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Types of degree constraints

Degree-bounded MST (the classic):

|T ∩ δ(v)| ≤ Bv ∀v ∈ V .

Cut-constraints:

|T ∩ δ(S)| ≤ BS for S ∈ S ⊆ 2V .

0/1-packing constraints:

|T ∩ U| ≤ BU for U ∈ U ⊆ 2E .

Typical motivations for degree constraints

Technical restrictions (VLSI design, telecommunication networks).

Increase reliability by avoiding overloaded vertices.

Reduce vulnerability against malicious attacks.
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Trading slight infeasibility for “optimal” cost
At the example of degree-bounded MST

OPT = min{c(T ) | T ∈ T
︸︷︷︸

all spanning trees
(

⊆ 2E
)

, |T ∩ δ(v)| ≤ Bv ∀v ∈ V }

Even checking feasibility is NP hard
(e.g. if Bv = 2 ∀v ∈ V → Hamiltonian path problem.)
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Even checking feasibility is NP hard
(e.g. if Bv = 2 ∀v ∈ V → Hamiltonian path problem.)

Goal

Find tree T of cost ≤ LP relaxation (c(T ) ≤ OPTf ), minimizing deg violation.

OPTf = min cT x

x ∈ PST = conv({1T | T ∈ T })

x(δ(v)) ≤ Bv ∀v ∈ V

/////////////////x ∈ {0, 1}E

min{c(T ) | T ∈ T , |T ∩ δ(v)| ≤ Bv + k ∀v ∈ V }
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Previous results

Degree-bounded MST

+1 violation (no costs) Fürer and Raghavachari (1994)
various super-constant
violations with cost ≤ OPTf

Könemann and Ravi (2002, 2003), Chaudhuri
et al. (2005), . . .

+2 Goemans (2006)
+1 Singh and Lau (2007)

Generalized bounds

Laminar cut bounds:
+O(log |V |) Bansal et al. (2010)

Bounds on arbitrary edge sets x(U) ≤ BU ∀U ∈ U ⊆ 2E :
+maxe∈E |{U ∈ U | e ∈ U}| Bansal et al. (2009)

Thinness bounds wrt y ∈ PST : x(δ(S)) ≤ y(δ(S)) ∀∅ 6= S ( V (thin trees):

×O
(

log |V |
log log |V |

)

Asadpour et al. (2010)
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Obtain constant violation for constraints beyond degree-bounded MST?
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Our contributions
Main results

Efficent algorithm with +8 guarantee for matroidal degree constraints.

This is based on extensions to the iterative relaxation framework.
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Iterative relaxation by Singh and Lau (+1 guarantee)

Step 1

Get basic LP solution x∗.

If sol is integral: stop.

Step 2

Delete 0-edges.

Fix 1-edges.

Step 3 (let spare: z = 1− x∗)

Find v ∈ V s.t. z(δ(v)) < 2.

Delete deg constraint at v .

Back to Step 1.

6 / 13



Iterative relaxation by Singh and Lau (+1 guarantee)

Step 1

Get basic LP solution x∗.

If sol is integral: stop.

Step 2

Delete 0-edges.

Fix 1-edges.

Step 3 (let spare: z = 1− x∗)

Find v ∈ V s.t. z(δ(v)) < 2.

Delete deg constraint at v .

Back to Step 1.

6 / 13



Iterative relaxation by Singh and Lau (+1 guarantee)

Step 1

Get basic LP solution x∗.

If sol is integral: stop.

Step 2

Delete 0-edges.

Fix 1-edges.

Step 3 (let spare: z = 1− x∗)

Find v ∈ V s.t. z(δ(v)) < 2.

Delete deg constraint at v .

Back to Step 1.

6 / 13



Iterative relaxation by Singh and Lau (+1 guarantee)

Step 1

Get basic LP solution x∗.

If sol is integral: stop.

Step 2

Delete 0-edges.

Fix 1-edges.

Step 3 (let spare: z = 1− x∗)

Find v ∈ V s.t. z(δ(v)) < 2.

Delete deg constraint at v .

Back to Step 1.

6 / 13



Iterative relaxation by Singh and Lau (+1 guarantee)

Step 1

Get basic LP solution x∗.

If sol is integral: stop.

Step 2

Delete 0-edges.

Fix 1-edges.

Step 3 (let spare: z = 1− x∗)

Find v ∈ V s.t. z(δ(v)) < 2.

Delete deg constraint at v .

