Matroidal Degree-Bounded Minimum Spanning Trees

Rico Zenklusen

MIT

 $\min\{c(T) \mid T \text{ spanning tree in } G = (V, E), \text{ satisfying degree constraints}\}$

min{c(T) | T spanning tree in G = (V, E), satisfying degree constraints}

Types of degree constraints

- Degree-bounded MST (the classic): $|T \cap \delta(v)| < B_v \ \forall v \in V.$
- Cut-constraints:

 $|T \cap \delta(S)| \leq B_S$ for $S \in S \subseteq 2^V$.

• 0/1-packing constraints:

min{c(T) | T spanning tree in G = (V, E), satisfying degree constraints}

Types of degree constraints

- Degree-bounded MST (the classic): $|T \cap \delta(v)| \le B_v \ \forall v \in V.$
- Cut-constraints:

 $|T \cap \delta(S)| \leq B_S$ for $S \in S \subseteq 2^V$.

• 0/1-packing constraints:

min{c(T) | T spanning tree in G = (V, E), satisfying degree constraints}

Types of degree constraints

- Degree-bounded MST (the classic): $|T \cap \delta(v)| \le B_v \ \forall v \in V.$
- Cut-constraints:

 $|T \cap \delta(S)| \leq B_S$ for $S \in S \subseteq 2^V$.

• 0/1-packing constraints:

min{c(T) | T spanning tree in G = (V, E), satisfying degree constraints}

Types of degree constraints

- Degree-bounded MST (the classic): $|T \cap \delta(v)| < B_v \ \forall v \in V.$
- Cut-constraints:

 $|T \cap \delta(S)| \leq B_S$ for $S \in S \subseteq 2^V$.

• 0/1-packing constraints:

min{c(T) | T spanning tree in G = (V, E), satisfying degree constraints}

Types of degree constraints

• Degree-bounded MST (the classic):

 $|T \cap \delta(v)| \leq B_v \ \forall v \in V.$

• Cut-constraints:

 $|T \cap \delta(S)| \leq B_S$ for $S \in S \subseteq 2^V$.

• 0/1-packing constraints:

 $|T \cap U| \leq B_U$ for $U \in \mathcal{U} \subseteq 2^E$.

Typical motivations for degree constraints

- Technical restrictions (VLSI design, telecommunication networks).
- Increase reliability by avoiding overloaded vertices.
- Reduce vulnerability against malicious attacks.

Trading slight infeasibility for "optimal" cost

At the example of degree-bounded MST

$$OPT = \min\{c(T) \mid T \in \mathcal{T}, |T \cap \delta(v)| \le B_v \; \forall v \in V\}$$

all spanning trees $(\subseteq 2^{\mathcal{E}})$

 Even checking feasibility is NP hard (e.g. if B_v = 2 ∀v ∈ V → Hamiltonian path problem.)

Trading slight infeasibility for "optimal" cost

At the example of degree-bounded MST

$$OPT = \min\{c(T) \mid T \in \mathcal{T}, |T \cap \delta(v)| \le B_v \; \forall v \in V\}$$

all spanning trees $(\subseteq 2^E)$

 Even checking feasibility is NP hard (e.g. if B_v = 2 ∀v ∈ V → Hamiltonian path problem.)

Goal

Find tree T of cost \leq LP relaxation ($c(T) \leq OPT_f$), minimizing deg violation.

Trading slight infeasibility for "optimal" cost

At the example of degree-bounded MST

$$OPT = \min\{c(T) \mid T \in \mathcal{T}, |T \cap \delta(v)| \le B_v \; \forall v \in V\}$$

all spanning trees $(\subseteq 2^E)$

 Even checking feasibility is NP hard (e.g. if B_v = 2 ∀v ∈ V → Hamiltonian path problem.)

Goal

Find tree T of cost \leq LP relaxation ($c(T) \leq OPT_f$), minimizing deg violation.

•
$$OPT_f = \min c^T x$$

 $x \in P_{ST} = \operatorname{conv}(\{\mathbf{1}_T \mid T \in \mathcal{T}\})$
 $x(\delta(v)) \leq B_v \quad \forall v \in V$
 $|\not{k}|/\not{k}|/\langle 0 / \mathcal{N} \rangle^F$

• min{ $c(T) \mid T \in T, |T \cap \delta(v)| \le B_v + k \ \forall v \in V$ }

Previous results

Degree-bounded MST

+1 violation (no costs)	Fürer and Raghavachari (1994)		
• various super-constant	Könemann and Ravi (2002, 2003), Chaudhuri		
violations with $cost \leq OPT_f$	et al. (2005),		

• +2	Goemans (2006)
• +1	Singh and Lau (2007)

Generalized bounds

Laminar cut bounds:

• $+O(\log |V|)$

Bansal et al. (2010)

Bounds on arbitrary edge sets $x(U) \leq B_U \ \forall U \in \mathcal{U} \subseteq 2^E$:

• $+ \max_{e \in E} |\{U \in U \mid e \in U\}|$ Bansal et al. (2009)

Thinness bounds wrt $y \in P_{ST}$: $x(\delta(S)) \le y(\delta(S)) \quad \forall \emptyset \ne S \subsetneq V$ (thin trees): • $\times O\left(\frac{\log |V|}{\log \log |V|}\right)$ Asadpour et al. (2010)

Previous results

Degree-bounded MST

+1 violation (no costs)	Fürer and Raghavachari (1994)		
• various super-constant	Könemann and Ravi (2002, 2003), Chaudhuri		
violations with $cost \leq OPT_f$	et al. (2005),		

۲	+2	Goemans (2006)
٩	+1	Singh and Lau (2007)

Generalized bounds

Laminar cut bounds:

• $+O(\log |V|)$

Bansal et al. (2010)

Bounds on arbitrary edge sets $x(U) \le B_U \ \forall U \in \mathcal{U} \subseteq 2^E$:

• $+ \max_{e \in E} |\{U \in U \mid e \in U\}|$ Bansal et al. (2009)

Thinness bounds wrt $y \in P_{ST}$: $x(\delta(S)) \le y(\delta(S)) \quad \forall \emptyset \ne S \subsetneq V \text{ (thin trees):}$ • $\times O\left(\frac{\log |V|}{\log \log |V|}\right)$ Asadpour et al. (2010)

Obtain constant violation for constraints beyond degree-bounded MST?

