.1089±0.74% 0.1223±1.21% 0.4307±44.08% 0.1638± 0.87%

Grass 0.8479± 45.40% 0.1604± 4.67% 0.1716±7.93% 0.41.33±0.00% 0.2268± 13.64%

Tree 0.1331± 0.68% 0.2869± 6.83% 0.2229±12.20% 0.3083±6.57% 0.1054±3.26%

Roof 0.9176± 13.21% 0.4438± 13.33% 0.4346±15.59% 0.7443±14.89% 0.3707±2.33%

Mean 0.5083± 13.50% 0.2500± 5.04% 0.2378± 6.62% 0.4742±7.67% 0.2167± 2.25%

(a) MV-NTF (b) NMF (c) L1/2-NMF (d) MRS-NMF (e) VCA-FCLS (f) Reference

Fig. 10. Estimated abundance maps by five unmixing algorithms on the HYDICE Urban data set. From top to bottom, the rows are the abundance maps of
asphalt, grass, tree, roof.

TABLE VIII
MEANS AND STANDARD DEVIATIONS OF SAD ON JASPER RIDGE DATA

Algorithm NMF L1/2-NMF MRS-NMF VCA-FCLS MV-NTF

Tree 0.2199± 2.91% 0.1142± 7.40% 0.0833±6.93% 0.2576± 4.58% 0.2126± 1.74%
Water 0.3372±3.42% 0.1515±0.73% 0.1275±0.57% 0.2517±0.31% 0.2519±0.86%
Soil 0.1514±5.25% 0.1111±3.53% 0.0671±1.39% 0.4483±20.76% 0.1504± 7.77%
Road 1.1626±8.33% 0.7793±2.31% 0.7993±7.98% 0.5371±1.08% 0.2180±14.98%

Mean 0.4678±3.64% 0.2891±2.95% 0.2693±2.73% 0.3737±5.09% 0.2082± 6.00%

The SAD results of five methods are given in Table IX.

It can be found that the mean SAD of the proposed matrix-

vector NTF based unmixing method is slightly smaller than the

results of other methods. The estimated endmember signatures

of matrix-vector NTF and their references are shown in

Fig. 15. From the experiments on Cuprite data, we can see that

matrix-vector NTF still has a good performance even though

this data set is relatively difficult to process due to a large

number of endmembers.

C. Discussion

Through the experiments on the above synthetic and real

HSI data sets, the proposed matrix-vector NTF demonstrates

competitive unmixing performance against several state-of-

the-art NMF based methods. Both matrix-vector NTF and

basic NMF have not introduced any constraint on spectral,
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(a) MV-NTF (b) NMF (c) L1/2-NMF (d) MRS-NMF (e) VCA-FCLS (f) Reference

Fig. 13. Estimated abundance maps by five unmixing methods on the Jasper Ridge data set. From top to bottom, the rows are the abundance maps of tree,
water, soil, and road.

TABLE IX
MEANS AND STANDARD DEVIATIONS OF SAD ON CUPRITE DATA.

Algorithm NMF L1/2-NMF MRS-NMF VCA-FCLS MV-NTF

Alunite 0.1408±4.31% 0.1464±5.45% 0.1380±2.68% 0.1109±3.07% 0.1410±3.05%
Andradite 0.1341±8.96% 0.0828±2.73% 0.0805±2.40% 0.0684±1.22% 0.1120±6.87%

Buddingtonite 0.1656±0.67% 0.1507±0.95% 0.1495±0.81% 0.0752±5.52% 0.0835± 0.26%
Dumortierite 13.96±1.32% 0.1175±2.56% 0.1219±2.25% 0.1722±2.89% 0.1514±1.35%

Kaolinite 0.1990±6.04% 0.1962±4.65% 0.0561±0.27% 0.2139±1.81% 0.0932±2.26%
Montmorillonite 0.1002±0.34% 0.0943±1.40% 0.1526±7.58% 0.1770±1.47% 0.1633±2.65%

Muscovite 0.1416±0.08% 0.1456±0.87% 0.1110±2.53% 0.2044±2.61% 0.1376±1.13%
Nontronite 0.0818±0.34% 0.1154±3.94% 0.1490± 8.68% 0.0670±2.87% 0.0793±0.18%

Pyrope 0.0631±1.87% 0.0731±0.41% 0.0729±0.43% 0.0963±6.58% 0.0547±0.55%

Sphene 0.0594±1% 0.0962±0.52% 0.1063±1.90% 0.0703±6.08% 0.1017±3.29 %
Mean 0.1225±0.63% 0.1218±1.16% 0.1138±1.30% 0.1255±0.38% 0.1118±1.24%

spatial, or spectral-spatial structures of an HSI, while other

two NMF based methods use abundance sparsity and spectral-

spatial manifold information as constraints. The experimental

results confirm that the matrix-vector NTF can preserve the

HSI structure as it treats an HSI cube as a whole processing

frame. It overcomes the drawback of NMF based unmixing

models that the structural information is lost when unfolding

an HSI cube into a matrix. L1/2-NMF and MRS-NMF as

typical constrained NMF based unmixing methods aim to

embed the spatial and spectral structures of an HSI into NMF

model, and have been proved to generate more reasonable

unmixing results. Different from their external and explicit

method, matrix-vector NTF achieves this aim by the intrinsic

structure and the operations of tensor decomposition, which

is more interpretable and easier to complete. Furthermore, its

performance is somehow better than these two approaches. In

summary, our proposed method provides an alternative and

effective technique for blind spectral unmixing.

V. CONCLUSION

In this paper, a new tensor decomposition based unmixing

method, matrix-vector NTF, is proposed. Tensor is a more

natural and accurate representation method for HSI cube than

matrix. However, building a link between tensor decompo-

sition and linear spectral mixture model is not an easy task.
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Fig. 12. Endmembers of Jasper Ridge estimated by matrix-vector NTF. Solid
lines denote the reference endmembers and dashed lines denote the estimated
endmembers.

Fig. 14. Cuprite hyperspectral dataset at band 80.

We firstly introduce two popular tensor decomposition models,

CPD and Tucker decomposition, analyze their relationship

with linear spectral mixture model, and point out their lack

of straightforward link with linear spectral mixture model in

the view of physical and mathematical mechanisms. After

that, the matrix-vector tensor decomposition as a special BTD

is proposed for unmixing, which is fully consistent to the

linear spectral mixture model under tensor notation, leading

to clear physical and mathematical interpretation and easy

implementation. In order to satisfy the nonnegative property of

endmember and abundance, matrix-vector NTF is presented,

and its alternating least square optimization algorithm is

derived. Moreover, the uniqueness of matrix-vector NTF and

the convergence of optimization algorithm are also discussed.

The experiments on synthetic and real data sets demonstrated

the advantages of our unmixing method against a number of

alternatives, i.e., NMF, L1/2-NMF, and MRS-NMF. The main

object of this paper is to extend NMF based unmixing method

to tensor frame, so we just give a basic matrix-vector NTF
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Fig. 15. Endmembers of Cuprite estimated by matrix-vector NTF. Solid
lines denote the reference endmembers and dashed lines denote the estimated
endmembers.

model. It should be emphasised that like NMF based unmixing

model, the proposed NTF model is quite general in nature,

so it can incorporate other information or constraints such as

sparsity, nonlinear mixture, local consistence, and insensitive-

ness to noise. New unmixing models and approaches can be

developed based on it.
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