Matroidal Degree-Bounded Minimum Spanning Trees

Rico Zenklusen
MIT

Degree-constrained MST problems

$\min \{c(T) \mid T$ spanning tree in $G=(V, E)$, satisfying degree constraints $\}$

Degree-constrained MST problems

$$
\min \{c(T) \mid T \text { spanning tree in } G=(V, E) \text {, satisfying degree constraints }\}
$$

Types of degree constraints

- Degree-bounded MST (the classic):

$$
|T \cap \delta(v)| \leq B_{v} \forall v \in V
$$

- Cut-constraints:

$$
|T \cap \delta(S)| \leq B_{S} \text { for } S \in \mathcal{S} \subseteq 2^{V} .
$$

- 0/1-packing constraints:

$$
|T \cap U| \leq B_{U} \text { for } U \in \mathcal{U} \subseteq 2^{E} .
$$

Degree-constrained MST problems

$$
\min \{c(T) \mid T \text { spanning tree in } G=(V, E), \text { satisfying degree constraints }\}
$$

Types of degree constraints

- Degree-bounded MST (the classic):

$$
|T \cap \delta(v)| \leq B_{v} \forall v \in V
$$

- Cut-constraints:

$$
|T \cap \delta(S)| \leq B_{S} \text { for } S \in \mathcal{S} \subseteq 2^{V} .
$$

- 0/1-packing constraints:

$$
|T \cap U| \leq B_{U} \text { for } U \in \mathcal{U} \subseteq 2^{E} .
$$

Degree-constrained MST problems

$$
\min \{c(T) \mid T \text { spanning tree in } G=(V, E), \text { satisfying degree constraints }\}
$$

Types of degree constraints

- Degree-bounded MST (the classic):

$$
|T \cap \delta(v)| \leq B_{v} \forall v \in V
$$

- Cut-constraints:

$$
|T \cap \delta(S)| \leq B_{S} \text { for } S \in \mathcal{S} \subseteq 2^{V} .
$$

- 0/1-packing constraints:

$$
|T \cap U| \leq B_{U} \text { for } U \in \mathcal{U} \subseteq 2^{E} .
$$

Degree-constrained MST problems

$$
\min \{c(T) \mid T \text { spanning tree in } G=(V, E), \text { satisfying degree constraints }\}
$$

Types of degree constraints

- Degree-bounded MST (the classic):

$$
|T \cap \delta(v)| \leq B_{v} \forall v \in V
$$

- Cut-constraints:

$$
|T \cap \delta(S)| \leq B_{S} \text { for } S \in \mathcal{S} \subseteq 2^{V} .
$$

- 0/1-packing constraints:

$$
|T \cap U| \leq B_{U} \text { for } U \in \mathcal{U} \subseteq 2^{E} .
$$

Degree-constrained MST problems

$\min \{c(T) \mid T$ spanning tree in $G=(V, E)$, satisfying degree constraints $\}$

Types of degree constraints

- Degree-bounded MST (the classic):

$$
|T \cap \delta(v)| \leq B_{v} \forall v \in V
$$

- Cut-constraints:

$$
|T \cap \delta(S)| \leq B_{S} \text { for } S \in \mathcal{S} \subseteq 2^{V} .
$$

- 0/1-packing constraints:

$$
|T \cap U| \leq B_{U} \text { for } U \in \mathcal{U} \subseteq 2^{E} .
$$

Typical motivations for degree constraints

- Technical restrictions (VLSI design, telecommunication networks).
- Increase reliability by avoiding overloaded vertices.
- Reduce vulnerability against malicious attacks.

Trading slight infeasibility for "optimal" cost

At the example of degree-bounded MST

$$
\begin{gathered}
\text { OPT }=\min \{c(T)|T \in \underbrace{\mathcal{T}},|T \cap \delta(v)| \leq B_{v} \forall v \in V\} \\
\text { all spanning trees }\left(\subseteq 2^{E}\right)
\end{gathered}
$$

- Even checking feasibility is NP hard (e.g. if $B_{v}=2 \forall v \in V \rightarrow$ Hamiltonian path problem.)

Trading slight infeasibility for "optimal" cost

At the example of degree-bounded MST

$$
\begin{gathered}
O P T=\min \{c(T)|T \in \underbrace{\mathcal{T}},|T \cap \delta(v)| \leq B_{v} \forall v \in V\} \\
\text { all spanning trees }\left(\subseteq 2^{E}\right)
\end{gathered}
$$

- Even checking feasibility is NP hard (e.g. if $B_{v}=2 \forall v \in V \rightarrow$ Hamiltonian path problem.)

Goal

Find tree T of cost $\leq \mathrm{LP}$ relaxation $\left(c(T) \leq O P T_{f}\right)$, minimizing deg violation.

Trading slight infeasibility for "optimal" cost

At the example of degree-bounded MST

$$
\begin{gathered}
\text { OPT }=\min \{c(T)|T \in \underbrace{\mathcal{T}}_{\text {all spanning trees }\left(\subseteq 2^{E}\right)},|T \cap \delta(v)| \leq B_{v} \forall v \in V\}
\end{gathered}
$$

- Even checking feasibility is NP hard (e.g. if $B_{v}=2 \forall v \in V \rightarrow$ Hamiltonian path problem.)

Goal

Find tree T of cost $\leq \mathrm{LP}$ relaxation $\left(c(T) \leq O P T_{f}\right)$, minimizing deg violation.

- $O P T_{f}=\min c^{T} x$

$$
\begin{aligned}
& x \in P_{S T}=\operatorname{conv}\left(\left\{\mathbf{1}_{T} \mid T \in \mathcal{T}\right\}\right) \\
& x(\delta(v)) \leq B_{v} \quad \forall v \in V
\end{aligned}
$$

- $\min \left\{c(T)\left|T \in \mathcal{T},|T \cap \delta(v)| \leq B_{v}+k \forall v \in V\right\}\right.$

Previous results

Degree-bounded MST

- +1 violation (no costs)
- various super-constant violations with cost $\leq O P T_{f}$

Fürer and Raghavachari (1994)
Könemann and Ravi $(2002,2003)$, Chaudhuri et al. (2005), ...

- +2
- +1

Goemans (2006)
Singh and Lau (2007)

Generalized bounds

Laminar cut bounds:

- $+O(\log |V|)$
Bansal et al. (2010)

Bounds on arbitrary edge sets $x(U) \leq B_{U} \forall U \in \mathcal{U} \subseteq 2^{E}$:

- + $\max _{e \in E}|\{U \in \mathcal{U} \mid e \in U\}| \quad$ Bansal et al. (2009)

Thinness bounds wrt $y \in P_{S T}: x(\delta(S)) \leq y(\delta(S)) \forall \emptyset \neq S \subsetneq V$ (thin trees):

- $\times O\left(\frac{\log |V|}{\log \log |V|}\right) \quad$ Asadpour et al. (2010)

Previous results

Degree-bounded MST

- +1 violation (no costs)
- various super-constant violations with cost $\leq O P T_{f}$

Fürer and Raghavachari (1994)
Könemann and Ravi $(2002,2003)$, Chaudhuri et al. (2005), ...

