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Abstract

A link between matroid theory and p-branes is discussed. The
Schild type action for p-branes and matroid bundle notion provide the
two central structures for such a link. We use such a connection to
bring the duality concept in matroid theory to p-branes physics. Our
analysis may be of particular interest in M-theory and in matroid bun-
dle theory.
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The matroid bundle mathematical structure [1]-[3] emerged as a natural
extension of oriented matroid theory [4]. Part of the mathematical motiva-
tion for such a structure arose when Gelfand and MacPherson [5] discovered
a connection between matroid bundle and Pontrjagin classes. Physically,
the matroid bundle concept had led to the proposal of a new gravitational
theory called gravitoid theory [6]. Moreover, it had been shown [7]-[9] that
supergravity D = 11, Chern-Simons theory and string theory are closely
related to matroid bundle.

Here, we are interested in discussing the possibility of linking matroids
and p-branes via Schild type action [10] (see Ref. [11] and also Refs. [12]-[15])
for p-branes and matroid bundle notion. Our analysis may be of particular
interest in M-theory [16]-[18] and in matroid bundle theory itself.

Consider a p-brane moving in a d+1-dimensional Minkowski space-time.
We describe the evolution of such a system by the d + 1-scalar field coor-
dinates xµ(ξa), where µ = 0, 1, ..., d, which are functions of the arbitrary
parameters ξa, with a = 0, 1, ..., p.

The Dirac-Nambu-Goto type action for p-branes is

S(1)
p = −Tp

∫
dp+1ξ

√−h, (1)

where h ≡ det(hab), with

hab = ∂ax
µ∂bx

νηµν , (2)

and Tp is a fundamental constant measuring the inertia of the p-brane. Here,

ηµν = diag(−1, 1, ..., 1) (3)

is the Minkowski metric.

Let us write h in the form

h =
1

(p + 1)!
σµ1...µp+1σµ1...µp+1,

where

σµ1...µp+1 = εa1...ap+1vµ1
a1

(ξ)...vµp+1
ap+1 (ξ). (4)

Here, εa1...ap+1 is the totally antisymmetric tensor and
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vµ
a (ξ) = ∂ax

µ(ξ). (5)

It turns out that the action (1) is equivalent to

S(2)
p =

∫
dp+1ξ(σµ1...µp+1pµ1...µp+1 −

γ

2
(pµ1...µp+1pµ1...µp+1 + T 2

p )), (6)

where γ is a lagrange multiplier and the quantity pµ1...µp+1 can be understood
as the linear momentum associated to σµ1...µp+1. Varying (6) with respect to
pµ1...µp+1 it allows to eliminate pµ1...µp+1. We get

S(3)
p =

1
2

∫
dp+1ξ(γ−1σµ1...µp+1σµ1...µp+1 − γT 2

p ). (7)

By eliminating γ from (7) one recovers the action (1). The importance of
(6) or (7) is that it now makes sense to set Tp = 0. In this case (7) is reduced
to the Schild type null p-brane action [10]-[11].

Here, we are interested in relating (7) to matroid bundle theory. For this
purpose it is convenient to recall the definition of an oriented matroid.

An oriented matroid M is a pair (S, χ), where S is a non-empty finite
set and χ (called chirotope) is a mapping Sr → {−1, 0, 1}, with r the rank
on S, satisfying the following properties.

(χi)χ is not identically zero,

(χii)χ is alternating,

(χiii) for all x1, x2, ..., xr , y1, y2, ..., yr ∈ S such that

χ(x1, x2, ..., xr)χ(y1, y2, ..., yr) �= 0, (8)

there exists an i ∈ {1, 2, ..., r} such that

χ(yi, x2, ..., xr)χ(y1, y2, ..., yi−1, x1, yi+1,..., yr) = χ(x1, x2, ..., xr)χ(y1, y2, ..., yr).
(9)

For a vector configuration the chirotope χ can be identified as

χ(µ1, ..., µr) ≡ sign det(bµ1 , ..., bµr ) ∈ {−1, 0, 1}, (10)
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for all bµ1 , ..., bµr ∈ Rr and for all µ1, ..., µr ∈ S. In this case (10) becomes
connected with the Grassmann-Plucker relation (see Ref.. [4], section 3.5).

