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ABSTRACT

In web data, telecommunications traffic and in epidemiological
studies, dense subgraphs correspond to subsets of subjects (i.e.
users, patients) that share a collection of attributes values (i.e. ac-
cessed web pages, email-calling patterns or disease diagnostic pro-
files). Visual and computational identification of these ”clusters”
becomes useful when domain experts desire to determine those fac-
tors of major influence in the formation of access and communica-
tion clusters or in the detection and contention of disease spread.
With the current increases in graphic hardware capabilities and
RAM sizes, it is more useful to relate graph sizes to the available
screen real estate S and the amount of available RAM M, instead of
the number of edges or nodes in the graph. We offer a visual inter-
face that is parameterized by M and S and is particularly suited for
navigation tasks that require the identification of subgraphs whose
edge density is above certain threshold. This is achieved by provid-
ing a zoomable matrix view of the underlying data. This view is
strongly coupled to a hierarchical view of the essential information
elements present in the data domain. We illustrate the applicability
of this work to the visual navigation of cancer incidence data and to
an aggregated sample of phone call traffic.

CR Categories: H.5.2 [Information Interfaces and Presenta-
tion]: User Interfaces—Graphical User Interfaces; H.2.8 [Database
Management]: Database Applications—Data Mining I.5.5 [Pattern
Recognition]: Clustering—Algorithms

Keywords: Graph Visualization, Hierarchy Trees, Clustering, Ex-
ternal Memory Algorithms, Cancer Data, Phone Traffic

1 INTRODUCTION

A variety of data sets can be interpreted as a relation A between a
set of subjects K (i.e. users, patients, entities, etc) and a set of at-
tribute values L (i.e. web pages accessed, diagnosis characteristics,
entities compounds, etc). A can then be viewed as a |K| by |L| ma-
trix where A[x, y] = 1 if and only if subject x has attribute value y,
i.e. A becomes the adjacency matrix of a graph G with vertex set
V (G) = K ∪L. In many applications, the set of subjects and the set
of attributes are disjoint (i.e. the graph is bipartite), however this is
not a restriction since any graph has a unique adjacency matrix rep-
resentation (modulo columns and row permutations). This matrix
view of a graph opened the very successful use of spectral meth-
ods to elucidate inherent graph clustering structure of several sorts
[13]. This line of research has been used to produce aesthetically
pleasing node-link graph layouts [11]. A natural way to proceed
would then be to obtain a hierarchical clustering on the layout and
choose from it a coarse enough level that can be then embedded on
the screen. This begs the question of how then one can zoom into
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the current node-link layout to obtain the next node-link level of
granularity. Zooming into a vertex offers no major problem since
this amounts to allocating enough screen space around the vertex to
locally embed the lower level subgraph that it represents [3].

However, zooming into an aggregated edge leaves us with the
unpleasant task of embedding locally the collection of edges it rep-
resents with the added constraint that their endpoints already have
predetermined positions. The problem becomes aggravated when
the collection of edges at a lower level is so large that their local
embedding clutters the available screen space. This is in our view
one of the major difficulties in using node-link diagrams to visually
navigate large graphs even if a hierarchical clustering has been com-
puted. On the other hand, if a clustered graph is visually embedded
as an adjacency matrix there is no difference between zooming into
edges or vertices since in both cases there is a well defined local
area of the screen into which we can zoom in. This is the main
justification to use matrix-based representations of large clustered
graphs if the user task at hand requires navigation at different levels
of granularity.

Another reason is that, very often, higher levels of clustering
tend to produce very dense graphs and in this case nodelink dia-
grams are again not very well suited. In summary, in this work we
concentrate on the problem of navigating hierarchically clustered
graphs and we assume that such a clustering is provided to us as a
hierarchy tree on the vertex set of an input graph (semi-external).
We illustrate the use of the proposed interface to navigate data pro-
vided by the SEER program of the US National Cancer Institute
and we also use our interface to navigate a hierarchical view of a
phone traffic data set for which not even the vertex set fits in RAM
(i.e. a fully external memory graph). In the next section we dis-
cuss related work and present an overview of our ideas. Section
3 describes the framework that can be used to efficiently navigate
semi-external graphs. Section 4 gives an overview of the visual in-
terface and its main features. Section 5 illustrates navigation results
on cancer incidence data and on aggregated sample of phone traffic.
Finally, we present conclusions and further work in section 6.