Main results

- Efficent algorithm with +8 guarantee for matroidal degree constraints.
- This is based on extensions to the iterative relaxation framework.

Main results

- Efficent algorithm with +8 guarantee for matroidal degree constraints.
- This is based on extensions to the iterative relaxation framework.

Definition (Matroidal degree constraints)

 $\min\{c(T) \mid T \in \mathcal{T}, T \cap \delta(v) \in \mathcal{I}_v \ \forall v \in V\},$ where $\mathcal{M}_v = (\delta(v), \mathcal{I}_v)$ is a matroid $\forall v \in V$.

Main results

- Efficent algorithm with +8 guarantee for matroidal degree constraints.
- This is based on extensions to the iterative relaxation framework.

Definition (Matroidal degree constraints)

$$\min\{c(T) \mid T \in \mathcal{T}, T \cap \delta(v) \in \mathcal{I}_v \ \forall v \in V\},$$

where $\mathcal{M}_{v} = (\delta(v), \mathcal{I}_{v})$ is a matroid $\forall v \in V$.

- deg-bounded MST (M_v : uniform matroids)
- partition constraints (part. matroids)
- laminar constraints (lam. matroids)

Main results

- Efficent algorithm with +8 guarantee for matroidal degree constraints.
- This is based on extensions to the iterative relaxation framework.

Definition (Matroidal degree constraints)

$$\min\{c(T) \mid T \in \mathcal{T}, T \cap \delta(v) \in \mathcal{I}_{v} \ \forall v \in V\},\$$

where $\mathcal{M}_{v} = (\delta(v), \mathcal{I}_{v})$ is a matroid $\forall v \in V$.

- deg-bounded MST (M_v : uniform matroids)
- partition constraints (part. matroids)
- laminar constraints (lam. matroids)

Main results

- Efficent algorithm with +8 guarantee for matroidal degree constraints.
- This is based on extensions to the iterative relaxation framework.

Definition (Matroidal degree constraints)

$$\min\{c(T) \mid T \in \mathcal{T}, T \cap \delta(v) \in \mathcal{I}_{v} \ \forall v \in V\},\$$

where $\mathcal{M}_{v} = (\delta(v), \mathcal{I}_{v})$ is a matroid $\forall v \in V$.

- deg-bounded MST (M_v : uniform matroids)
- partition constraints (part. matroids)
- laminar constraints (lam. matroids)

Main results

- Efficent algorithm with +8 guarantee for matroidal degree constraints.
- This is based on extensions to the iterative relaxation framework.

Definition (Matroidal degree constraints)

$$\min\{c(T) \mid T \in \mathcal{T}, T \cap \delta(v) \in \mathcal{I}_v \ \forall v \in V\},\$$

where $\mathcal{M}_{v} = (\delta(v), \mathcal{I}_{v})$ is a matroid $\forall v \in V$.

- deg-bounded MST (M_v : uniform matroids)
- partition constraints (part. matroids)
- laminar constraints (lam. matroids)

Main results

- Efficent algorithm with +8 guarantee for matroidal degree constraints.
- This is based on extensions to the iterative relaxation framework.

Definition (Matroidal degree constraints)

$$\min\{c(T) \mid T \in \mathcal{T}, T \cap \delta(v) \in \mathcal{I}_v \ \forall v \in V\},\$$

where
$$\mathcal{M}_{v}=(\delta(v),\mathcal{I}_{v})$$
 is a matroid $orall v\in V.$

Examples

- deg-bounded MST (\mathcal{M}_{v} : uniform matroids)
- partition constraints (part. matroids)
- laminar constraints (lam. matroids)

Definition ($\leq k$ violation of degree constraints)

 $T \in \mathcal{T}$ violates degree constraint at v by $\leq k$ units if: feasibility can be obtained by ignoring the contribution of $\leq k$ edges.

Main results

- Efficent algorithm with +8 guarantee for matroidal degree constraints.
- This is based on extensions to the iterative relaxation framework.

Definition (Matroidal degree constraints)

$$\min\{c(T) \mid T \in \mathcal{T}, T \cap \delta(v) \in \mathcal{I}_v \ \forall v \in V\},\$$

where $\mathcal{M}_{v} = (\delta(v), \mathcal{I}_{v})$ is a matroid $\forall v \in V$.

Examples

- deg-bounded MST (\mathcal{M}_{v} : uniform matroids)
- partition constraints (part. matroids)
- laminar constraints (lam. matroids)

Definition ($\leq k$ violation of degree constraints)

 $T \in \mathcal{T}$ violates degree constraint at v by $\leq k$ units if: feasibility can be obtained by ignoring the contribution of $\leq k$ edges.

Main results

- Efficent algorithm with +8 guarantee for matroidal degree constraints.
- This is based on extensions to the iterative relaxation framework.

Definition (Matroidal degree constraints)

$$\min\{c(T) \mid T \in \mathcal{T}, T \cap \delta(v) \in \mathcal{I}_{v} \ \forall v \in V\},\$$

where
$$\mathcal{M}_{v} = (\delta(v), \mathcal{I}_{v})$$
 is a matroid $\forall v \in V$.