- +2
- +1

Goemans (2006)
Singh and Lau (2007)

Generalized bounds

Laminar cut bounds:

- $+O(\log |V|)$
Bansal et al. (2010)

Bounds on arbitrary edge sets $x(U) \leq B_{U} \forall U \in \mathcal{U} \subseteq 2^{E}$:
$0+\max _{e \in E}|\{U \in \mathcal{U} \mid e \in U\}| \quad$ Bansal et al. (2009)
Thinness bounds wrt $y \in P_{S T}: x(\delta(S)) \leq y(\delta(S)) \forall \emptyset \neq S \subsetneq V$ (thin trees):

- $\times O\left(\frac{\log |V|}{\log \log |V|}\right) \quad$ Asadpour et al. (2010)

Obtain constant violation for constraints beyond degree-bounded MST?

Our contributions

Main results

- Efficent algorithm with +8 guarantee for matroidal degree constraints.
- This is based on extensions to the iterative relaxation framework.

Our contributions

Main results

- Efficent algorithm with +8 guarantee for matroidal degree constraints.
- This is based on extensions to the iterative relaxation framework.

Definition (Matroidal degree constraints)
 $$
\min \left\{c(T) \mid T \in \mathcal{T}, T \cap \delta(v) \in \mathcal{I}_{v} \quad \forall v \in V\right\}
$$
 $$
\text { where } \mathcal{M}_{v}=\left(\delta(v), \mathcal{I}_{v}\right) \text { is a matroid } \forall v \in V
$$

Our contributions

Main results

- Efficent algorithm with +8 guarantee for matroidal degree constraints.
- This is based on extensions to the iterative relaxation framework.

Definition (Matroidal degree constraints)

$$
\min \left\{c(T) \mid T \in \mathcal{T}, T \cap \delta(v) \in \mathcal{I}_{v} \quad \forall v \in V\right\}
$$

where $\mathcal{M}_{v}=\left(\delta(v), \mathcal{I}_{v}\right)$ is a matroid $\forall v \in V$.

Examples

- deg-bounded MST (\mathcal{M}_{v} : uniform matroids)
- partition constraints (part. matroids)
- laminar constraints (lam. matroids)

Our contributions

Main results

- Efficent algorithm with +8 guarantee for matroidal degree constraints.
- This is based on extensions to the iterative relaxation framework.

Definition (Matroidal degree constraints)

$$
\min \left\{c(T) \mid T \in \mathcal{T}, T \cap \delta(v) \in \mathcal{I}_{v} \quad \forall v \in V\right\}
$$

where $\mathcal{M}_{v}=\left(\delta(v), \mathcal{I}_{v}\right)$ is a matroid $\forall v \in V$.

Examples

- deg-bounded MST (\mathcal{M}_{v} : uniform matroids)
- partition constraints (part. matroids)
- laminar constraints (lam. matroids)

Our contributions

Main results

- Efficent algorithm with +8 guarantee for matroidal degree constraints.
- This is based on extensions to the iterative relaxation framework.

Definition (Matroidal degree constraints)

$$
\min \left\{c(T) \mid T \in \mathcal{T}, T \cap \delta(v) \in \mathcal{I}_{v} \quad \forall v \in V\right\}
$$

where $\mathcal{M}_{v}=\left(\delta(v), \mathcal{I}_{v}\right)$ is a matroid $\forall v \in V$.

Examples

- deg-bounded MST (\mathcal{M}_{v} : uniform matroids)
- partition constraints (part. matroids)
- laminar constraints (lam. matroids)

Our contributions

Main results

- Efficent algorithm with +8 guarantee for matroidal degree constraints.
- This is based on extensions to the iterative relaxation framework.

Definition (Matroidal degree constraints)

$$
\min \left\{c(T) \mid T \in \mathcal{T}, T \cap \delta(v) \in \mathcal{I}_{v} \quad \forall v \in V\right\}
$$

where $\mathcal{M}_{v}=\left(\delta(v), \mathcal{I}_{v}\right)$ is a matroid $\forall v \in V$.

Examples

- deg-bounded MST (\mathcal{M}_{v} : uniform matroids)
- partition constraints (part. matroids)
- laminar constraints (lam. matroids)

Our contributions

Main results

- Efficent algorithm with +8 guarantee for matroidal degree constraints.
- This is based on extensions to the iterative relaxation framework.

Definition (Matroidal degree constraints)

$$
\min \left\{c(T) \mid T \in \mathcal{T}, T \cap \delta(v) \in \mathcal{I}_{v} \quad \forall v \in V\right\}
$$

where $\mathcal{M}_{v}=\left(\delta(v), \mathcal{I}_{v}\right)$ is a matroid $\forall v \in V$.

Examples

- deg-bounded MST (\mathcal{M}_{v} : uniform matroids)
- partition constraints (part. matroids)
- laminar constraints (lam. matroids)

Definition ($\leq k$ violation of degree constraints)

$T \in \mathcal{T}$ violates degree constraint at v by $\leq k$ units if:
feasibility can be obtained by ignoring the contribution of $\leq k$ edges.

Our contributions

Main results

- Efficent algorithm with +8 guarantee for matroidal degree constraints.
- This is based on extensions to the iterative relaxation framework.

Definition (Matroidal degree constraints)

$$
\min \left\{c(T) \mid T \in \mathcal{T}, T \cap \delta(v) \in \mathcal{I}_{v} \quad \forall v \in V\right\}
$$

where $\mathcal{M}_{v}=\left(\delta(v), \mathcal{I}_{v}\right)$ is a matroid $\forall v \in V$.

Examples

- deg-bounded MST (\mathcal{M}_{v} : uniform matroids)
- partition constraints (part. matroids)
- laminar constraints (lam. matroids)

Definition ($\leq k$ violation of degree constraints)

$T \in \mathcal{T}$ violates degree constraint at v by $\leq k$ units if:
feasibility can be obtained by ignoring the contribution of $\leq k$ edges.

Our contributions

Main results

- Efficent algorithm with +8 guarantee for matroidal degree constraints.
- This is based on extensions to the iterative relaxation framework.

Definition (Matroidal degree constraints)
 $\min \left\{c(T) \mid T \in \mathcal{T}, T \cap \delta(v) \in \mathcal{I}_{v} \quad \forall v \in V\right\}$, where $\mathcal{M}_{v}=\left(\delta(v), \mathcal{I}_{v}\right)$ is a matroid $\forall v \in V$.