2 RELATED WORK AND PAPER OVERVIEW

The incidence matrix of a graph allows to some extent visualization
of a clustering. This amounts to relabelling the nodes of the graph
such that nodes in the same cluster have consecutive labels. If there
are enough edges within a cluster (i.e. if its density is high) and few
edges going out of it then the resulting permuted matrix exhibits a
diagonal block structure with the remaining ”few” entries scattered
in the remaining portions of the matrix. Different reordering algo-
rithms [6] produce then potentially different clusters, however stan-
dardized comparison of cluster methods is virtually non-existent.
Usually, the solutions quality is measured in terms of a cost func-
tion on the produced clusters, but devising such cost functions is
non-trivial [5].

Having a clustering, each of the clusters gets collapsed into a
macro vertex and the edges between clusters are aggregated into
macro edges providing a coarse view of the input graph. Iteration of
this process is what is referred in the literature as hierarchical graph
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clustering [10]. The required data structure to maintain the obtained
clusters is a Hierarchy Tree. It is simply a rooted tree T whose set
of leaves is in one to one correspondence with the vertices of the
input graph. Each internal tree node represents a cluster obtained
by collapsing its set of descendant leaves (see figure 1). A view
of the input graph consists then of a careful selection of a set of
nodes in the hierarchy tree that corresponds to a partition of the
graph vertex set and its induced macro view. Navigation from one
macro view to another corresponds to refinement or aggregation of
selected subsets in the partition. We tune this navigation by using
memory, screen, time and graph size parameters as upper bounds
on the available resources.

Navigation tuning becomes essential especially when the input
graph is too large to fit on the available RAM (the I/O bottleneck).
Even if the graph fits in RAM it is necessary to control the screen
space usage since the number of pixels available is often scarce (the
screen bottleneck) compared to usual graph sizes. In order to offer
predefined levels of interactivity it is necessary to provide efficient
access mechanisms to the raw graph data and fast layout algorithms
for selected subgraph slices. We address all these issues in a unified
manner by building on the work of [2, 3, 14], paying special atten-
tion to improving the interface. We offer quite reasonable levels of
user interactivity by a combination of fast data access, selective use
of both matrix and node link diagrams, and fast semantic and geo-
metric zooming. Needless to say that the fundamental data structure
behind the scenes is an enhanced hierarchy tree. More succinctly,
our contributions are:

• a. A matrix driven interface to browse hierarchically clustered
graphs whose vertex set fits in RAM but whose edge set does
not. It is worth to point out that the use of a matrix represen-
tation does not preclude the use of node link representations
at lower levels of granularity. In fact, the navigation interface
is equipped with parameterized controls that allow the use of
both representations at the user’s discretion.

• b. The incorporation of screen, graph and RAM parameters
into each node of the hierarchy tree to empower the naviga-
tion algorithm to make decisions about the type of graph rep-
resentation that is most suitable at each level of the hierarchy
(section 3.3)

• c. The use of a variation of a kd-index to access subgraph
slices when the input graph is too large to fit on the available
RAM (section 3.2)

• d. A strong visual coupling of the hierarchy tree with the can-
vas display (Figure 3). This provides in effect a uniform and
permanent hierarchical view of the entire input graph. Navi-
gation from one macro view to another is explicitly presented.

• e. Mechanisms to provide a smooth transition from graph
matrix views into node link representations. At this stage,
vertices are visually ranked according to a local peeling de-
composition.

• f. Illustration of the applicability of the methods to the fluid
navigation of US SEER Cancer data [8] when viewed as a
bipartite graph with about 6 million edges and a high level
view of a fully external graph with about 250 million vertices
(section 5).

3 MEMORY AND SCREEN BOUNDED GRAPH MACRO-
VIEWS

We assume all through out that |M| is the size (in words) of random
access memory and that |S| is the size of the available screen. We
reserve the term nodes to refer to vertices of a tree.

Figure 1: Schematic illustration of graph theoretic concepts. The set
of dark nodes is a sample of a maximal antichain for this tree. The op-
eration details(p,q) returns the subgraph consisting of all leaf nodes
and the dotted edges(painted blue), while expansion(p,q) yields the
subgraph consisting of edges with both endpoints at depth 2(painted
red).

3.1 Definitions

• A multi-digraph is a triplet G = (V,E,m) where V is the ver-
tex set, E a subset of V ×V is the set of edges and m : V ×V →
R+ is a function that assigns to each edge a non-negative mul-
tiplicity. We denote by V (G) and E(G) the set of vertices and
edges of G respectively (assume that m(x,y) assigns the value
0 to non-edges of G ). When in need of emphasizing those
edges that have multiplicities we use the term multi-edges.
The weighted adjacency matrix of G is a matrix A(G) where
the entry (x,y) contains the value m(x,y). G is called a semi-
external graph if the vertex set fits in RAM but not the edge
set ( i.e. |V (G)| < |M| but 2× |E(G)| > |M| assuming that
a vertex and and an edge fit in one and two memory words
respectively [1] ). When both |V (G)| and |E(G)| do not fit in
RAM , G is called fully external.