Examples

- deg-bounded MST (\mathcal{M}_{v} : uniform matroids)
- partition constraints (part. matroids)
- laminar constraints (lam. matroids)

Definition ($\leq k$ violation of degree constraints)

 $T \in \mathcal{T}$ violates degree constraint at v by $\leq k$ units if: feasibility can be obtained by ignoring the contribution of $\leq k$ edges.

Step 1

- Get basic LP solution x^* .
- If sol is integral: stop.

Step 2

- Delete 0-edges.
- Fix 1-edges.

- Find $v \in V$ s.t. $z(\delta(v)) < 2$.
- Delete deg constraint at v.
- Back to Step 1.

Step 1

- Get basic LP solution x^* .
- If sol is integral: stop.

Step 2

- Delete 0-edges.
- Fix 1-edges.

- Find $v \in V$ s.t. $z(\delta(v)) < 2$.
- Delete deg constraint at v.
- Back to Step 1.

Step 1

- Get basic LP solution x^* .
- If sol is integral: stop.

Step 2

- Delete 0-edges.
- Fix 1-edges.

- Find $v \in V$ s.t. $z(\delta(v)) < 2$.
- Delete deg constraint at v.
- Back to Step 1.

Step 1

- Get basic LP solution x^* .
- If sol is integral: stop.

Step 2

- Delete 0-edges.
- Fix 1-edges.

- Find $v \in V$ s.t. $z(\delta(v)) < 2$.
- Delete deg constraint at v.
- Back to Step 1.

Step 1

- Get basic LP solution x^* .
- If sol is integral: stop.

Step 2

- Delete 0-edges.
- Fix 1-edges.

- Find $v \in V$ s.t. $z(\delta(v)) < 2$.
- Delete deg constraint at v.
- Back to Step 1.

Step 1

- Get basic LP solution x^* .
- If sol is integral: stop.

Step 2

- Delete 0-edges.
- Fix 1-edges.

- Find $v \in V$ s.t. $z(\delta(v)) < 2$.
- Delete deg constraint at v.
- Back to Step 1.

Step 1

- Get basic LP solution x^* .
- If sol is integral: stop.

Step 2

- Delete 0-edges.
- Fix 1-edges.

- Find $v \in V$ s.t. $z(\delta(v)) < 2$.
- Delete deg constraint at v.
- Back to Step 1.

Step 1

- Get basic LP solution x^* .
- If sol is integral: stop.

Step 2

- Delete 0-edges.
- Fix 1-edges.

<u>Step 3</u> (let *spare*: $z = 1 - x^*$)

- Find $v \in V$ s.t. $z(\delta(v)) < 2$.
- Delete deg constraint at v.
- Back to Step 1.

$$z(\delta(1)) = 0.3 + 0.2 + 0.4 + 0.1 = 1 < 2$$

Step 1

- Get basic LP solution x^* .
- If sol is integral: stop.

Step 2

- Delete 0-edges.
- Fix 1-edges.

- Find $v \in V$ s.t. $z(\delta(v)) < 2$.
- Delete deg constraint at v.
- Back to Step 1.

Step 1

- Get basic LP solution x^* .
- If sol is integral: stop.

Step 2

- Delete 0-edges.
- Fix 1-edges.

- Find $v \in V$ s.t. $z(\delta(v)) < 2$.
- Delete deg constraint at v.
- Back to Step 1.

Step 1

- Get basic LP solution x^* .
- If sol is integral: stop.

Step 2

- Delete 0-edges.
- Fix 1-edges.

- Find $v \in V$ s.t. $z(\delta(v)) < 2$.
- Delete deg constraint at v.
- Back to Step 1.

Step 1

- Get basic LP solution x^* .
- If sol is integral: stop.

Step 2

- Delete 0-edges.
- Fix 1-edges.

- Find $v \in V$ s.t. $z(\delta(v)) < 2$.
- Delete deg constraint at v.
- Back to Step 1.

Step 1

- Get basic LP solution x^* .
- If sol is integral: stop.

Step 2

- Delete 0-edges.
- Fix 1-edges.

- Find $v \in V$ s.t. $z(\delta(v)) < 2$.
- Delete deg constraint at v.
- Back to Step 1.

Step 1

- Get basic LP solution x^* .
- If sol is integral: stop.

Step 2

- Delete 0-edges.
- Fix 1-edges.

- Find $v \in V$ s.t. $z(\delta(v)) < 2$.
- Delete deg constraint at v.
- Back to Step 1.

Step 1

- Get basic LP solution x^* .
- If sol is integral: stop.

Step 2

- Delete 0-edges.
- Fix 1-edges.

Step 3 (let spare: $z = 1 - x^*$)

- Find $v \in V$ s.t. $z(\delta(v)) < 2$.
- Delete deg constraint at v.
- Back to Step 1.

Key property: x^* is sparse (in particular $|\operatorname{supp}(x^*)| \le 2|V| - 1$).

$$\begin{pmatrix} A_{ST} \\ A_{deg} \end{pmatrix} x^* \leq \begin{pmatrix} b_{ST} \\ b_{deg} \end{pmatrix}$$
$$x^* \geq 0$$

Iterative relaxation by Singh and Lau (+1 guarantee)

Step 1

- Get basic LP solution x^* .
- If sol is integral: stop.

Step 2

- Delete 0-edges.
- Fix 1-edges.

Step 3 (let spare: $z = 1 - x^*$)

- Find $v \in V$ s.t. $z(\delta(v)) < 2$.
- Delete deg constraint at v.
- Back to Step 1.