Examples

- deg-bounded MST (\mathcal{M}_{v} : uniform matroids)
- partition constraints (part. matroids)
- laminar constraints (lam. matroids)

Definition ($\leq k$ violation of degree constraints)

$T \in \mathcal{T}$ violates degree constraint at v by $\leq k$ units if:
feasibility can be obtained by ignoring the contribution of $\leq k$ edges.

Iterative relaxation by Singh and Lau (+1 guarantee)

Step 1

- Get basic LP solution x^{*}.
- If sol is integral: stop.

Step 2

- Delete 0-edges.
- Fix 1-edges.

Step 3 (let spare: $z=1-x^{*}$)

- Find $v \in V$ s.t. $z(\delta(v))<2$.
- Delete deg constraint at v.
- Back to Step 1.

Iterative relaxation by Singh and Lau (+1 guarantee)

Step 1

- Get basic LP solution x^{*}.
- If sol is integral: stop.

Step 2

- Delete 0-edges.
- Fix 1-edges.

Step 3 (let spare: $z=1-x^{*}$)

- Find $v \in V$ s.t. $z(\delta(v))<2$.
- Delete deg constraint at v.
- Back to Step 1.

Iterative relaxation by Singh and Lau (+1 guarantee)

Step 1

- Get basic LP solution x^{*}.
- If sol is integral: stop.

Step 2

- Delete 0-edges.
- Fix 1-edges.

Step 3 (let spare: $z=1-x^{*}$)

- Find $v \in V$ s.t. $z(\delta(v))<2$.
- Delete deg constraint at v.
- Back to Step 1.

Iterative relaxation by Singh and Lau (+1 guarantee)

Step 1

- Get basic LP solution x^{*}.
- If sol is integral: stop.

Step 2

- Delete 0-edges.
- Fix 1-edges.

Step 3 (let spare: $z=1-x^{*}$)

- Find $v \in V$ s.t. $z(\delta(v))<2$.
- Delete deg constraint at v.
- Back to Step 1.

Iterative relaxation by Singh and Lau (+1 guarantee)

Step 1

- Get basic LP solution x^{*}.
- If sol is integral: stop.

Step 2

- Delete 0-edges.
- Fix 1-edges.

Step 3 (let spare: $z=1-x^{*}$)

- Find $v \in V$ s.t. $z(\delta(v))<2$.
- Delete deg constraint at v.
- Back to Step 1.

Iterative relaxation by Singh and Lau (+1 guarantee)

Step 1

- Get basic LP solution x^{*}.
- If sol is integral: stop.

Step 2

- Delete 0-edges.
- Fix 1-edges.

Step 3 (let spare: $z=1-x^{*}$)

- Find $v \in V$ s.t. $z(\delta(v))<2$.
- Delete deg constraint at v.
- Back to Step 1.

Iterative relaxation by Singh and Lau (+1 guarantee)

Step 1

- Get basic LP solution x^{*}.
- If sol is integral: stop.

Step 2

- Delete 0-edges.
- Fix 1-edges.

Step 3 (let spare: $z=1-x^{*}$)

- Find $v \in V$ s.t. $z(\delta(v))<2$.
- Delete deg constraint at v.
- Back to Step 1.

Iterative relaxation by Singh and Lau (+1 guarantee)

Step 1

- Get basic LP solution x^{*}.
- If sol is integral: stop.

Step 2

- Delete 0-edges.
- Fix 1-edges.

Step 3 (let spare: $z=1-x^{*}$)

- Find $v \in V$ s.t. $z(\delta(v))<2$.
- Delete deg constraint at v.
- Back to Step 1.

Iterative relaxation by Singh and Lau (+1 guarantee)

Step 1

- Get basic LP solution x^{*}.
- If sol is integral: stop.

Step 2

- Delete 0-edges.
- Fix 1-edges.

Step 3 (let spare: $z=1-x^{*}$)

- Find $v \in V$ s.t. $z(\delta(v))<2$.

- Delete deg constraint at v.
- Back to Step 1.

Iterative relaxation by Singh and Lau (+1 guarantee)

Step 1

- Get basic LP solution x^{*}.
- If sol is integral: stop.

Step 2

- Delete 0-edges.
- Fix 1-edges.

Step 3 (let spare: $z=1-x^{*}$)

- Find $v \in V$ s.t. $z(\delta(v))<2$.

- Delete deg constraint at v.
- Back to Step 1.

Iterative relaxation by Singh and Lau (+1 guarantee)

Step 1

- Get basic LP solution x^{*}.
- If sol is integral: stop.

Step 2

- Delete 0-edges.
- Fix 1-edges.

Step 3 (let spare: $z=1-x^{*}$)

- Find $v \in V$ s.t. $z(\delta(v))<2$.

- Delete deg constraint at v.
- Back to Step 1.

Iterative relaxation by Singh and Lau (+1 guarantee)

Step 1

- Get basic LP solution x^{*}.
- If sol is integral: stop.

Step 2

- Delete 0-edges.
- Fix 1-edges.

Step 3 (let spare: $z=1-x^{*}$)

- Find $v \in V$ s.t. $z(\delta(v))<2$.

- Delete deg constraint at v.
- Back to Step 1.

Iterative relaxation by Singh and Lau (+1 guarantee)

Step 1

- Get basic LP solution x^{*}.
- If sol is integral: stop.

Step 2

- Delete 0-edges.
- Fix 1-edges.

Step 3 (let spare: $z=1-x^{*}$)

- Find $v \in V$ s.t. $z(\delta(v))<2$.

- Delete deg constraint at v.
- Back to Step 1.

Iterative relaxation by Singh and Lau (+1 guarantee)

Step 1

- Get basic LP solution x^{*}.
- If sol is integral: stop.

Step 2

- Delete 0-edges.
- Fix 1-edges.

Step 3 (let spare: $z=1-x^{*}$)

- Find $v \in V$ s.t. $z(\delta(v))<2$.

- Delete deg constraint at v.
- Back to Step 1.

Iterative relaxation by Singh and Lau (+1 guarantee)

Step 1

- Get basic LP solution x^{*}.
- If sol is integral: stop.

Step 2

- Delete 0-edges.
- Fix 1-edges.

Step 3 (let spare: $z=1-x^{*}$)

- Find $v \in V$ s.t. $z(\delta(v))<2$.

- Delete deg constraint at v.
- Back to Step 1.

Key property: x^{*} is sparse (in particular $\left|\operatorname{supp}\left(x^{*}\right)\right| \leq 2|V|-1$).

$$
\begin{gathered}
\binom{A_{S T}}{A_{d e g}} x^{*} \leq\binom{ b_{S T}}{\hdashline b_{d e g}} \\
x^{*} \geq 0
\end{gathered}
$$

Iterative relaxation by Singh and Lau (+1 guarantee)

Step 1

- Get basic LP solution x^{*}.
- If sol is integral: stop.

Step 2

- Delete 0-edges.
- Fix 1-edges.

Step 3 (let spare: $z=1-x^{*}$)

- Find $v \in V$ st. $z(\delta(v))<2$.