• Antichain. For a rooted tree T, and a node p in T let Tp denote
the subtree of T rooted at p and let Leaves(T ) denote the set of
leaves of T . Nodes p and q of T are called incomparable in T
if neither p nor q is an ancestor of the other. A set of pairwise
incomparable nodes in T is called an antichain. Any maximal
antichain in a tree T corresponds to a partition of Leaves(T ).
Leaves(T ), Root(T ) and any maximal set of tree nodes at the
same distance from the root are the most simple examples of
antichains.

• Hierarchy Tree. A rooted tree T is called a hierarchy tree
for a graph G if Leaves(T) = V (G). We assume that from
each leaf of T we have random access to the in-degree and
out-degree of its corresponding vertex in V (G). This is a rea-
sonable assumption since this information can be obtained in
one pass over E(G) provided that the vertex set fits in RAM
(i.e. G is semi-external).

3.2 Hierarchical Coordinates for the Adjacency Matrix of G

Starting from the root, a depth first search (dfs) traversal of the hi-
erarchy tree T , for a multi-digraph G, provides a hierarchical set of
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coordinates for G’s adjacency matrix A(G) as follows. Associate
with every node p in T , the interval of dfs numbers going from
d f s(p) to the maximum dfs number in the subtree Tp; call such
an interval I(p). This collection of intervals provides a hierarchi-
cal view of A(G) by mapping the entire matrix to the square with
coordinates [0,0], [0, maxdfs of T], [maxdfs of T, 0] and [maxdfs
of T, maxdfs of T]. This process is iterated recursively. We obtain
in this fashion a hierarchical subdivision of space where each in-
comparable ordered pair of nodes (p,q) in T is associated with the
submatrix cell I(p)× I(q).

• The cell I(p)× I(q) corresponds to a subgraph of G that we
call details(p,q) whose vertex set and edge set are defined
as follows: V (details(p,q)) = Leaves(Tp) ∪ Leaves(Tq) and
E(details(p,q)) = {(u,v) ∈ E(G) such that u ∈ Leaves(Tp)
and v ∈ Leaves(Tq)}.

The number of non-zero entries in the submatrix cell I(p)× I(q)
is precisely |E(details(p,q))| and the density of this subgraph is
|E(details(p,q))|÷|I(p)× I(q)|. We are interested in detecting sub-
graphs details(p,q) with density above certain threshold. Since the
central statistic that is carried all trough out in a hierarchical man-
ner is precisely |E(details(p,q))| we record its definition for future
reference.

• The multiplicity of an ordered pair of nodes p and q in a hier-
archy tree T is

m(p,q) = ∑
(u,v)∈E(G)

m(u,v)

where u ∈ Leaves(Tp) and v ∈ Leaves (Tq)

The ordered pair (p,q) is called a virtual multi-edge if m(p,q) is
non zero. Notice that in general a virtual multi-edge (p, p) repre-
sents the subgraph of G induced by Leaves(Tp) and m(p, p) is its
aggregate multiplicity. These types of multi-edges correspond to
local interactions. Aggregate interactions at the same level of the
hierarchy correspond to multi-edges that are at the same distance
from the root (horizontal edges). In the case of phone call traffic,
they represent traffic between regions, states, counties, towns, etc.

• For a virtual multi-edge (p,q), expansion(p,q) is the multi-
digraph with vertex set equal to children(p) ∪ children(q)
and all the multi-edges running between children(p) and
children(q).

A good mental picture is that each virtual multi-edge (p,q) has
its own hierarchy of edge slices where each level represents an ag-
gregation of previous levels and where the bottom most level is the
subgraph of G that we call details(p,q) consisting of the directed
edges running from Leaves(Tp) to Leaves(Tq). In order to have fast
disk I/O access to these subgraphs we use a greedy variation of a
kd tree index called the gkd index as proposed in [4]. During data
loading, besides constructing the gkd tree we also build a redun-
dant R*-tree that indexes the leaf pages of the gkd tree. In this
way, fast construction and balanced lookups are possible because
the redundant R* tree can be built without scanning the gkd leaves
themselves. The details of how this is achieved can be found in [4].