Key property: x^* is sparse (in particular $|\operatorname{supp}(x^*)| \le 2|V| - 1$).

$$\begin{pmatrix} A_{ST} \\ \hline A_{deg} \\ \hline -I \end{pmatrix} x^* \leq \begin{pmatrix} b_{ST} \\ \hline b_{deg} \\ \hline 0 \end{pmatrix}$$

Iterative relaxation by Singh and Lau (+1 guarantee)

Step 1

- Get basic LP solution x^* .
- If sol is integral: stop.

Step 2

- Delete 0-edges.
- Fix 1-edges.

Step 3 (let spare: $z = 1 - x^*$)

- Find $v \in V$ s.t. $z(\delta(v)) < 2$.
- Delete deg constraint at v.
- Back to Step 1.

Key property: x^* is sparse (in particular $|\operatorname{supp}(x^*)| \le 2|V| - 1$).

Iterative relaxation by Singh and Lau (+1 guarantee)

Step 1

- Get basic LP solution x^* .
- If sol is integral: stop.

Step 2

- Delete 0-edges.
- Fix 1-edges.

Step 3 (let spare: $z = 1 - x^*$)

- Find $v \in V$ s.t. $z(\delta(v)) < 2$.
- Delete deg constraint at v.
- Back to Step 1.

Key property: x^* is sparse (in particular $|supp(x^*)| \le 2|V| - 1$).

6/13

Challenges with more general/matroidal constraints

Previous iterative relaxation/rounding approaches are hard to generalize to matroidal deg constraints (or other generalized constraint).

Some issues with previous iterative relaxation approaches

- Not sufficient sparsity to drop full degree constraints at some vertex.
- Previous approaches relied on the fact that each edge is only in a constant number of linear constraints (belonging to degree constraints).

High-level goal of our algorithm

Iteratively change constraints to approach matroid intersection problem instead of targeting ST polytope (which is a matroid base polytope).

 \rightarrow Iteratively "remove" each edge {u, v} either from deg constraint at u or v. (this is similar in spirit to Goemans' algorithm, but works iteratively.)

- If each edge belong to at most one degree constraints, all matroidal degree constraints together form one single matroid.
- Resulting optimization problem is matroid intersection and thus integral.

Summary of further technical contributions

Further contributions on algorithm design level

- When removing edges from constraints: old constraint gets replaced by a possibly more complicated matroidal constraint (s.t. violation is bounded by slack).
- We fix tight ST constraints \rightarrow they help respect degree constraints.

New ideas for the analysis

- New argument to prove sparsity that exploits interplay of constraints.
- Exploit properties of low-dimensional faces of ST polytope (to deal with cases where many lin indep ST constraints are tight).

- H = (W, F): current graph, $F_2 \subseteq F$: edges currently in both constraints.
- N_w : current matroidal deg constraints with corresp. matroid polytope P_{N_w} .

Step 1

- Get basic solution x^* to LP: $\min\{c^T x \mid x \in P_{ST}, x|_{\delta(w)} \in P_{N_w} \forall w \in W\}$
- If x^* is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1-edges.
- Fix tight spanning tree constraints.

- Find $w \in W$ s.t. $z(\delta(w) \cap F_2) \leq 4$.
- "Remove" $\delta(w) \cap F_2$ from constraint at w.
- Go back to Step 1.

- H = (W, F): current graph, $F_2 \subseteq F$: edges currently in both constraints.
- N_w : current matroidal deg constraints with corresp. matroid polytope P_{N_w} .

Step 1

- Get basic solution x^* to LP: $\min\{c^T x \mid x \in P_{ST}, x|_{\delta(w)} \in P_{N_w} \forall w \in W\}$
- If x^* is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1-edges.
- Fix tight spanning tree constraints.

- Find $w \in W$ s.t. $z(\delta(w) \cap F_2) \leq 4$.
- "Remove" $\delta(w) \cap F_2$ from constraint at w.
- Go back to Step 1.

- H = (W, F): current graph, $F_2 \subseteq F$: edges currently in both constraints.
- N_w : current matroidal deg constraints with corresp. matroid polytope P_{N_w} .

Step 1

- Get basic solution x^* to LP: $\min\{c^T x \mid x \in P_{ST}, x|_{\delta(w)} \in P_{N_w} \forall w \in W\}$
- If x^* is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1-edges.
- Fix tight spanning tree constraints.

- Find $w \in W$ s.t. $z(\delta(w) \cap F_2) \leq 4$.
- "Remove" $\delta(w) \cap F_2$ from constraint at w.
- Go back to Step 1.

- H = (W, F): current graph, $F_2 \subseteq F$: edges currently in both constraints.
- N_w : current matroidal deg constraints with corresp. matroid polytope P_{N_w} .

Step 1

- Get basic solution x^* to LP: $\min\{c^T x \mid x \in P_{ST}, x \mid_{\delta(w)} \in P_{N_w} \forall w \in W\}$
- If x^* is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1-edges.
- Fix tight spanning tree constraints.

- Find $w \in W$ s.t. $z(\delta(w) \cap F_2) \leq 4$.
- "Remove" $\delta(w) \cap F_2$ from constraint at w.
- Go back to Step 1.

- H = (W, F): current graph, $F_2 \subseteq F$: edges currently in both constraints.
- N_w : current matroidal deg constraints with corresp. matroid polytope P_{N_w} .

Step 1

- Get basic solution x^* to LP: $\min\{c^T x \mid x \in P_{ST}, x \mid_{\delta(w)} \in P_{N_w} \forall w \in W\}$
- If x^* is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1-edges.
- Fix tight spanning tree constraints.

- Find $w \in W$ s.t. $z(\delta(w) \cap F_2) \leq 4$.
- "Remove" $\delta(w) \cap F_2$ from constraint at w.
- Go back to Step 1.