It can be proved that the definition of the underlying matroid M of M
follows from the chirotope definition for oriented matroids. In fact, from the
chirotope definition it follows that if B is the set of r-subsets of S such that

χ(x1, x2, ..., xr) �= 0, (11)

for some ordering of (x1, x2, ..., xr) of B, then B is the set of bases of the
matroid M . Formally, the definition of M in terms of the bases is as follows
(see Ref. [19]):

A matroid M is a pair (S,B), where S is a non-empty finite set and B is
a non-empty collection of subsets of S (called bases) satisfying the following
properties:

(B i) no base properly contains another base;

(B ii) if B1 and B2 are bases and if b is any element of B1, then there is
an element g of B2 with the property that (B1 − {b}) ∪ {g} is also a base.

Let us write (10) in the form χ(µ1, ..., µr) ≡ signΣµ1...µr , where

Σµ1...µr ≡ εa1...arbµ1
a1

...bµr
ar

. (12)

Here, the indices a1, ..., ar run from 1 to r. Comparing (4) and (12) we
observe the great similarity between the two formulae. The main difference
comes from the fact that while vµ

a (ξ) is a local object, bµ
a is not. Therefore,

our task is to understand the transition from bµ
a to vµ

a (ξ).

Let ∧rR
n denote the (nr )-dimensional real vector space of alternating

r-forms on Rn. An element Σ in ∧rR
n is said to be decomposable if

Σ = b1 ∧ b2 ∧ ... ∧ br, (13)

for some b1,b2, ..., .br ∈ Rn. It is not difficult to see that (13) can be written
as

Σ =
1
r!

Σµ1...µrωµ1 ∧ ωµ2 ∧ ... ∧ ωµr , (14)

where ωµ1 , ωµ2 , ..., ωµr are one form bases in Rn and Σµ1...µr is given in (12).
This shows that Σµ1...µr can be identified with an alternating decomposable
r-form. It is known that the projective variety of decomposable forms



J. A. Nieto 181

is isomorphic to the Grassmann variety of r-dimensional linear subspaces in
Rn. In turn, the Grassmann variety is the classifying space for vector bundle
structures. These simple observations may motivate one to look for a link
between matroid theory and vector bundle formalism.

Fortunately, the mathematicians have already developed the matroid
bundle concept [1]-[3]. The central idea in matroid bundles, introduced by
MacPherson [1], is to replace tangent spaces in a differential manifold by
oriented matroids. Specifically, one starts with a simplicial complex X asso-
ciated to a differential manifold B by the smooth triangulation η :� X �→ B.
One considers the linear map fξ :� star∆ �→ U ⊂ Tη(ξ) such that fξ(ξ) = 0,
where � ∆ � is the minimal simplex of � X � containing ξ ∈ X. Then,
fξ � (star∆)0 �, where (star∆)0 are the 0-simplices of star∆, is a configu-
ration of vectors in Tη(ξ) defining an oriented matroid M(ξ). (For a more
precise definition of matroid bundle, see [1] and [3].)

Suppose we identify the differential manifold B with the world-volume of
a p-brane. According to our previous discussion one can associate an oriented
matroid M(ξ) at each point ξ of X via the configuration of vectors given by
the map fξ � (star∆)0 �. If we consider the oriented matroid M(ξ) in terms
of (S, χ) with χ(µ1, ..., µr) ≡ signΣµ1...µr we discover that the function fξ

should induce a map

Σµ1...µr → σµ1...µp+1(ξ), (15)

where we consider that the rank r of M(ξ) is r = p + 1. Note that the
formula (15) means that the function fξ also induces the map bµ

a → vµ
a (ξ).

Our last task is to find a mechanism to go from (4) to (5). Consider the
expression

Fµ
ab = ∂av

µ
b (ξ) − ∂bv

ν
a(ξ). (16)

If the object Fµ
ab vanishes, then a solution of (16) is vµ

a (ξ) = ∂xµ

∂ξa , where xµ

is in this context a gauge function. In this case, one says that vµ
a (ξ) is a

pure gauge. Of course, Fµ
ab and vµ

b (ξ) can be interpreted as field strength
and abelian gauge potential, respectively. Using the Palatini formalism, the
formula

Fµ
ab = 0 (17)

can be imposed in the action (7) as a constraint. In two dimensions, such a
formula may be derived from the abelian Chern-Simons action
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SCS =
k

2π

∫
d3ξεijkvµ

i Fjkµ. (18)

The expressions (15) and (17) can be considered as the key bridge to link
p-branes and matroid bundles. It is worth mentioning that according to the
action (7), our results also apply to null p-branes.