3.3 Screen Bounded Hierarchy Trees

Since the number of screen pixels available is the ultimate
constraint for a visualization we introduce now a process called
hierarchy tree regularization. Its purpose is to embed a given
hierarchy tree T into a possible larger hierarchy tree RT such that

the number of children of each node is not more than a specified
integer value |S| which corresponds to the available screen space.
Notice that RT must have the same set of leaves as T . Starting at
the root (in breadth first search order), if the number of children
of a node p is more than |S|, they get grouped into groups of at
most |S| nodes each. Each group of nodes is assigned to a common
parent and these artificial parent nodes become the new children
of p. To make the subdivisions as meaningful as possible without
exceeding our computation time budget, we first check wether
there are any childnodes that have no incident edges. This can
be done efficiently since we have random access to the degree
for each node. Next, we check if there are any leafnodes mixed
in with non-leafnodes and aggregate both in a separate group. If
both of these tests fail we aggregate nodes into S groups by the
order in which they are processed. Note that, time and memory
space permitted, we can use any kind of clustering criteria at this
point. We could even compute an explicit clustering on the child
nodes and the edges among them, but this would take in general
an excessive amount of time.The artificial nodes introduced by this
process are colored lightly in the interface to indicate that they
were introduced for the purposes of visual navigation only, i.e.
they do not necessarily convey application domain semantics (see
Figure 3).

function RegularizeTree (Tree T , Screensize S)

• Input: An enhanced hierarchy tree T for a multi digraph G
and a parameter |S| corresponding to the number of available
screen pixels.

• Output: A hierarchy tree RT for G such that each node in RT
has at most |S| children.

begin
for each node n in T in BFS order do

RegularizeNode(n,S);
end;

function RegularizeNode(Node p, Size S)
begin

if nrchildren(p) > S then
if nrisolatedvertices(children(p)) > 0 then

group all isolated vertices under new parent
else

if nrleafchld(p) > 0 and nrleafchld(p) < nrchld(p) then
group all leafnodes under new parentnode

else
subdivide children under |S| new parentnodes;

end;

3.4 RAM bounded Macro Views of a Semi External Graph

In this section we show how we can use the concepts of antichains
and the regularized hierarchy tree of the previous section to gener-
ate a RAM resident macro view of any graph.

• For a multi-digraph G with an enhanced hierarchy tree T as
above, a maximal antichain in T is called a T-cover of G. No-
tice that Leaves(T) is a T-cover of G and that substituting in a
T-cover C a set of nodes by their common parent produces an-
other T-cover C’. In this case we say that C’ is smaller than C.
T-covers provide layered views that facilitate localized navi-
gation of the data. Their cardinality can be as small as 1 (i.e.
the root of the tree) or as large as the number of leaves in T.
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• A T-view of G is the multi digraph with vertex set the nodes of
a T-cover and all the virtual multi-edges running among them.

Since G is assumed not to fit in RAM (which we assume to be
larger than the available screen S) we need to compute a T-view
whose number of edges fits in memory(M). We show next how
to obtain such RAM bounded T-views for an external memory
graph (see the pseudo code for the function Cover). The idea is
to descend from the root in the hierarchy tree by expanding (see
definition in section 3.2) only those nodes in the current antichain
with the greatest degree provided that their substitution by their
children still fits in RAM (i.e. the obtained antichain size is less
than |M| ).

Function Cover (Size |M|, Tree RT )

• Input: An upper bound |M|, an enhanced and regularized hi-
erarchy tree RT for a multidigraph G.

• Output: A greedy RT-Cover C with no more than |M| ele-
ments such that Maximum outdegree(C), indegree(C) is min-
imum.

begin
C = root(RT );
currentCoverSize = 1;
degree = outdegree(C) = indegree(C) = |E(G)|;
C = sort C by non-decreasing order of out degree;
notFinished = true;
while (notFinished) do

for each p in C do
if ( |children(p)| + currentCoverSize - 1 < |M| )
then

newC = newC ∪ children(p) - p;
currentCoversSize = |newC|

if (|newC| = |C|) then notFinished = false;
C = newC;

end

3.5 Antichain Driven Navigation

Using the combination of hierarchy tree regularization, memory
bounded T-covers and a fast index to retrieve graph slices one can
process in principle any secondary storage multi-digraph defined
on millions of vertices provided that an explicit enhanced hierarchy
tree T is provided. In order to provide reasonable levels of inter-
activity we focus next on tuning the navigation process . This is
achieved by allowing the interface to jump directly from a virtual
multi-edge (p,q) to a view Tp,q whose number of multi-edges is
not more than |S| . Such view is obtained by invoking the func-
tion Cover twice with input Tp and Tq and screen parameter

√|S|
and taking the bottom up aggregation of details(p,q) determined
by the two obtained local antichains (i.e. local tree covers, see fig-
ure 2). We call the obtained view Tp,q the local cross product view
of the multi-edge (p,q). Its number of multi-edges is certainly not
more than |S| (the specified screen budget). Using this process we
can quickly navigate the entire tree without having to click through
each individual level.