- Delete deg constraint at v.
- Back to Step 1.

Key property: x^{*} is sparse (in particular $\left|\operatorname{supp}\left(x^{*}\right)\right| \leq 2|V|-1$).

$$
\left(\begin{array}{c}
A_{S T} \\
A_{\operatorname{deg}} \\
-I
\end{array}\right) x^{*} \leq\left(\begin{array}{c}
b_{S T} \\
\hdashline b_{\operatorname{deg}} \\
0
\end{array}\right)
$$

Iterative relaxation by Singh and Lau (+1 guarantee)

Step 1

- Get basic LP solution x^{*}.
- If sol is integral: stop.

Step 2

- Delete 0-edges.
- Fix 1-edges.

Step 3 (let spare: $z=1-x^{*}$)

- Find $v \in V$ s.t. $z(\delta(v))<2$.

- Delete deg constraint at v.
- Back to Step 1.

Key property: x^{*} is sparse (in particular $\left|\operatorname{supp}\left(x^{*}\right)\right| \leq 2|V|-1$).

Iterative relaxation by Singh and Lau (+1 guarantee)

Step 1

- Get basic LP solution x^{*}.
- If sol is integral: stop.

Step 2

- Delete 0-edges.
- Fix 1-edges.

Step 3 (let spare: $z=1-x^{*}$)

- Find $v \in V$ s.t. $z(\delta(v))<2$.

- Delete deg constraint at v.
- Back to Step 1.

Key property: x^{*} is sparse (in particular $\left|\operatorname{supp}\left(x^{*}\right)\right| \leq 2|V|-1$).

$$
\binom{\frac{A_{S T}}{=A_{\text {deg }}}}{\frac{b_{S T}}{-I}} x^{*}=\binom{\# \leq|V|-1}{\frac{b_{\text {deg }}}{0}}\left\{\begin{array}{l}
\# \leq|V| \\
\# \geq|E|-(2|V|-1)
\end{array}\right.
$$

Challenges with more general/matroidal constraints

Previous iterative relaxation/rounding approaches are hard to generalize to matroidal deg constraints (or other generalized constraint).

Some issues with previous iterative relaxation approaches

- Not sufficient sparsity to drop full degree constraints at some vertex.
- Previous approaches relied on the fact that each edge is only in a constant number of linear constraints (belonging to degree constraints).

High-level goal of our algorithm

Iteratively change constraints to approach matroid intersection problem instead of targeting ST polytope (which is a matroid base polytope).
\rightarrow Iteratively "remove" each edge $\{u, v\}$ either from deg constraint at u or v. (this is similar in spirit to Goemans' algorithm, but works iteratively.)

- If each edge belong to at most one degree constraints, all matroidal degree constraints together form one single matroid.
- Resulting optimization problem is matroid intersection and thus integral.

Summary of further technical contributions

Further contributions on algorithm design level

- When removing edges from constraints: old constraint gets replaced by a possibly more complicated matroidal constraint (s.t. violation is bounded by slack).
- We fix tight ST constraints \rightarrow they help respect degree constraints.

New ideas for the analysis

- New argument to prove sparsity that exploits interplay of constraints.
- Exploit properties of low-dimensional faces of ST polytope (to deal with cases where many lin indep ST constraints are tight).

An oversimplified sketch of the algorithm

- $H=(W, F)$: current graph, $F_{2} \subseteq F$: edges currently in both constraints.
- N_{w} : current matroidal deg constraints with corresp. matroid polytope $P_{N_{w}}$.

Step 1

- Get basic solution x^{*} to LP: $\min \left\{c^{T} x\left|x \in P_{S T}, x\right|_{\delta(w)} \in P_{N_{w}} \forall w \in W\right\}$
- If x^{*} is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1 -edges.
- Fix tight spanning tree constraints.

Step 3: degree constraint adaptation

- Find $w \in W$ s.t. $z\left(\delta(w) \cap F_{2}\right) \leq 4$.

- "Remove" $\delta(w) \cap F_{2}$ from constraint at w.
- Go back to Step 1.

An oversimplified sketch of the algorithm

- $H=(W, F)$: current graph, $F_{2} \subseteq F$: edges currently in both constraints.
- N_{w} : current matroidal deg constraints with corresp. matroid polytope $P_{N_{w}}$.

Step 1

- Get basic solution x^{*} to LP: $\min \left\{c^{T} x\left|x \in P_{S T}, x\right|_{\delta(w)} \in P_{N_{w}} \forall w \in W\right\}$
- If x^{*} is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1 -edges.
- Fix tight spanning tree constraints.

Step 3: degree constraint adaptation

- Find $w \in W$ s.t. $z\left(\delta(w) \cap F_{2}\right) \leq 4$.

- "Remove" $\delta(w) \cap F_{2}$ from constraint at w.
- Go back to Step 1.

An oversimplified sketch of the algorithm

- $H=(W, F)$: current graph, $F_{2} \subseteq F$: edges currently in both constraints.
- N_{w} : current matroidal deg constraints with corresp. matroid polytope $P_{N_{w}}$.

Step 1

- Get basic solution x^{*} to LP: $\min \left\{c^{T} x\left|x \in P_{S T}, x\right|_{\delta(w)} \in P_{N_{w}} \forall w \in W\right\}$
- If x^{*} is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1 -edges.
- Fix tight spanning tree constraints.

Step 3: degree constraint adaptation

- Find $w \in W$ s.t. $z\left(\delta(w) \cap F_{2}\right) \leq 4$.

- "Remove" $\delta(w) \cap F_{2}$ from constraint at w.
- Go back to Step 1.

An oversimplified sketch of the algorithm

- $H=(W, F)$: current graph, $F_{2} \subseteq F$: edges currently in both constraints.
- N_{w} : current matroidal deg constraints with corresp. matroid polytope $P_{N_{w}}$.

Step 1

- Get basic solution x^{*} to LP: $\min \left\{c^{T} x\left|x \in P_{S T}, x\right|_{\delta(w)} \in P_{N_{w}} \forall w \in W\right\}$
- If x^{*} is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1 -edges.
- Fix tight spanning tree constraints.

Step 3: degree constraint adaptation

- Find $w \in W$ s.t. $z\left(\delta(w) \cap F_{2}\right) \leq 4$.
- "Remove" $\delta(w) \cap F_{2}$ from constraint at w.
- Go back to Step 1.

An oversimplified sketch of the algorithm

- $H=(W, F)$: current graph, $F_{2} \subseteq F$: edges currently in both constraints.
- N_{w} : current matroidal deg constraints with corresp. matroid polytope $P_{N_{w}}$.

Step 1

- Get basic solution x^{*} to LP: $\min \left\{c^{T} x\left|x \in P_{S T}, x\right|_{\delta(w)} \in P_{N_{w}} \forall w \in W\right\}$
- If x^{*} is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1 -edges.
- Fix tight spanning tree constraints.