It is interesting to observe that σµ1...µp+1(ξ) is a decomposable p+1−form.
Thus, σµ1...µp+1(ξ) is connected to the Grassmann variety concept associated
to a matroid bundle. In the literature this kind of Grassmann variety is called
MacPherson’s variety. It turns out that the MacPherson variety plays the
same role for matroid bundles as the ordinary Grassmann variety plays for
vector bundles (see Ref. [3] for details).

One of the attractive features that arises from the above link between
matroids and p-branes is that the concept of duality becomes part of the
p-brane structure. The reason for this is that every oriented matroid M(ξ)
has an associated unique dual oriented matroid M∗(ξ) (see Ref. [4], section
3.4) and therefore the identification of σµ1...µp+1(ξ) with the chirotope χ of
M(ξ) should imply an identification of the dual of σµ1...µp+1(ξ) with the dual
chirotope χ∗. In order to be more specific in these observations we need to
resort on the duality concept in matroid bundle. Unfortunately, it seems that
the mathematicians have not yet considered such a concept. Nevertheless, it
is tempting to try to outline the main idea. Consider the dual of Σµ1...µp+1

∗Σµp+2...µd+1 =
1

(p + 1)!
ε
µp+2...µd+1
µ1...µp+1 Σµ1...µp+1. (19)

In order to identify ∗Σµp+2...µd+1 with the corresponding chirotope χ∗ we
should have

∗Σµp+2...µd+1 = εâp+2...âd+1b
µp+2

âp+2
...b

µd+1

âd+1
, (20)

where the indices âp+2,..., âd+1 run from p+2 to d+1. Therefore, using (12)
and (20) we discover that (19) becomes

εâp+2...âd+1b
µp+2

âp+2
...b

µd+1

âd+1
=

1
(p + 1)!

ε
µp+2...µd+1
µ1...µp+1 εa1...ap+1bµ1

a1
...b

µp+1
ap+1 . (21)

An important duality property is that the vectors bµ
â and bµ

a should satisfy
the orthogonality condition (see Ref. [19])



J. A. Nieto 183

bµ
âbaµ = 0. (22)

In order to make sense of the formula (21) at the level of matroid bundle
we need to consider the maps bµ

a → vµ
a (ξ) and bµ

â → vµ
â (ξ). In this case (21)

becomes

εâp+2...âd+1v
µp+2

âp+2
(ξ)...vµd+1

âd+1
(ξ) =

1
(p + 1)!

ε
µp+2...µd+1
µ1...µp+1 εa1...ap+1vµ1

a1
(ξ)...vµp+1

ap+1 (ξ).

(23)
The next step is to connect (23) with a p-brane and its dual. This can be
achieved by writing

vµ
a (ξ) = ∂ax

µ(ξ) (24)

and

vµ
â (ξ) = ∂âx

µ(ξ), (25)

where xµ(ξ) are d + 1-scalar fields. But this means that we should have
ξ = (ξa, ξâ) instead of just ξ = (ξa). In the context of fiber bundles the
coordinates ξa parametrize locally the base space B. Therefore we are forced
to identify the coordinates ξâ with the fiber F of some bundle E with base
space B. Fortunately, this kind of scenario is possible if we associate vµ

a (ξ)
with the horizontal part Hξ(E) and vµ

â (ξ) with the vertical part Vξ(E) of a
tangent bundle Tξ(E), where ξ is any point in the total space E. In fact in
this case we have that if vµ

a (ξ) ∈ Hξ(E) and vµ
â (ξ) ∈ Vξ(E) then

vµ
âvaµ = 0 (26)

as required by (22).