3.6 Overall Computational Flow

We present next the overall view of the main computations involved
in preparing a data set for interface navigation.

Figure 2: Schematic depiction of antichain driven navigation. The
antichain TM is a cover of an external tree T , indicating the part of
the tree that fits in RAM. The antichain TS is a smaller cover of T
that fits on screen. When quick-zooming into and edge (p,q) we
compute new antichains on Tp and Tq and display the crossproduct
of both antichains Tp,q.

• Input: Memory and Screen Parameters, |M| and |S|. A disk
resident multi-digraph G = (V,E,m : V ×V →R+) with the in
and out degree of each vertex. A memory resident hierarchy
tree T for G with a domain specific label associated to each
node of T.

• Output: Two macro views TM and TS of G with the first one
bounded by |M| and the second one bounded by |S|.

I. Screen Regularization of T
RT = Regularize(T , |S|)

II.Enhance the hierarchy tree RT
Traverse RT in dfs (depth first search) order from the root as-
signing to every node p ∈ RT , the min and max dfs values
in the set Leaves(RTp). The interval of dfs numbers between
these two values is a subset of the interval I(p) defined in sec-
tion. We refer to this subinterval as LI(p).

Store with node p, the values in(p) and out(p), of the sum of
all the indegrees and outdegrees of its descendant leaves( i.e.
the nodes in Leaves(RTp)).

III. Build a gkd index to access E(G) according to RT [4]

IV. Compute a TM view of G using the subintervals LI(p) de-
fined above
Compute CM = Cover ( |M|, RT ) and use the mapping that as-
sociates with every p in CM the interval of dfs numbers LI(p)
to externally sort E(G) and aggregate the results according to
the cover CM . The obtained multi digraph is a TM view of
G. Based on edge density greedily select a subset of virtual
multi-edges in TM and use the gkd index to cache their corre-
sponding subgraphs.

V. Compute from TM a bottom up TS view
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Figure 3: A screenshot of the interface, showing racial distribution for colon cancer cases in Connecticut counties. The overview window is in
the top left, hierarchy trees are on the top and left of the matrix, node labels are on the bottom and right. Three counties (rows 1,2 and 5)
show more diversified racial distributions.

In order to guarantee that the cover TS is smaller than TM we
perform an upward aggregation of nodes in TM . Let Temp de-
note the subtree of RT consisting of its root and all the paths
from it to the elements of CM , i.e. Leaves(Temp) = CM . Con-
sider C′

M to be the antichain consisting of all the parent nodes
of elements in CM . A node p in C′

M can be added to CM and
its children can be deleted from CM if the sum of the degrees
of p’s children is minimum. The process is iterated until one
antichain is found whose cardinality is not more than |S|. Call
this antichain CS. Aggregation of TM according to CS pro-
vides a view TS of TM (which in turn is a view of G) that can
be embedded on the available screen.

VI. Prepare for antichains driven navigation
For every node p in CS compute Cover( |S| ,RTp). For spe-
cially selected virtual multi-edges (p,q) where p and q are in
CS, compute in memory all the multi-edges between Cover(
|S| ,RTp) and Cover(|S|, RTq). This is done by aggregating
the in memory resident TM view of G. Those multi-edges for
which this Tp,q view is not precomputed are computed on de-
mand from the interface.

The I/O complexity of the overall computation is dominated by
the gkd index construction and by the number of virtual edges (p,q)
that we want to cache. This is necessary in order to offer a rea-
sonable level of interactivity (Steps III and IV above). The inter-
nal computation is dominated by the time taken to aggregate the in

memory resident TM view of G.
In the next section we discuss how these notions translate into

visual navigation of a semi-external memory graph.

4 MATRIX ZOOM: A MATRIX DRIVEN INTERFACE

Providing visual access to detailed information within a global con-
text is certainly one of the fundamental problems in Information Vi-
sualization. We provide views of semi-external memory graphs at
different levels of abstraction by using the graph’s adjacency matrix
as a unifying mechanism when visually navigating ”large” hierar-
chical clusterings(see Figure 3).