Step 3: degree constraint adaptation

- Find $w \in W$ s.t. $z\left(\delta(w) \cap F_{2}\right) \leq 4$.
- "Remove" $\delta(w) \cap F_{2}$ from constraint at w.
- Go back to Step 1.

An oversimplified sketch of the algorithm

- $H=(W, F)$: current graph, $F_{2} \subseteq F$: edges currently in both constraints.
- N_{w} : current matroidal deg constraints with corresp. matroid polytope $P_{N_{w}}$.

Step 1

- Get basic solution x^{*} to LP: $\min \left\{c^{T} x\left|x \in P_{S T}, x\right|_{\delta(w)} \in P_{N_{w}} \forall w \in W\right\}$
- If x^{*} is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1 -edges.
- Fix tight spanning tree constraints.

Step 3: degree constraint adaptation

- Find $w \in W$ s.t. $z\left(\delta(w) \cap F_{2}\right) \leq 4$.

- "Remove" $\delta(w) \cap F_{2}$ from constraint at w.
- Go back to Step 1.

An oversimplified sketch of the algorithm

- $H=(W, F)$: current graph, $F_{2} \subseteq F$: edges currently in both constraints.
- N_{w} : current matroidal deg constraints with corresp. matroid polytope $P_{N_{w}}$.

Step 1

- Get basic solution x^{*} to LP: $\min \left\{c^{T} x\left|x \in P_{S T}, x\right|_{\delta(w)} \in P_{N_{w}} \forall w \in W\right\}$
- If x^{*} is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1 -edges.
- Fix tight spanning tree constraints.

Step 3: degree constraint adaptation

- Find $w \in W$ s.t. $z\left(\delta(w) \cap F_{2}\right) \leq 4$.

- "Remove" $\delta(w) \cap F_{2}$ from constraint at w.
- Go back to Step 1.

An oversimplified sketch of the algorithm

- $H=(W, F)$: current graph, $F_{2} \subseteq F$: edges currently in both constraints.
- N_{w} : current matroidal deg constraints with corresp. matroid polytope $P_{N_{w}}$.

Step 1

- Get basic solution x^{*} to LP: $\min \left\{c^{T} x\left|x \in P_{S T}, x\right|_{\delta(w)} \in P_{N_{w}} \forall w \in W\right\}$
- If x^{*} is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1 -edges.
- Fix tight spanning tree constraints.

Step 3: degree constraint adaptation

- Find $w \in W$ s.t. $z\left(\delta(w) \cap F_{2}\right) \leq 4$.

- "Remove" $\delta(w) \cap F_{2}$ from constraint at w.
- Go back to Step 1.

An oversimplified sketch of the algorithm

- $H=(W, F)$: current graph, $F_{2} \subseteq F$: edges currently in both constraints.
- N_{w} : current matroidal deg constraints with corresp. matroid polytope $P_{N_{w}}$.

Step 1

- Get basic solution x^{*} to LP: $\min \left\{c^{T} x\left|x \in P_{S T}, x\right|_{\delta(w)} \in P_{N_{w}} \forall w \in W\right\}$
- If x^{*} is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1 -edges.
- Fix tight spanning tree constraints.

Step 3: degree constraint adaptation

- Find $w \in W$ s.t. $z\left(\delta(w) \cap F_{2}\right) \leq 4$.

- "Remove" $\delta(w) \cap F_{2}$ from constraint at w.
- Go back to Step 1.

An oversimplified sketch of the algorithm

- $H=(W, F)$: current graph, $F_{2} \subseteq F$: edges currently in both constraints.
- N_{w} : current matroidal deg constraints with corresp. matroid polytope $P_{N_{w}}$.

Step 1

- Get basic solution x^{*} to LP: $\min \left\{c^{T} x\left|x \in P_{S T}, x\right|_{\delta(w)} \in P_{N_{w}} \forall w \in W\right\}$
- If x^{*} is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1 -edges.
- Fix tight spanning tree constraints.

Step 3: degree constraint adaptation

- Find $w \in W$ s.t. $z\left(\delta(w) \cap F_{2}\right) \leq 4$.

- "Remove" $\delta(w) \cap F_{2}$ from constraint at w.
- Go back to Step 1.

An oversimplified sketch of the algorithm

- $H=(W, F)$: current graph, $F_{2} \subseteq F$: edges currently in both constraints.
- N_{w} : current matroidal deg constraints with corresp. matroid polytope $P_{N_{w}}$.

Step 1

- Get basic solution x^{*} to LP: $\min \left\{c^{T} x\left|x \in P_{S T}, x\right|_{\delta(w)} \in P_{N_{w}} \forall w \in W\right\}$
- If x^{*} is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1 -edges.
- Fix tight spanning tree constraints.

Step 3: degree constraint adaptation

- Find $w \in W$ s.t. $z\left(\delta(w) \cap F_{2}\right) \leq 4$.
- "Remove" $\delta(w) \cap F_{2}$ from constraint at w.
- Go back to Step 1.

An oversimplified sketch of the algorithm

- $H=(W, F)$: current graph, $F_{2} \subseteq F$: edges currently in both constraints.
- N_{w} : current matroidal deg constraints with corresp. matroid polytope $P_{N_{w}}$.

Step 1

- Get basic solution x^{*} to LP: $\min \left\{c^{T} x\left|x \in P_{S T}, x\right|_{\delta(w)} \in P_{N_{w}} \forall w \in W\right\}$
- If x^{*} is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1 -edges.
- Fix tight spanning tree constraints.

Step 3: degree constraint adaptation

- Find $w \in W$ s.t. $z\left(\delta(w) \cap F_{2}\right) \leq 4$.
- "Remove" $\delta(w) \cap F_{2}$ from constraint at w.
- Go back to Step 1.

An oversimplified sketch of the algorithm

- $H=(W, F)$: current graph, $F_{2} \subseteq F$: edges currently in both constraints.
- N_{w} : current matroidal deg constraints with corresp. matroid polytope $P_{N_{w}}$.

Step 1

- Get basic solution x^{*} to LP: $\min \left\{c^{T} x\left|x \in P_{S T}, x\right|_{\delta(w)} \in P_{N_{w}} \forall w \in W\right\}$
- If x^{*} is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1 -edges.
- Fix tight spanning tree constraints.

Step 3: degree constraint adaptation

- Find $w \in W$ s.t. $z\left(\delta(w) \cap F_{2}\right) \leq 4$.
- "Remove" $\delta(w) \cap F_{2}$ from constraint at w.
- Go back to Step 1.

An oversimplified sketch of the algorithm

- $H=(W, F)$: current graph, $F_{2} \subseteq F$: edges currently in both constraints.
- N_{w} : current matroidal deg constraints with corresp. matroid polytope $P_{N_{w}}$.