- H = (W, F): current graph, $F_2 \subseteq F$: edges currently in both constraints.
- N_w : current matroidal deg constraints with corresp. matroid polytope P_{N_w} .

Step 1

- Get basic solution x^* to LP: $\min\{c^T x \mid x \in P_{ST}, x|_{\delta(w)} \in P_{N_w} \forall w \in W\}$
- If x^* is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1-edges.
- Fix tight spanning tree constraints.

- Find $w \in W$ s.t. $z(\delta(w) \cap F_2) \leq 4$.
- "Remove" $\delta(w) \cap F_2$ from constraint at w.
- Go back to Step 1.

- H = (W, F): current graph, $F_2 \subseteq F$: edges currently in both constraints.
- N_w : current matroidal deg constraints with corresp. matroid polytope P_{N_w} .

Step 1

- Get basic solution x^* to LP: $\min\{c^T x \mid x \in P_{ST}, x|_{\delta(w)} \in P_{N_w} \forall w \in W\}$
- If x^* is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1-edges.
- Fix tight spanning tree constraints.

- Find $w \in W$ s.t. $z(\delta(w) \cap F_2) \leq 4$.
- "Remove" $\delta(w) \cap F_2$ from constraint at w.
- Go back to Step 1.

- H = (W, F): current graph, $F_2 \subseteq F$: edges currently in both constraints.
- N_w : current matroidal deg constraints with corresp. matroid polytope P_{N_w} .

Step 1

- Get basic solution x^* to LP: $\min\{c^T x \mid x \in P_{ST}, x \mid_{\delta(w)} \in P_{N_w} \forall w \in W\}$
- If x^* is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1-edges.
- Fix tight spanning tree constraints.

- Find $w \in W$ s.t. $z(\delta(w) \cap F_2) \leq 4$.
- "Remove" $\delta(w) \cap F_2$ from constraint at w.
- Go back to Step 1.

- H = (W, F): current graph, $F_2 \subseteq F$: edges currently in both constraints.
- N_w : current matroidal deg constraints with corresp. matroid polytope P_{N_w} .

Step 1

- Get basic solution x^* to LP: $\min\{c^T x \mid x \in P_{ST}, x|_{\delta(w)} \in P_{N_w} \forall w \in W\}$
- If x^* is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1-edges.
- Fix tight spanning tree constraints.

- Find $w \in W$ s.t. $z(\delta(w) \cap F_2) \leq 4$.
- "Remove" $\delta(w) \cap F_2$ from constraint at w.
- Go back to Step 1.

- H = (W, F): current graph, $F_2 \subseteq F$: edges currently in both constraints.
- N_w : current matroidal deg constraints with corresp. matroid polytope P_{N_w} .

Step 1

- Get basic solution x^* to LP: $\min\{c^T x \mid x \in P_{ST}, x \mid_{\delta(w)} \in P_{N_w} \forall w \in W\}$
- If x^* is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1-edges.
- Fix tight spanning tree constraints.

- Find $w \in W$ s.t. $z(\delta(w) \cap F_2) \leq 4$.
- "Remove" $\delta(w) \cap F_2$ from constraint at w.
- Go back to Step 1.

- H = (W, F): current graph, $F_2 \subseteq F$: edges currently in both constraints.
- N_w : current matroidal deg constraints with corresp. matroid polytope P_{N_w} .

Step 1

- Get basic solution x^* to LP: $\min\{c^T x \mid x \in P_{ST}, x|_{\delta(w)} \in P_{N_w} \forall w \in W\}$
- If x^* is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1-edges.
- Fix tight spanning tree constraints.

- Find $w \in W$ s.t. $z(\delta(w) \cap F_2) \leq 4$.
- "Remove" $\delta(w) \cap F_2$ from constraint at w.
- Go back to Step 1.

- H = (W, F): current graph, $F_2 \subseteq F$: edges currently in both constraints.
- N_w : current matroidal deg constraints with corresp. matroid polytope P_{N_w} .

Step 1

- Get basic solution x^* to LP: $\min\{c^T x \mid x \in P_{ST}, x|_{\delta(w)} \in P_{N_w} \forall w \in W\}$
- If x^* is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1-edges.
- Fix tight spanning tree constraints.

- Find $w \in W$ s.t. $z(\delta(w) \cap F_2) \leq 4$.
- "Remove" $\delta(w) \cap F_2$ from constraint at w.
- Go back to Step 1.

- H = (W, F): current graph, $F_2 \subseteq F$: edges currently in both constraints.
- N_w : current matroidal deg constraints with corresp. matroid polytope P_{N_w} .

Step 1

- Get basic solution x^* to LP: $\min\{c^T x \mid x \in P_{ST}, x \mid_{\delta(w)} \in P_{N_w} \forall w \in W\}$
- If x^* is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1-edges.
- Fix tight spanning tree constraints.

- Find $w \in W$ s.t. $z(\delta(w) \cap F_2) \leq 4$.
- "Remove" $\delta(w) \cap F_2$ from constraint at w.
- Go back to Step 1.

- H = (W, F): current graph, $F_2 \subseteq F$: edges currently in both constraints.
- N_w : current matroidal deg constraints with corresp. matroid polytope P_{N_w} .

Step 1

- Get basic solution x^* to LP: $\min\{c^T x \mid x \in P_{ST}, x \mid_{\delta(w)} \in P_{N_w} \forall w \in W\}$
- If x^* is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1-edges.
- Fix tight spanning tree constraints.

- Find $w \in W$ s.t. $z(\delta(w) \cap F_2) \leq 4$.
- "Remove" $\delta(w) \cap F_2$ from constraint at w.
- Go back to Step 1.

- H = (W, F): current graph, $F_2 \subseteq F$: edges currently in both constraints.
- N_w : current matroidal deg constraints with corresp. matroid polytope P_{N_w} .