4.1 Detail and Context

The interface (Figure 3) is designed around a canvas that displays a
visual representation of an aggregate matrix view of the data. The
labels, appearing on the bottom row and rightmost column, index
the attributes being considered. The color of the rectangles corre-
sponds to the proportion of data records that share the correspond-
ing attributes. The color scale is tuned depending on data character-
istics. For cancer data and phone traffic we found that a logarithmic
color map performs better because of the wide range of the density
parameter, ranging from 1 to 10−6.

Using the terminology of the previous section, the canvas dis-
plays a color mapped representation of a T(p,q) view of a data sub-
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Whole subgraph Nodes with peel > 1 Nodes with peel > 2 Nodes with peel > 3

Figure 4: Node link view of part of the SEER data set. Blue nodes are properties, green nodes are patients. Consecutive peeling reveals a small
clique of patients (green) that have at least four properties (blue) in common.

graph. The subtrees involved (i.e. Tp and Tq) are color marked
in two special screen regions (next to the ”axes”) reserved for a
sketch representation of the hierarchy tree. The cross product of
Leaves(Tp) and Leaves(Tq) corresponds to the canvas region. The
relative position of this region within the entire data set is indicated
in the global overview which resides at the North-West corner of
the interface. The explicit and fixed representation of the hierarchy
tree next to the canvas region is a feature that to our knowledge had
not been addressed properly in the past. This is a very effective way
to keep a uniform and global view of the data without cluttering the
display. It is flexible in the sense that its representation can be al-
tered to suit specific data domains. For example, if a subtree of the
hierarchy tree represents a collection of geographical attributes the
representation can be changed to that of a physical map with the
corresponding subdivisions. In case of communications traffic on
a geographical space the canvas corresponds to the ”cross product”
of the two geographical maps. In the case of cancer incidence data,
the data can be viewed as a subset of the cross product of two hi-
erarchies. One being the geography where the patients population
resides and the other being a cancer specific hierarchy that incorpo-
rates oncological information.

Another way to provide context when navigating the matrix is by
rendering the parent matrix Tparent(p),parent(q), along with an indi-
cation of the area the user is currently browsing in a fixed section of
the interface (visible in the top left of figure 3). This helps the user
to mentally maintain the navigation history, reducing the chance
that he or she loses the global context when browsing the matrix.

4.2 Switching to node link diagrams

As discussed in the introduction node link diagrams are not well
suited if one needs to navigate hierarchical graph views at different
levels of granularity. However, if a sparse graph fits on the screen
it makes sense to draw its corresponding node link diagram. This
corresponds simply to switching the canvas display to a node link
diagram if the corresponding subgraph is at the lowest desired level
of granularity, if its number of edges is not more than |S| and if
its density is below certain threshold (i.e. it is sparse). Because of
its flexibility we have chosen a spring embedder algorithm [9, 7]
to generate a layout. According to our experience, it is also desir-
able to attach some ranking to the nodes depending on the applica-
tion domain. For example, in the case of SEER cancer data, since
the vertices are patients and attribute values, assigning some mea-
sure of relevance to the attributes is one important epidemiological
question. We rank the graph vertices according to their ”peeling
numbers” [12].

Peeling is a time ordered process that permutes the vertices of a
graph by visiting, in non decreasing order of degrees, the adjacency

list of each vertex exactly once and reducing the degree of each of
its highest degree neighbors by one. The order in which the vertices
adjacency lists get visited is the peeling order. The current degree
of a vertex when its adjacency list is visited is its peeling number.
It is apparent that the peeling number of a vertex must be less than
or equal to its degree. Vertices with the highest ”peel” number are
in some sense the most relevant in the data set, because they indi-
cate a highly connected subset. If for example a large number of
patients with a disease all share the same properties there might be
a correlation between this disease and the properties.

The interface provides user interaction, with screen bounded
node link layouts, by providing a color map slider that ”peels” the
layout according to the vertices peeling values. The edges are col-
ored according to a refined version of the density color map used
in the matrix view (see Figure 4). The node link layout and the
corresponding matrix view are linked. This feature is helpful in as-
sessing the type of information that is more easily discernible from
the matrix view versus the corresponding node-link diagram.

4.3 Interaction

The user is allowed to zoom into any subcell currently visible on the
screen. Mathematically this corresponds to selecting two nodes Tp
and Tq in the current antichains and displaying expansion(Tp,Tq)
on the screen. Zooming out of expansion(p,q) corresponds to dis-
playing expansion(parent(p),parent(q)). To help the user maintain
context we use smooth interpolation between the two views, similar
to the one used in [14]. A major improvement is that we no longer
require both nodes to be at the same level in the tree. Since we
are retrieving edges on the fly, arbitrary sets of rows and columns
can be collapsed or expanded by clicking on their respective labels.
This corresponds to selecting one node p in an antichain and replac-
ing it with children(Tp). Instead of zooming manually, the user can
also opt to jump directly to a farther out antichain computed by the
visualization by shift clicking on a specific cell.