Step 1

- Get basic solution x^{*} to LP: $\min \left\{c^{T} x\left|x \in P_{S T}, x\right|_{\delta(w)} \in P_{N_{w}} \forall w \in W\right\}$
- If x^{*} is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1 -edges.
- Fix tight spanning tree constraints.

Step 3: degree constraint adaptation

- Find $w \in W$ s.t. $z\left(\delta(w) \cap F_{2}\right) \leq 4$.
- "Remove" $\delta(w) \cap F_{2}$ from constraint at w.
- Go back to Step 1.

An oversimplified sketch of the algorithm

- $H=(W, F)$: current graph, $F_{2} \subseteq F$: edges currently in both constraints.
- N_{w} : current matroidal deg constraints with corresp. matroid polytope $P_{N_{w}}$.

Step 1

- Get basic solution x^{*} to LP: $\min \left\{c^{T} x\left|x \in P_{S T}, x\right|_{\delta(w)} \in P_{N_{w}} \forall w \in W\right\}$
- If x^{*} is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1 -edges.
- Fix tight spanning tree constraints.

Step 3: degree constraint adaptation

- Find $w \in W$ s.t. $z\left(\delta(w) \cap F_{2}\right) \leq 4$.

- "Remove" $\delta(w) \cap F_{2}$ from constraint at w.
- Go back to Step 1.

An oversimplified sketch of the algorithm

- $H=(W, F)$: current graph, $F_{2} \subseteq F$: edges currently in both constraints.
- N_{w} : current matroidal deg constraints with corresp. matroid polytope $P_{N_{w}}$.

Step 1

- Get basic solution x^{*} to LP: $\min \left\{c^{T} x\left|x \in P_{S T}, x\right|_{\delta(w)} \in P_{N_{w}} \forall w \in W\right\}$
- If x^{*} is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1 -edges.
- Fix tight spanning tree constraints.

Step 3: degree constraint adaptation

- Find $w \in W$ s.t. $z\left(\delta(w) \cap F_{2}\right) \leq 4$.

- "Remove" $\delta(w) \cap F_{2}$ from constraint at w.
- Go back to Step 1.

An oversimplified sketch of the algorithm

- $H=(W, F)$: current graph, $F_{2} \subseteq F$: edges currently in both constraints.
- N_{w} : current matroidal deg constraints with corresp. matroid polytope $P_{N_{w}}$.

Step 1

- Get basic solution x^{*} to LP: $\min \left\{c^{T} x\left|x \in P_{S T}, x\right|_{\delta(w)} \in P_{N_{w}} \forall w \in W\right\}$
- If x^{*} is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1 -edges.
- Fix tight spanning tree constraints.

Step 3: degree constraint adaptation

- Find $w \in W$ s.t. $z\left(\delta(w) \cap F_{2}\right) \leq 4$.
- "Remove" $\delta(w) \cap F_{2}$ from constraint at w.
- Go back to Step 1.

An oversimplified sketch of the algorithm

- $H=(W, F)$: current graph, $F_{2} \subseteq F$: edges currently in both constraints.
- N_{w} : current matroidal deg constraints with corresp. matroid polytope $P_{N_{w}}$.

Step 1

- Get basic solution x^{*} to LP: $\min \left\{c^{T} x\left|x \in P_{S T}, x\right|_{\delta(w)} \in P_{N_{w}} \forall w \in W\right\}$
- If x^{*} is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1 -edges.
- Fix tight spanning tree constraints.

Step 3: degree constraint adaptation

- Find $w \in W$ s.t. $z\left(\delta(w) \cap F_{2}\right) \leq 4$.
- "Remove" $\delta(w) \cap F_{2}$ from constraint at w.
- Go back to Step 1.

An oversimplified sketch of the algorithm

- $H=(W, F)$: current graph, $F_{2} \subseteq F$: edges currently in both constraints.
- N_{w} : current matroidal deg constraints with corresp. matroid polytope $P_{N_{w}}$.

Step 1

- Get basic solution x^{*} to LP: $\min \left\{c^{T} x\left|x \in P_{S T}, x\right|_{\delta(w)} \in P_{N_{w}} \forall w \in W\right\}$
- If x^{*} is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1 -edges.
- Fix tight spanning tree constraints.

Step 3: degree constraint adaptation

- Find $w \in W$ s.t. $z\left(\delta(w) \cap F_{2}\right) \leq 4$.
- "Remove" $\delta(w) \cap F_{2}$ from constraint at w.
- Go back to Step 1.

An oversimplified sketch of the algorithm

- $H=(W, F)$: current graph, $F_{2} \subseteq F$: edges currently in both constraints.
- N_{w} : current matroidal deg constraints with corresp. matroid polytope $P_{N_{w}}$.

Step 1

- Get basic solution x^{*} to LP: $\min \left\{c^{T} x\left|x \in P_{S T}, x\right|_{\delta(w)} \in P_{N_{w}} \forall w \in W\right\}$
- If x^{*} is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1 -edges.
- Fix tight spanning tree constraints.

Step 3: degree constraint adaptation

- Find $w \in W$ s.t. $z\left(\delta(w) \cap F_{2}\right) \leq 4$.

- "Remove" $\delta(w) \cap F_{2}$ from constraint at w.
- Go back to Step 1.

An oversimplified sketch of the algorithm

- $H=(W, F)$: current graph, $F_{2} \subseteq F$: edges currently in both constraints.
- N_{w} : current matroidal deg constraints with corresp. matroid polytope $P_{N_{w}}$.

Step 1

- Get basic solution x^{*} to LP: $\min \left\{c^{T} x\left|x \in P_{S T}, x\right|_{\delta(w)} \in P_{N_{w}} \forall w \in W\right\}$
- If x^{*} is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1 -edges.
- Fix tight spanning tree constraints.

Step 3: degree constraint adaptation

- Find $w \in W$ s.t. $z\left(\delta(w) \cap F_{2}\right) \leq 4$.

- "Remove" $\delta(w) \cap F_{2}$ from constraint at w.
- Go back to Step 1.

An oversimplified sketch of the algorithm

- $H=(W, F)$: current graph, $F_{2} \subseteq F$: edges currently in both constraints.
- N_{w} : current matroidal deg constraints with corresp. matroid polytope $P_{N_{w}}$.

Step 1

- Get basic solution x^{*} to LP: $\min \left\{c^{T} x\left|x \in P_{S T}, x\right|_{\delta(w)} \in P_{N_{w}} \forall w \in W\right\}$
- If x^{*} is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1 -edges.
- Fix tight spanning tree constraints.

Step 3: degree constraint adaptation

- Find $w \in W$ s.t. $z\left(\delta(w) \cap F_{2}\right) \leq 4$.
- "Remove" $\delta(w) \cap F_{2}$ from constraint at w.
- Go back to Step 1.