Another interesting aspect of the matroid-brane connection is that in
matroid theory the concept of duality may be implemented at the quan-
tum level for different p-branes. In fact, an important theorem in oriented
matroid theory assures that

(M1 ⊕M2)∗ = M∗
1 ⊕M∗

2, (27)

where M1⊕M2 is the direct sum of two oriented matroids M1 and M2. If we
associate p1−brane and p2−brane to the matroids M1 and M2 respectively,
then the corresponding partition functions
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Z1 =
∫

DX exp(S(3)
p1

) (28)

and
Z2 =

∫
DX exp(S(3)

p2
) (29)

should lead to the symmetry Z = Z∗ of the total partition function Z =
Z1Z2. Here, the actions S

(3)
p1 and S

(3)
p2 are determined by (7).

Before we make some final comments, let us discuss an extension of
the Hodge duality definition (19) suggested my matroid theory. We first
observe that the completely antisymmetric object εµ1...µp+1µp+2...µd+1

, using
in (19), is in fact a chirotope associated to the underlaying uniform matroid
Un,n. It turns out that the matroid Un,n corresponds to the ground set S =
{1, 2, ..., n} and bases subset B = {{1, 2, ..., n}}, with n = d + 1. Therefore,
there is just one base of rank r = n in B, namely the set {1, 2, ..., n} itself.
Thus, the chirotope χ associated to this base set reads as χ(µ1, ..., µd+1)
and using (8)-(9) one may verify that χ(µ1, ..., µd+1) is in fact equal to the
density εµ1...µd+1

. The question arises: from many possible chirotopes, why
is the chirotope εµ1...µd+1

used to define duality? An straightforward answer
to this question it may say that because the chirotope εµ1...µd+1

has the
required properties for duality. But from the point of view chirotope theory
the object εµ1...µd+1

is just a very particular example of a chirotope. Thus,
we arrive to the related question: why do not we use other chirotopes to
extend the Hodge duality concept? Let us extend (19) in the form

‡Σµp+2...µr =
1

(p + 1)!
χ

µp+2...µr
µ1...µp+1Σ

µ1...µp+1, (30)

where χµ1...µp+1µp+2...µr ≡ χ(µ1, .., µp+1, µp+2, ..., µr) is a chirotope associated
to some oriented matroid of rank r ≥ p + 1. In order to emphasize that ‡Σ
is a more general object than ∗Σ let us call ‡Σ the dualoid of Σ. Of course,
(19) is a particular case of (30), since when r = d + 1 (30) becomes (19).

As an example of such a dualoid let us consider a 2-brane in d + 1 = 11
dimensions and some oriented matroid M of rank r = 6. From (30) we have

‡Σαβτ =
1
3!

χαβτ
µνρ Σµνρ. (31)

This leads to the interesting result that the dualoid ‡Σαβτ may also describe
a 2-brane in eleven dimensions. In contrast, observe that if instead of (31)
we used the traditional Hodge transformation (19) we get that the dual of a
2-brane is a 7−brane.
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Summarizing, in this brief work we have considered the possibility to
connect oriented matroids with p-branes. We have shown that makes sense
to associate the p+1-form σµ1...µp+1(ξ) in the Schild type action (7) with the
chirotope χ(µ1, ..., µp+1) of an oriented matroid. It should emphasized that
our procedure is not just a technical translation from p-branes to matroid
theory which is already interesting, but it is a bridge that may allow to
bring many important theorems and concepts in matroid theory to p-brane
physics. In particular, as a proof of the importance of having established
such a bridge, we have shown that the duality concept in matroid theory
can be understood as a duality symmetry in the context of p-branes. The
fact that this symmetry is part of the p + 1-form/chirotope connection of
the Schild type action is a guarantee of having classically such a symmetry
in a dynamic context. However, in a quantum context one should be always
careful with classical symmetries because of some possible anomalies, but
in principle this scenario shows a possible route to investigate the duality
matroid symmetry for a p-brane at the quantum level.