We adjust the aspect ratio of the newly displayed matrix to match
the screen aspect ratio. This helps us to make more effective use of
screen space and avoids displaying matrices with a very unfavorable
aspect ratio. Furthermore, the user can hide any row or column
or have the system hide automatically any rows and columns that
do not contain any data. This allows us to display sparse matrices
much more efficiently. To facilitate interaction with large matrices
we also implemented a geometrical zoom which allows the user to
select any area of the canvas and view it in closeup. Since many of
the subcells in the matrix have widely differing sizes, using a linear
size mapping would make some subcells inaccessible because their
relative size is simply too small. We therefore applied a logarithmic
screen mapping that preserves size order but still keeps the smallest
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a b c

Figure 5: (a) Distribution of skin cancer versus age in the San Francisco - Oakland register, showing a peak at earlier ages in San Francisco
(4th row), (b) Distribution of skin cancer versus race in Iowa’s counties and (c) high level view of a spanning tree of a 260 million node graph,
detailing phone traffic.

subcells visible at all times. Semantics feedback is provided by
static and dynamic labels. Static column and row labels describe
the nodes in the graph. Dynamic labels provide information on the
matrix cells (i.e. multi edges) currently displayed.

5 TWO SAMPLE DATA SETS

We have navigated SEER cancer incidence and survival data for US
patients from 1973 up to 2003. We have also used our interface to
depict the type of hierarchy obtained by a recursive algorithm that
produces connectivity based clusters.

5.1 Navigating SEER Cancer Data

SEER [8] stands for the Surveillance, Epidemiology and End Re-
sults program of the US National Cancer Institute. It is an au-
thoritative source of data on cancer incidence and survival. Each
record consists of 72 items that provide specific cancer diagnosis
and treatment information, patient demographics and geographical
and temporal data. SEER data is widely utilized to identify geo-
graphic and population differences in cancer patterns, to investigate
environmental factors that influence cancer incidence and survival,
and to study cancer treatment outcomes. Standard epidemiological
techniques include regression methods and comparison of a vari-
ety of rates and ratios. A central question of interest is to identify
”clusters” or other ”useful” structure in the underlying data. The
approach is to use this structural information as a trigger to stimu-
late further processing and analysis.

5.1.1 Data Model

We view the data as a bipartite graph from the set of patients to the
set of attribute values. The set of patients is endowed with a geo-
graphical hierarchy with 20 subtrees corresponding to the 20 SEER
registries (visible on the left hand side of the canvas, see Figure
3.5). Following epidemiologists advise, we extracted 17 attributes
and build a hierarchy for them (visible at the top of Figure 3.5).
This hierarchy consists of separate subtrees for cancer specific in-
formation such as primary cancer site and tumor size; treatment
type (surgery, amount of radiation); temporal information (diagno-
sis date, age, etc) and patient demographics. This ad-hoc separation
is based on the arguable assumption that geographical, temporal
and demographic information may shed light on factors contribut-
ing to cancer detection and treatment.

From our point of view, this is the place where strong interaction
with domain experts is necessary in order to obtain specific appli-
cation semantics that can be incorporated in a ”useful” manner into

any interface. Our approach is then to provide the interface with
mechanisms that allow the user to plug hierarchy subtrees that are
in his/her view more appropriate for an specific task and applica-
tion.

5.1.2 Colon Rectal, Prostate and Skin Cancer Data Sets

After the SEER data for Colon Rectal, Prostate and Skin cancer
were transformed into graphs they had 437738, 358783 , 142406
vertices and 5182643, 5526803 , 1866531 edges respectively. As
a byproduct of this transformation we automatically identified all
those patients with missing data and all those attribute values that
are complementary (i.e. Male, Female) or extremely rare (Data
anomalies). So the computational infrastructure did clean the data
in several ways not anticipated by us. Among the interesting typical
findings we mention the following:

• The skin cancer age distribution in San Francisco county in
the San Francisco - Oakland registry shows a peak (dark red
area) at around 35-36 years of age. This peak is not present in
other counties in the same registry. Note that the cause of this
might be anything from more sun(bathing), higher skin can-
cer awareness in San Francisco county or simply a younger
overall population, so it’s very hard to draw immediate con-
clusions from this observation. Nevertheless, it is interesting
enough to investigate further. (See figure 5a);

• Skin cancer race distribution in Iowa is severely tilted to
whites. This might again be a consequence of the racial dis-
tribution in Iowa (likely) or it might be that whites are more
susceptible to skin cancer (also likely). To answer these ques-
tions the data must be compared to the population distribution.
(See figure 5b).