An oversimplified sketch of the algorithm

- $H=(W, F)$: current graph, $F_{2} \subseteq F$: edges currently in both constraints.
- N_{w} : current matroidal deg constraints with corresp. matroid polytope $P_{N_{w}}$.

Step 1

- Get basic solution x^{*} to LP: $\min \left\{c^{T} x\left|x \in P_{S T}, x\right|_{\delta(w)} \in P_{N_{w}} \forall w \in W\right\}$
- If x^{*} is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1 -edges.
- Fix tight spanning tree constraints.

Step 3: degree constraint adaptation

- Find $w \in W$ s.t. $z\left(\delta(w) \cap F_{2}\right) \leq 4$.
- "Remove" $\delta(w) \cap F_{2}$ from constraint at w.
- Go back to Step 1.

An oversimplified sketch of the algorithm

- $H=(W, F)$: current graph, $F_{2} \subseteq F$: edges currently in both constraints.
- N_{w} : current matroidal deg constraints with corresp. matroid polytope $P_{N_{w}}$.

Step 1

- Get basic solution x^{*} to LP: $\min \left\{c^{T} x\left|x \in P_{S T}, x\right|_{\delta(w)} \in P_{N_{w}} \forall w \in W\right\}$
- If x^{*} is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1 -edges.
- Fix tight spanning tree constraints.

Step 3: degree constraint adaptation

- Find $w \in W$ s.t. $z\left(\delta(w) \cap F_{2}\right) \leq 4$.
- "Remove" $\delta(w) \cap F_{2}$ from constraint at w.
- Go back to Step 1.

An oversimplified sketch of the algorithm

- $H=(W, F)$: current graph, $F_{2} \subseteq F$: edges currently in both constraints.
- N_{w} : current matroidal deg constraints with corresp. matroid polytope $P_{N_{w}}$.

Step 1

- Get basic solution x^{*} to LP: $\min \left\{c^{T} x\left|x \in P_{S T}, x\right|_{\delta(w)} \in P_{N_{w}} \forall w \in W\right\}$
- If x^{*} is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1 -edges.
- Fix tight spanning tree constraints.

Step 3: degree constraint adaptation

- Find $w \in W$ s.t. $z\left(\delta(w) \cap F_{2}\right) \leq 4$.
- "Remove" $\delta(w) \cap F_{2}$ from constraint at w.
- Go back to Step 1.

An oversimplified sketch of the algorithm

- $H=(W, F)$: current graph, $F_{2} \subseteq F$: edges currently in both constraints.
- N_{w} : current matroidal deg constraints with corresp. matroid polytope $P_{N_{w}}$.

Step 1

- Get basic solution x^{*} to LP: $\min \left\{c^{T} x\left|x \in P_{S T}, x\right|_{\delta(w)} \in P_{N_{w}} \forall w \in W\right\}$
- If x^{*} is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1 -edges.
- Fix tight spanning tree constraints.

Step 3: degree constraint adaptation

- Find $w \in W$ s.t. $z\left(\delta(w) \cap F_{2}\right) \leq 4$.
- "Remove" $\delta(w) \cap F_{2}$ from constraint at w.
- Go back to Step 1.

An oversimplified sketch of the algorithm

- $H=(W, F)$: current graph, $F_{2} \subseteq F$: edges currently in both constraints.
- N_{w} : current matroidal deg constraints with corresp. matroid polytope $P_{N_{w}}$.

Step 1

- Get basic solution x^{*} to LP: $\min \left\{c^{T} x\left|x \in P_{S T}, x\right|_{\delta(w)} \in P_{N_{w}} \forall w \in W\right\}$
- If x^{*} is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1 -edges.
- Fix tight spanning tree constraints.

Step 3: degree constraint adaptation

- Find $w \in W$ s.t. $z\left(\delta(w) \cap F_{2}\right) \leq 4$.
- "Remove" $\delta(w) \cap F_{2}$ from constraint at w.

- Go back to Step 1.

An oversimplified sketch of the algorithm

- $H=(W, F)$: current graph, $F_{2} \subseteq F$: edges currently in both constraints.
- N_{w} : current matroidal deg constraints with corresp. matroid polytope $P_{N_{w}}$.

Step 1

- Get basic solution x^{*} to LP: $\min \left\{c^{T} x\left|x \in P_{S T}, x\right|_{\delta(w)} \in P_{N_{w}} \forall w \in W\right\}$
- If x^{*} is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1 -edges.
- Fix tight spanning tree constraints.

Step 3: degree constraint adaptation

- Find $w \in W$ s.t. $z\left(\delta(w) \cap F_{2}\right) \leq 4$.
- "Remove" $\delta(w) \cap F_{2}$ from constraint at w.

- Go back to Step 1.

An oversimplified sketch of the algorithm

- $H=(W, F)$: current graph, $F_{2} \subseteq F$: edges currently in both constraints.
- N_{w} : current matroidal deg constraints with corresp. matroid polytope $P_{N_{w}}$.

Step 1

- Get basic solution x^{*} to LP: $\min \left\{c^{T} x\left|x \in P_{S T}, x\right|_{\delta(w)} \in P_{N_{w}} \forall w \in W\right\}$
- If x^{*} is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1 -edges.
- Fix tight spanning tree constraints.

Step 3: degree constraint adaptation

- Find $w \in W$ s.t. $z\left(\delta(w) \cap F_{2}\right) \leq 4$.
- "Remove" $\delta(w) \cap F_{2}$ from constraint at w.

- Go back to Step 1.

For $v \in V$, only ≤ 1 deg adaptations impacts $\delta(v) \Rightarrow$ violation ≤ 4.

Updating degree constraints

Contraction of 1-edge

- Contract f in $N_{w_{1}}$ and $N_{w_{2}}$.
- $N_{w_{1,2}}$ is disjoint union of $N_{w_{1}}$ and $N_{w_{2}}$.

Deletion of 0-edge

- Delete f from $N_{w_{1}}$ and $N_{w_{2}}$.

Removing edges from deg constr. (a bit more involved)

Update is done such that:
i) $T \in \mathcal{T}$ satisfies $N_{w}^{\prime} \Rightarrow T$ violates N_{w} by $\leq\lceil z(U)\rceil$.
ii) Current LP sol remains feasible.

Proving sparsity to show \exists adaptation step

- $\delta^{D}(w) \subseteq \delta(w)$: edges not yet removed from N_{w}.

Lemma

If k linearly indep degree constraints of $P_{N_{w}}$ are tight wrt $x^{*} \Rightarrow x^{*}\left(\delta^{D}(w)\right) \geq k$.

Proving sparsity to show \exists adaptation step

- $\delta^{D}(w) \subseteq \delta(w)$: edges not yet removed from N_{w}.

Lemma

If k linearly indep degree constraints of $P_{N_{w}}$ are tight wrt $x^{*} \Rightarrow x^{*}\left(\delta^{D}(w)\right) \geq k$.