Step 1

- Get basic solution x^* to LP: $\min\{c^T x \mid x \in P_{ST}, x \mid_{\delta(w)} \in P_{N_w} \forall w \in W\}$
- If x^* is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1-edges.
- Fix tight spanning tree constraints.

- Find $w \in W$ s.t. $z(\delta(w) \cap F_2) \leq 4$.
- "Remove" $\delta(w) \cap F_2$ from constraint at w.
- Go back to Step 1.

- H = (W, F): current graph, $F_2 \subseteq F$: edges currently in both constraints.
- N_w : current matroidal deg constraints with corresp. matroid polytope P_{N_w} .

Step 1

- Get basic solution x^* to LP: $\min\{c^T x \mid x \in P_{ST}, x|_{\delta(w)} \in P_{N_w} \forall w \in W\}$
- If x^* is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1-edges.
- Fix tight spanning tree constraints.

- Find $w \in W$ s.t. $z(\delta(w) \cap F_2) \leq 4$.
- "Remove" $\delta(w) \cap F_2$ from constraint at w.
- Go back to Step 1.

- H = (W, F): current graph, $F_2 \subseteq F$: edges currently in both constraints.
- N_w : current matroidal deg constraints with corresp. matroid polytope P_{N_w} .

Step 1

- Get basic solution x^* to LP: $\min\{c^T x \mid x \in P_{ST}, x|_{\delta(w)} \in P_{N_w} \forall w \in W\}$
- If x^* is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1-edges.
- Fix tight spanning tree constraints.

- Find $w \in W$ s.t. $z(\delta(w) \cap F_2) \leq 4$.
- "Remove" $\delta(w) \cap F_2$ from constraint at w.
- Go back to Step 1.

- H = (W, F): current graph, $F_2 \subseteq F$: edges currently in both constraints.
- N_w : current matroidal deg constraints with corresp. matroid polytope P_{N_w} .

Step 1

- Get basic solution x^* to LP: $\min\{c^T x \mid x \in P_{ST}, x \mid_{\delta(w)} \in P_{N_w} \forall w \in W\}$
- If x^* is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1-edges.
- Fix tight spanning tree constraints.

- Find $w \in W$ s.t. $z(\delta(w) \cap F_2) \leq 4$.
- "Remove" $\delta(w) \cap F_2$ from constraint at w.
- Go back to Step 1.

- H = (W, F): current graph, $F_2 \subseteq F$: edges currently in both constraints.
- N_w : current matroidal deg constraints with corresp. matroid polytope P_{N_w} .

Step 1

- Get basic solution x^* to LP: $\min\{c^T x \mid x \in P_{ST}, x|_{\delta(w)} \in P_{N_w} \forall w \in W\}$
- If x^* is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1-edges.
- Fix tight spanning tree constraints.

- Find $w \in W$ s.t. $z(\delta(w) \cap F_2) \leq 4$.
- "Remove" $\delta(w) \cap F_2$ from constraint at w.
- Go back to Step 1.

- H = (W, F): current graph, $F_2 \subseteq F$: edges currently in both constraints.
- N_w : current matroidal deg constraints with corresp. matroid polytope P_{N_w} .

Step 1

- Get basic solution x^* to LP: $\min\{c^T x \mid x \in P_{ST}, x|_{\delta(w)} \in P_{N_w} \forall w \in W\}$
- If x^* is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1-edges.
- Fix tight spanning tree constraints.

- Find $w \in W$ s.t. $z(\delta(w) \cap F_2) \leq 4$.
- "Remove" $\delta(w) \cap F_2$ from constraint at w.
- Go back to Step 1.

- H = (W, F): current graph, $F_2 \subseteq F$: edges currently in both constraints.
- N_w : current matroidal deg constraints with corresp. matroid polytope P_{N_w} .

Step 1

- Get basic solution x^* to LP: $\min\{c^T x \mid x \in P_{ST}, x \mid_{\delta(w)} \in P_{N_w} \forall w \in W\}$
- If x^* is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1-edges.
- Fix tight spanning tree constraints.

- Find $w \in W$ s.t. $z(\delta(w) \cap F_2) \leq 4$.
- "Remove" $\delta(w) \cap F_2$ from constraint at w.
- Go back to Step 1.

- H = (W, F): current graph, $F_2 \subseteq F$: edges currently in both constraints.
- N_w : current matroidal deg constraints with corresp. matroid polytope P_{N_w} .

Step 1

- Get basic solution x^* to LP: $\min\{c^T x \mid x \in P_{ST}, x|_{\delta(w)} \in P_{N_w} \forall w \in W\}$
- If x^* is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1-edges.
- Fix tight spanning tree constraints.

- Find $w \in W$ s.t. $z(\delta(w) \cap F_2) \leq 4$.
- "Remove" $\delta(w) \cap F_2$ from constraint at w.
- Go back to Step 1.

- H = (W, F): current graph, $F_2 \subseteq F$: edges currently in both constraints.
- N_w : current matroidal deg constraints with corresp. matroid polytope P_{N_w} .

Step 1

- Get basic solution x^* to LP: $\min\{c^T x \mid x \in P_{ST}, x|_{\delta(w)} \in P_{N_w} \forall w \in W\}$
- If x^* is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1-edges.
- Fix tight spanning tree constraints.

- Find $w \in W$ s.t. $z(\delta(w) \cap F_2) \leq 4$.
- "Remove" $\delta(w) \cap F_2$ from constraint at w.
- Go back to Step 1.

- H = (W, F): current graph, $F_2 \subseteq F$: edges currently in both constraints.
- N_w : current matroidal deg constraints with corresp. matroid polytope P_{N_w} .