Back to Step 1.

6 / 13



Iterative relaxation by Singh and Lau (+1 guarantee)

Step 1

Get basic LP solution x∗.

If sol is integral: stop.

Step 2

Delete 0-edges.

Fix 1-edges.

Step 3 (let spare: z = 1− x∗)

Find v ∈ V s.t. z(δ(v)) < 2.

Delete deg constraint at v .

Back to Step 1.

6 / 13



Iterative relaxation by Singh and Lau (+1 guarantee)

Step 1

Get basic LP solution x∗.

If sol is integral: stop.

Step 2

Delete 0-edges.

Fix 1-edges.

Step 3 (let spare: z = 1− x∗)

Find v ∈ V s.t. z(δ(v)) < 2.

Delete deg constraint at v .

Back to Step 1.

6 / 13



Iterative relaxation by Singh and Lau (+1 guarantee)

Step 1

Get basic LP solution x∗.

If sol is integral: stop.

Step 2

Delete 0-edges.

Fix 1-edges.

Step 3 (let spare: z = 1− x∗)

Find v ∈ V s.t. z(δ(v)) < 2.

Delete deg constraint at v .

Back to Step 1.

6 / 13



Iterative relaxation by Singh and Lau (+1 guarantee)

Step 1

Get basic LP solution x∗.

If sol is integral: stop.

Step 2

Delete 0-edges.

Fix 1-edges.

Step 3 (let spare: z = 1− x∗)

Find v ∈ V s.t. z(δ(v)) < 2.

Delete deg constraint at v .

Back to Step 1.

6 / 13



Iterative relaxation by Singh and Lau (+1 guarantee)

Step 1

Get basic LP solution x∗.

If sol is integral: stop.

Step 2

Delete 0-edges.

Fix 1-edges.

Step 3 (let spare: z = 1− x∗)

Find v ∈ V s.t. z(δ(v)) < 2.

Delete deg constraint at v .

Back to Step 1.

6 / 13



Iterative relaxation by Singh and Lau (+1 guarantee)

Step 1

Get basic LP solution x∗.

If sol is integral: stop.

Step 2

Delete 0-edges.

Fix 1-edges.

Step 3 (let spare: z = 1− x∗)

Find v ∈ V s.t. z(δ(v)) < 2.

Delete deg constraint at v .

Back to Step 1.

6 / 13



Iterative relaxation by Singh and Lau (+1 guarantee)

Step 1

Get basic LP solution x∗.

If sol is integral: stop.

Step 2

Delete 0-edges.

Fix 1-edges.

Step 3 (let spare: z = 1− x∗)

Find v ∈ V s.t. z(δ(v)) < 2.

Delete deg constraint at v .

Back to Step 1.

6 / 13



Iterative relaxation by Singh and Lau (+1 guarantee)

Step 1

Get basic LP solution x∗.

If sol is integral: stop.

Step 2

Delete 0-edges.

Fix 1-edges.

Step 3 (let spare: z = 1− x∗)

Find v ∈ V s.t. z(δ(v)) < 2.

Delete deg constraint at v .

Back to Step 1.

6 / 13



Iterative relaxation by Singh and Lau (+1 guarantee)

Step 1

Get basic LP solution x∗.

If sol is integral: stop.

Step 2

Delete 0-edges.

Fix 1-edges.

Step 3 (let spare: z = 1− x∗)

Find v ∈ V s.t. z(δ(v)) < 2.

Delete deg constraint at v .

Back to Step 1.

6 / 13



Iterative relaxation by Singh and Lau (+1 guarantee)

Step 1

Get basic LP solution x∗.

If sol is integral: stop.

Step 2

Delete 0-edges.

Fix 1-edges.

Step 3 (let spare: z = 1− x∗)

Find v ∈ V s.t. z(δ(v)) < 2.

Delete deg constraint at v .

Back to Step 1.

Key property: x∗ is sparse (in particular | supp(x∗)| ≤ 2|V | − 1).

6 / 13



Iterative relaxation by Singh and Lau (+1 guarantee)

Step 1

Get basic LP solution x∗.

If sol is integral: stop.

Step 2

Delete 0-edges.

Fix 1-edges.

Step 3 (let spare: z = 1− x∗)

Find v ∈ V s.t. z(δ(v)) < 2.

Delete deg constraint at v .

Back to Step 1.

Key property: x∗ is sparse (in particular | supp(x∗)| ≤ 2|V | − 1).