The question arises whether the present connection between matroids
and p-branes may be useful in M-theory itself. Of course, since our analysis
applies to any p-brane it must also be truth for strings which are part of
M-theory structure. But beyond this observation there is a key reason to
believe that such a connection may have more implications on M-theory.
The key idea is to consider duality as a fundamental principle in M-theory.
Just as the equivalence principle in gravity suggested to look for a mathe-
matical structure beyond Euclidean geometry, duality in M-theory seems to
require a mathematical structure beyond the mathematical structure usu-
ally considered in string theory. Surprisingly, such a mathematical structure
seems to be precisely matroid theory as it has come to be evident in refer-
ences [6]-[9]. The main reason is that duality plays a central role in matroid
theory and in fact, in strict sense, matroid theory may even be called a
duality theory. If one assumes that in effect matroid theory is the underlay-
ing mathematical structure of M-theory then one should expect new duality
properties in M-theory beyond the duality symmetries interrelating the five
known superstring theories and p-branes. For instance, the string/5-brane
duality in ten dimensions [20] may be considered as a particular case of the
dualoid described above. In fact, the string/5-brane arises from the field
strength Fµνα = ∂[µAνα] associated to the antisymmetric gauge field Aνα in
ten dimensions. The Hodge dual of Fµνα is

Fµ1µ2µ3µ4µ5µ6µ7 =
1
3!

εµ1µ2µ3µ4µ5µ6µ7µ8µ9µ10Fµ8µ9µ10 . (32)

Here, Fµ1µ2µ3µ4µ5µ6µ7 = ∂[µ7
Aµ1µ2µ3µ4µ5µ6] is the field strength associated to
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the completely antisymmetric gauge field Aµ1µ2µ3µ4µ5µ6 which in turn implies
a 5-brane structure via the coupling

σµ1µ2µ3µ4µ5µ6Aµ1µ2µ3µ4µ5µ6 . (33)

Under our considerations the object σµ1µ2µ3µ4µ5µ6 can be identified with a
chirotope χ(µ1µ2µ3µ4µ5µ6) and therefore new duality may arise if instead
of (32) we consider the dualoid transformation

‡Fµ1µ2µ3µ4µ5µ6µ7 =
1
3!

χµ1µ2µ3µ4µ5µ6µ7µ8µ9µ10Fµ8µ9µ10 , (34)

where χµ1µ2µ3µ4µ5µ6µ7µ8µ9µ10 may be associated to some oriented matroid
of rank ten. Here, ‡Fµ1µ2µ3µ4µ5µ6µ7 = ∂[µ7

A‡
µ1µ2µ3µ4µ5µ6] is the dualoid field

strength, where A‡
µ1µ2µ3µ4µ5µ6 is the corresponding completely antisymmetric

gauge field.

Another, possibility of relating the matroid-brane link with M-theory is
via Matrix theory. Some years ago Yoneya [15] showed that it is possible
to construct a Matrix theory of M-theory from the Schild type action for
strings. The starting point in the Yoneya’s work is to consider the Poisson
bracket structure

{xµ, xν} =
1
γ

σµν , (35)

where γ is an auxiliary field. This identification suggests to replace the
Poisson structure by a coordinates operators

{xµ, xν} → 1
i
[x̂µ, x̂ν ]. (36)

The central idea is then quantize the constraint

− 1
γ2

σµνσµν = T 2
p , (37)

which can be derived from (7) setting p = 1. According to (35) and (36) one
gets

([x̂µ, x̂ν ])2 = T 2
p I, (38)

where I is the identity operator. It turns out that the constraint (38) plays
an essential role in Matrix theory. Extending the Yoneya’s idea for strings,
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Oda [14] (see also Ref. [13]) has shown that it is also possible to construct
a Matrix model of M-theory from a Schild-type action for membranes. It
is clear from our previous analysis of identifying the quantity σµν with a
chirotope χµν that these developments of Matrix theory can be linked with
the oriented matroid theory.

Finally, it is known that there are matroids, such as the non-Pappus
matroid, which are not realizable. On the other hand, our discussion on the
present work has been focused in realizable matroid bundles. This suggests
that there must be an extension of p-branes of pure combinatorial character.
Moreover, it has been proved that matroid bundles have well-defined Stiefel-
Whitney classes [2] and other characteristic classes [21]. In turn, Stiefel-
Whitney classes are closely related to spinning structures. Perhaps, these
exciting developments in combinatorial characteristic classes may eventually
lead to a matroid/supersymmetry connection.

Acknowledgments: I would like to thank M. C. Maŕın, J. Saucedo and G.
Arreaga for helpful comments.
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