Step 1

- Get basic solution x^* to LP: $\min\{c^T x \mid x \in P_{ST}, x|_{\delta(w)} \in P_{N_w} \forall w \in W\}$
- If x^* is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1-edges.
- Fix tight spanning tree constraints.

- Find $w \in W$ s.t. $z(\delta(w) \cap F_2) \leq 4$.
- "Remove" $\delta(w) \cap F_2$ from constraint at w.
- Go back to Step 1.

- H = (W, F): current graph, $F_2 \subseteq F$: edges currently in both constraints.
- N_w : current matroidal deg constraints with corresp. matroid polytope P_{N_w} .

Step 1

- Get basic solution x^* to LP: $\min\{c^T x \mid x \in P_{ST}, x|_{\delta(w)} \in P_{N_w} \forall w \in W\}$
- If x^* is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1-edges.
- Fix tight spanning tree constraints.

- Find $w \in W$ s.t. $z(\delta(w) \cap F_2) \leq 4$.
- "Remove" $\delta(w) \cap F_2$ from constraint at w.
- Go back to Step 1.

- H = (W, F): current graph, $F_2 \subseteq F$: edges currently in both constraints.
- N_w : current matroidal deg constraints with corresp. matroid polytope P_{N_w} .

Step 1

- Get basic solution x^* to LP: $\min\{c^T x \mid x \in P_{ST}, x|_{\delta(w)} \in P_{N_w} \forall w \in W\}$
- If x^* is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1-edges.
- Fix tight spanning tree constraints.

- Find $w \in W$ s.t. $z(\delta(w) \cap F_2) \leq 4$.
- "Remove" $\delta(w) \cap F_2$ from constraint at w.
- Go back to Step 1.

- H = (W, F): current graph, $F_2 \subseteq F$: edges currently in both constraints.
- N_w : current matroidal deg constraints with corresp. matroid polytope P_{N_w} .

Step 1

- Get basic solution x^* to LP: $\min\{c^T x \mid x \in P_{ST}, x|_{\delta(w)} \in P_{N_w} \forall w \in W\}$
- If x^* is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1-edges.
- Fix tight spanning tree constraints.

- Find $w \in W$ s.t. $z(\delta(w) \cap F_2) \leq 4$.
- "Remove" $\delta(w) \cap F_2$ from constraint at w.
- Go back to Step 1.

- H = (W, F): current graph, $F_2 \subseteq F$: edges currently in both constraints.
- N_w : current matroidal deg constraints with corresp. matroid polytope P_{N_w} .

Step 1

- Get basic solution x^* to LP: $\min\{c^T x \mid x \in P_{ST}, x|_{\delta(w)} \in P_{N_w} \forall w \in W\}$
- If x^* is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1-edges.
- Fix tight spanning tree constraints.

- Find $w \in W$ s.t. $z(\delta(w) \cap F_2) \leq 4$.
- "Remove" $\delta(w) \cap F_2$ from constraint at w.
- Go back to Step 1.

- H = (W, F): current graph, $F_2 \subseteq F$: edges currently in both constraints.
- N_w : current matroidal deg constraints with corresp. matroid polytope P_{N_w} .

Step 1

- Get basic solution x^* to LP: $\min\{c^T x \mid x \in P_{ST}, x|_{\delta(w)} \in P_{N_w} \forall w \in W\}$
- If x^* is integral: stop.

Step 2

- Delete 0-edges.
- Contract 1-edges.
- Fix tight spanning tree constraints.

Step 3: degree constraint adaptation

- Find $w \in W$ s.t. $z(\delta(w) \cap F_2) \leq 4$.
- "Remove" $\delta(w) \cap F_2$ from constraint at w.
- Go back to Step 1.

For $v \in V$, only ≤ 1 deg adaptations impacts $\delta(v) \Rightarrow$ violation ≤ 4 .

Updating degree constraints

Contraction of 1-edge

- Contract f in N_{w_1} and N_{w_2} .
- $N_{w_{1,2}}$ is disjoint union of N_{w_1} and N_{w_2} .

Deletion of 0-edge

• Delete f from N_{w_1} and N_{w_2} .

Removing edges from deg constr. (a bit more involved)

Update is done such that: i) $T \in \mathcal{T}$ satisfies $N'_w \Rightarrow T$ violates N_w by $\leq \lceil z(U) \rceil$. ii) Current LP sol remains feasible.

• $\delta^D(w) \subseteq \delta(w)$: edges not yet removed from N_w .

Lemma

If k linearly indep degree constraints of P_{N_w} are tight wrt $x^* \Rightarrow x^*(\delta^D(w)) \ge k$.

• $\delta^{D}(w) \subseteq \delta(w)$: edges not yet removed from N_{w} .

Lemma

If k linearly indep degree constraints of P_{N_w} are tight wrt $x^* \Rightarrow x^*(\delta^D(w)) \ge k$.

- Total # of linearly indep tight deg constraints at start of algo.: $|\mathcal{D}| \leq \sum_{w \in W} x^*(\delta^{D}(w)) = \sum_{w \in W} x^*(\delta(w)) = 2x^*(F) \stackrel{x^* \in P_{ST}}{=} 2(|W| - 1).$
- Total # of linearly indep & tight ST constraints: $|\mathcal{L}| \stackrel{\text{uncrossing}}{\leq} |W| 1$.
- $|\operatorname{supp}(x^*)| = |F| \le |\mathcal{L}| + |\mathcal{D}| \le 3(|W| 1).$

• $\delta^{D}(w) \subseteq \delta(w)$: edges not yet removed from N_{w} .

Lemma

If k linearly indep degree constraints of P_{N_w} are tight wrt $x^* \Rightarrow x^*(\delta^D(w)) \ge k$.