We want to point out that our knowledge of epidemiology is very
cursory and our intention is to show that with some guidance from
domain experts one can enhance the interface to find ”automati-
cally” patterns like the ones described above. The reason is that
these findings did not require a priori information that we could use
to direct our search. A pundit could say that all of this could have
been done by just using a data base query system. The point is well
taken if the user knows precisely what he is looking for. However,
we work under the premise that very often this is not the case. What
we offer is a tool that can help domain experts formulate quickly a
set of hypothesis for further analysis. It is a visual and intuitive
exploratory data analysis tool that may help the user get a quick
glimpse over the entire data space in a hierarchical manner.
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5.2 Navigating aggregate US phone traffic

The work described in [3] reports on the use of an external algo-
rithm that produces a hierarchy for a phone traffic graph with over
260 million vertices (US telephone numbers) and over 4.3 billion
edges (phone calls for a period of over 20 days). We did wonder
if we could use our interface to navigate a restricted macro-view of
the obtained hierarchy (since we have no access to the correspond-
ing lower level data).

In this case, the tool was used to navigate a chopped hierarchy
of maximum spanning forests. Contrary to the SEER data set both
axes of the matrix display the same hierarchy. A subcell of the can-
vas depicts a maximum spanning subtree. It connects two other
maximum spanning subtrees of previously connected subgraphs
that were formed during the clustering algorithm recursion (See fig-
ure 5c). In other words, the depicted hierarchy trees together with
the canvas show an anatomical description of a giant semi-external
graph which the first author had not seen before even though he had
previously worked with the corresponding data set.

Previous approaches [3] to produce a global image of such mon-
ster graphs were handicapped by the need to zoom into multi-edges
which, as we alluded in the introduction, is the fundamental bar-
rier to semantic zooming on node link diagrams. In summary, our
interface has moved us closer to the challenging task of producing
visual graph representations that can be navigated efficiently when
just the vertex set of the graph fits in RAM.

6 CONCLUSIONS AND FURTHER WORK

We have presented a framework for the interactive navigation of
(semi-)external graphs. The method assumes a given hierarchy and
uses it to construct a hierarchy of adjacency matrices. This col-
lection of matrices can then be navigated interactively. More con-
cretely our major contributions are:

• Parametrization and scalability: Our framework is parameter-
ized in terms of memory and screen size and is able to deal
with semi-external graphs. Most other visualizations don’t
even deal with this case in which the graph does not fit in
RAM. Parametrization also allows us to decide on the fly
when we can switch from matrix views to node link diagrams
or other suitable representations.

• Efficient navigation: by using antichains for navigation the
user does not have to click through multiple (possibly sparse)
layers in the hierarchy to view a subgraph. Instead we com-
pute generalized views that just fit the available screen space.

• Flexibility: The ability to plug arbitrary hierarchy trees into
the visualization allows us to navigate any kind of relational
data no matter its size. Subcell coloring can be done on arbi-
trary measures, depending on the task the user wants to per-
form. This means that Matrix Zoom is applicable to a wide
range of data domains.

• Strong visual coupling between graph hierarchies and the dis-
play: this is in our view a major improvement over previous
attempts to semi-external graph navigation.

We have applied our method to semi-external graphs (with more
than 5 million edges) resulting in a number of interesting patterns.
Because neither of the authors has an epidemiological background
their real life value will be evaluated by domain experts, but they
clearly show the serendipitous nature of the provided interface. Fu-
ture work will focus on enhancements to the interface that facilitate
user’s queries. Concretely we will provide partially automated nav-
igation to help the user search for dense subgraphs.

As an extension on the data side, we will add features to navigate
fully external graphs. This can be achieved by moving the part of
the graph below the antichain TM to a server, which has its own
gkd-index to answer user queries that fall below TM .

An important improvement on the visualization side is to incor-
porate small glyphs (such as barcharts or starglyphs) on top of the
matrix view, to display a set of density values instead of a single
density value per cell. This will allow us to compare related or time
dependent parameters visually. For example, how does colon can-
cer compare with prostate, and skin cancer in the US? Note that
such queries are not easily answered using node link diagrams. The
resulting differences in layouts make it hard to compare different
visualizations. Visualization of time dependent relational data by
using adjacency matrices will be an interesting research path to ex-
plore in the future.
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