- Total \# of linearly indep tight deg constraints at start of algo.:

$$
|\mathcal{D}| \leq \sum_{w \in W} x^{*}\left(\delta^{D}(w)\right)=\sum_{w \in W} x^{*}(\delta(w))=2 x^{*}(F) \stackrel{x^{*} \in P_{S T}}{=} 2(|W|-1)
$$

- Total \# of linearly indep \& tight ST constraints: $|\mathcal{L}| \stackrel{\text { uncrossing }}{\leq}|W|-1$.
- $\left|\operatorname{supp}\left(x^{*}\right)\right|=|F| \leq|\mathcal{L}|+|\mathcal{D}| \leq 3(|W|-1)$.

Proving sparsity to show \exists adaptation step

- $\delta^{D}(w) \subseteq \delta(w)$: edges not yet removed from N_{w}.

Lemma

If k linearly indep degree constraints of $P_{N_{w}}$ are tight wrt $x^{*} \Rightarrow x^{*}\left(\delta^{D}(w)\right) \geq k$.

- Total \# of linearly indep tight deg constraints at start of algo.:

$$
|\mathcal{D}| \leq \sum_{w \in W} x^{*}\left(\delta^{D}(w)\right)=\sum_{w \in W} x^{*}(\delta(w))=2 x^{*}(F)^{x^{*} \in P_{S T}} \stackrel{=}{=} 2(|W|-1)
$$

- Total \# of linearly indep \& tight ST constraints: $|\mathcal{L}| \stackrel{\text { uncrossing }}{\leq}|W|-1$.
- $\left|\operatorname{supp}\left(x^{*}\right)\right|=|F| \leq|\mathcal{L}|+|\mathcal{D}| \leq 3(|W|-1)$.
\exists adaptation step in first iteration

$$
\begin{aligned}
\sum_{w \in W} z\left(\delta^{D}(w)\right) & =\sum_{w \in W} z(\delta(w))=\sum_{w \in W}\left(|\delta(w)|-x^{*}(\delta(w))\right) \\
& \leq 2|F|-\sum_{w \in W} x^{*}(\delta(w))=2|F|-2 x^{*}(F) \leq 4(|W|-1)
\end{aligned}
$$

Proving sparsity to show \exists adaptation step

- $\delta^{D}(w) \subseteq \delta(w)$: edges not yet removed from N_{w}.

Lemma

If k linearly indep degree constraints of $P_{N_{w}}$ are tight wrt $x^{*} \Rightarrow x^{*}\left(\delta^{D}(w)\right) \geq k$.

- Total \# of linearly indep tight deg constraints at start of algo.:

$$
|\mathcal{D}| \leq \sum_{w \in W} x^{*}\left(\delta^{D}(w)\right)=\sum_{w \in W} x^{*}(\delta(w))=2 x^{*}(F) \stackrel{x^{*} \in P_{S T}}{=} 2(|W|-1)
$$

- Total \# of linearly indep \& tight ST constraints: $|\mathcal{L}| \stackrel{\text { uncrossing }}{\leq}|W|-1$.
- $\left|\operatorname{supp}\left(x^{*}\right)\right|=|F| \leq|\mathcal{L}|+|\mathcal{D}| \leq 3(|W|-1)$.
\exists adaptation step in first iteration

$$
\begin{aligned}
\sum_{w \in W} z\left(\delta^{D}(w)\right) & =\sum_{w \in W} z(\delta(w))=\sum_{w \in W}\left(|\delta(w)|-x^{*}(\delta(w))\right) \\
& \leq 2|F|-\sum_{w \in W} x^{*}(\delta(w))=2|F|-2 x^{*}(F) \leq 4(|W|-1)
\end{aligned}
$$

In later iterations, this averaging argument does not work anymore

- For some nodes $w \in W$ we will have $\delta^{D}(w)=\emptyset$.
- We improve sparsity with 2nd type of deg adaptation (\rightarrow another +4 in violation).

Conclusions

- Even for very general degree constraints (matroidal degree constraints), a tree of cost \leq OPT can be obtained with a constant additive degree violation.
- Targeting matroid intersection instead of single matroid seems like an interesting plan in iterative relaxation framework.
- Extensions to other problems?
- Obtaining an additive violation <8 ?
- Constant multiplicative errors for special families of cut constraints?
- Constant-thin spanning trees (implies constant factor approx for ATSP)?

Conclusions

- Even for very general degree constraints (matroidal degree constraints), a tree of cost $\leq O P T$ can be obtained with a constant additive degree violation.
- Targeting matroid intersection instead of single matroid seems like an interesting plan in iterative relaxation framework.
- Extensions to other problems?
- Obtaining an additive violation <8 ?
- Constant multiplicative errors for special families of cut constraints?
- Constant-thin spanning trees (implies constant factor approx for ATSP)?

Thank you!

References I

Asadpour, A., Goemans, M. X., Madry, A., Oveis Gharan, S., and Saberi, A. (2010). An $O(\log n / \log \log n)$-approximation algrithm for the asymmetric traveling salesman problem. In Proceedings of the 20th Annual ACM -SIAM Symposium on Discrete Algorithms (SODA).
Bansal, N., Khandekar, R., Könemann, J., Nagarajan, V., and Peis, B. (2010). On generalizations of network design problems with degree bounds. In Proceedings of Integer Programming and Combinatorial Optimization (IPCO), pages 110-123.
Bansal, N., Khandekar, R., and Nagarajan, V. (2009). Additive guarantees for degree-bounded directed network design. SIAM Journal on Computing, 39(4):1413-1431.
Chaudhuri, K., Rao, S., Riesenfeld, S., and Talwar, K. (2005). What would edmonds do? augmenting paths and witnesses for degree-bounded MSTs. In Chekuri, C., Jansen, K., Rolim, J. D. P., and Trevisan, L., editors, Approximation, Randomization and Combinatorial Optimization, volume 3624 of Lecture Notes in Computer Science, pages 26-39. Springer Berlin / Heidelberg. 10.1007/11538462_3.
Fürer, M. and Raghavachari, B. (1994). Approximating the minimum-degree Steiner Tree to within one of optimal. Journal of Algorithms, 17(3):409-423.

References II

Goemans, M. X. (2006). Minimum bounded degree spanning trees. In Proceedings of the 47th IEEE Symposium on Foundations of Computer Science (FOCS), pages 273-282.
Könemann, J. and Ravi, R. (2002). A matter of degree: Improved approximation algorithms for degree-bounded minimum spanning trees. SIAM Journal on Computing, 31:1783-1793.
Könemann, J. and Ravi, R. (2003). Primal-dual meets local search: approximating MST's with nonuniform degree bounds. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing (STOC), pages 389-395.
Singh, M. and Lau, L. C. (2007). Approximating minimum bounded degree spanning trees to within one of optimal. In Proceedings of the 39th Annual ACM Symposium on Theory of Computing (STOC), pages 661-670.