- Total # of linearly indep tight deg constraints at start of algo.: $|\mathcal{D}| \leq \sum_{w \in W} x^*(\delta^{D}(w)) = \sum_{w \in W} x^*(\delta(w)) = 2x^*(F) \stackrel{x^* \in P_{ST}}{=} 2(|W| - 1).$
- Total # of linearly indep & tight ST constraints: $|\mathcal{L}| \stackrel{\text{uncrossing}}{\leq} |W| 1$.
- $|\operatorname{supp}(x^*)| = |F| \le |\mathcal{L}| + |\mathcal{D}| \le 3(|W| 1).$

∃ adaptation step in first iteration

$$egin{aligned} &\sum_{w\in W} z(\delta^D(w)) = \sum_{w\in W} z(\delta(w)) = \sum_{w\in W} \left(|\delta(w)| - x^*(\delta(w))
ight) \ &\leq 2|F| - \sum_{w\in W} x^*(\delta(w)) = 2|F| - 2x^*(F) \leq 4(|W| - 1). \end{aligned}$$

• $\delta^{D}(w) \subseteq \delta(w)$: edges not yet removed from N_{w} .

Lemma

If k linearly indep degree constraints of P_{N_w} are tight wrt $x^* \Rightarrow x^*(\delta^D(w)) \ge k$.

- Total # of linearly indep tight deg constraints at start of algo.: $|\mathcal{D}| \leq \sum_{w \in W} x^*(\delta^{D}(w)) = \sum_{w \in W} x^*(\delta(w)) = 2x^*(F) \stackrel{x^* \in P_{ST}}{=} 2(|W| - 1).$
- Total # of linearly indep & tight ST constraints: $|\mathcal{L}| \stackrel{\text{uncrossing}}{\leq} |W| 1$.
- $|\operatorname{supp}(x^*)| = |F| \le |\mathcal{L}| + |\mathcal{D}| \le 3(|W| 1).$

∃ adaptation step in first iteration

$$\sum_{w \in W} z(\delta^D(w)) = \sum_{w \in W} z(\delta(w)) = \sum_{w \in W} (|\delta(w)| - x^*(\delta(w)))$$

 $\leq 2|F| - \sum_{w \in W} x^*(\delta(w)) = 2|F| - 2x^*(F) \leq 4(|W| - 1).$

In later iterations, this averaging argument does not work anymore

- For some nodes $w \in W$ we will have $\delta^D(w) = \emptyset$.
- We improve sparsity with 2nd type of deg adaptation (\rightarrow another +4 in violation).

Conclusions

- Even for very general degree constraints (matroidal degree constraints), a tree of cost ≤ OPT can be obtained with a constant additive degree violation.
- Targeting matroid intersection instead of single matroid seems like an interesting plan in iterative relaxation framework.
- Extensions to other problems?
- Obtaining an additive violation < 8?
- Constant multiplicative errors for special families of cut constraints?
- Constant-thin spanning trees (implies constant factor approx for ATSP)?

Conclusions

- Even for very general degree constraints (matroidal degree constraints), a tree of cost ≤ OPT can be obtained with a constant additive degree violation.
- Targeting matroid intersection instead of single matroid seems like an interesting plan in iterative relaxation framework.
- Extensions to other problems?
- Obtaining an additive violation < 8?
- Constant multiplicative errors for special families of cut constraints?
- Constant-thin spanning trees (implies constant factor approx for ATSP)?

Thank you!

References I

- Asadpour, A., Goemans, M. X., Madry, A., Oveis Gharan, S., and Saberi, A. (2010). An $O(\log n / \log \log n)$ -approximation algrithm for the asymmetric traveling salesman problem. In *Proceedings of the 20th Annual ACM -SIAM Symposium on Discrete Algorithms (SODA)*.
- Bansal, N., Khandekar, R., Könemann, J., Nagarajan, V., and Peis, B. (2010). On generalizations of network design problems with degree bounds. In *Proceedings of Integer Programming and Combinatorial Optimization (IPCO)*, pages 110–123.
- Bansal, N., Khandekar, R., and Nagarajan, V. (2009). Additive guarantees for degree-bounded directed network design. *SIAM Journal on Computing*, 39(4):1413–1431.
- Chaudhuri, K., Rao, S., Riesenfeld, S., and Talwar, K. (2005). What would edmonds do? augmenting paths and witnesses for degree-bounded MSTs. In Chekuri, C., Jansen, K., Rolim, J. D. P., and Trevisan, L., editors, *Approximation, Randomization and Combinatorial Optimization*, volume 3624 of *Lecture Notes in Computer Science*, pages 26–39. Springer Berlin / Heidelberg. 10.1007/11538462_3.
- Fürer, M. and Raghavachari, B. (1994). Approximating the minimum-degree Steiner Tree to within one of optimal. *Journal of Algorithms*, 17(3):409–423.

References II

- Goemans, M. X. (2006). Minimum bounded degree spanning trees. In Proceedings of the 47th IEEE Symposium on Foundations of Computer Science (FOCS), pages 273–282.
- Könemann, J. and Ravi, R. (2002). A matter of degree: Improved approximation algorithms for degree-bounded minimum spanning trees. *SIAM Journal on Computing*, 31:1783–1793.
- Könemann, J. and Ravi, R. (2003). Primal-dual meets local search: approximating MST's with nonuniform degree bounds. In *Proceedings of the 35th Annual ACM Symposium on Theory of Computing (STOC)*, pages 389–395.
- Singh, M. and Lau, L. C. (2007). Approximating minimum bounded degree spanning trees to within one of optimal. In *Proceedings of the 39th Annual ACM Symposium on Theory of Computing (STOC)*, pages 661–670.