6 / 13



Iterative relaxation by Singh and Lau (+1 guarantee)

Step 1

Get basic LP solution x∗.

If sol is integral: stop.

Step 2

Delete 0-edges.

Fix 1-edges.

Step 3 (let spare: z = 1− x∗)

Find v ∈ V s.t. z(δ(v)) < 2.

Delete deg constraint at v .

Back to Step 1.

Key property: x∗ is sparse (in particular | supp(x∗)| ≤ 2|V | − 1).

6 / 13



Iterative relaxation by Singh and Lau (+1 guarantee)

Step 1

Get basic LP solution x∗.

If sol is integral: stop.

Step 2

Delete 0-edges.

Fix 1-edges.

Step 3 (let spare: z = 1− x∗)

Find v ∈ V s.t. z(δ(v)) < 2.

Delete deg constraint at v .

Back to Step 1.

Key property: x∗ is sparse (in particular | supp(x∗)| ≤ 2|V | − 1).

6 / 13



Challenges with more general/matroidal constraints

Previous iterative relaxation/rounding approaches are hard to generalize to
matroidal deg constraints (or other generalized constraint).

Some issues with previous iterative relaxation approaches

Not sufficient sparsity to drop full degree constraints at some vertex.

Previous approaches relied on the fact that each edge is only in a constant
number of linear constraints (belonging to degree constraints).
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High-level goal of our algorithm

Iteratively change constraints to approach matroid intersection problem instead of
targeting ST polytope (which is a matroid base polytope).
→ Iteratively “remove” each edge {u, v} either from deg constraint at u or v .

(this is similar in spirit to Goemans’ algorithm, but works iteratively.)

If each edge belong to at most one degree constraints, all matroidal degree
constraints together form one single matroid.

Resulting optimization problem is matroid intersection and thus integral.
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Summary of further technical contributions

Further contributions on algorithm design level

When removing edges from constraints: old constraint gets replaced by a possibly
more complicated matroidal constraint (s.t. violation is bounded by slack).

We fix tight ST constraints → they help respect degree constraints.

New ideas for the analysis

New argument to prove sparsity that exploits interplay of constraints.

Exploit properties of low-dimensional faces of ST polytope (to deal with cases
where many lin indep ST constraints are tight).
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An oversimplified sketch of the algorithm
H = (W ,F ): current graph, F2 ⊆ F : edges currently in both constraints.
Nw : current matroidal deg constraints with corresp. matroid polytope PNw

.

Step 1

Get basic solution x∗ to LP:
min{cT x | x ∈ PST , x

∣

∣

δ(w)
∈ PNw

∀w ∈ W }

If x∗ is integral: stop.

Step 2

Delete 0-edges.

Contract 1-edges.

Fix tight spanning tree constraints.

Step 3: degree constraint adaptation

Find w ∈ W s.t. z(δ(w) ∩ F2) ≤ 4.

“Remove” δ(w) ∩ F2 from constraint at w .

Go back to Step 1.
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For v ∈ V , only ≤ 1 deg adaptations impacts δ(v) ⇒ violation ≤ 4.
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Updating degree constraints

Contraction of 1-edge

Contract f in Nw1 and Nw2 .

Nw1,2 is disjoint union of Nw1 and Nw2 .

Deletion of 0-edge

Delete f from Nw1 and Nw2 .

Removing edges from deg constr. (a bit more involved)

Update is done such that:

i) T ∈ T satisfies N ′
w ⇒ T violates Nw by ≤ ⌈z(U)⌉.

ii) Current LP sol remains feasible.

11 / 13



Proving sparsity to show ∃ adaptation step
δD(w) ⊆ δ(w): edges not yet removed from Nw .

Lemma

If k linearly indep degree constraints of PNw
are tight wrt x∗ ⇒ x∗(δD(w)) ≥ k.
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In later iterations, this averaging argument does not work anymore

For some nodes w ∈ W we will have δD(w) = ∅.

We improve sparsity with 2nd type of deg adaptation (→ another +4 in violation).
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Conclusions

Even for very general degree constraints (matroidal degree constraints), a tree of
cost ≤ OPT can be obtained with a constant additive degree violation.

Targeting matroid intersection instead of single matroid seems like an interesting
plan in iterative relaxation framework.

Extensions to other problems?

Obtaining an additive violation < 8?

Constant multiplicative errors for special families of cut constraints?

Constant-thin spanning trees (implies constant factor approx for ATSP)?
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