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MatSciBERT: A materials domain language model for text
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A large amount of materials science knowledge is generated and stored as text published in peer-reviewed scientific literature.
While recent developments in natural language processing, such as Bidirectional Encoder Representations from Transformers
(BERT) models, provide promising information extraction tools, these models may yield suboptimal results when applied on
materials domain since they are not trained in materials science specific notations and jargons. Here, we present a materials-aware
language model, namely, MatSciBERT, trained on a large corpus of peer-reviewed materials science publications. We show that
MatSciBERT outperforms SciBERT, a language model trained on science corpus, and establish state-of-the-art results on three
downstream tasks, named entity recognition, relation classification, and abstract classification. We make the pre-trained weights of
MatSciBERT publicly accessible for accelerated materials discovery and information extraction from materials science texts.
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INTRODUCTION

Discovering materials and utilizing them for practical applications
is an extremely time-consuming process that may span decades’-.
To accelerate this process, we need to exploit and harness the
knowledge on materials that has been developed over the
centuries through rigorous scientific procedure in a cohesive
fashion3-8, Textbooks, scientific publications, reports, handbooks,
websites, etc., serve as a large data repository that can be mined
for obtaining the already existing information®'?. However, it is a
challenging task to extract useful information from these texts
since most of the scientific data is semi- or un-structured in the
form of text, paragraphs with cross reference, image captions, and
tables'®'2, Extracting such information manually is extremely
time- and resource-intensive and relies on the interpretation of a
domain expert.

Natural language processing (NLP), a sub-domain in artificial
intelligence, presents an alternate approach that can automate
information extraction from text. Earlier approaches in NLP relied
on non-neural methods based on n-grams such as Brown et al.
(1992)'3, structural learning framework by Ando and Zhang
(2005)™%, or structural correspondence learning by Blitzer et al.
(2006)'%, but these are no longer state of the art. Neural pre-
trained embeddings like word2vec'®'” and GloVe'® are quite
popular, but they lack domain-specific knowledge and do not
produce contextual embeddings. Recent progress in NLP has led
to the development of a computational paradigm in which a large,
pre-trained language model (LM) is finetuned for domain-specific
tasks. Research has consistently shown that this pretrain-finetune
paradigm leads to the best overall task performance'®2,
Statistically, LMs are probability distributions for a sequence of
words such that for a given set of words, it assigns a probability to
each word?*. Recently, due to the availability of large amounts of
text and high computing power, researchers have been able to
pre-train these large neural language models. For example,
Bidirectional Encoder Representations from Transformers (BERT)?*
is trained on BookCorpus?® and English Wikipedia, resulting in

state-of-the-art performance on multiple NLP tasks like question
answering and entity recognition, to name a few.

Researchers have used NLP tools to automate database creation
for ML applications in the materials science domain. For instance,
ChembDataExtractor?’, an NLP pipeline, has been used to create
databases of battery materials®®, Curie and Néel temperatures of
magnetic materials?®, and inorganic material synthesis routes®°.
Similarly, NLP has been used to collect the composition and
dissolution rate of calcium aluminosilicate glassy materials®', and
zeolite synthesis routes to synthesize germanium containing
zeolites®?, and to extract process and testing parameters of oxide
glasses, thereby enabling improved prediction of the Vickers
hardness''. Researchers have also made an automated NLP tool to
create databases using the information extracted from computa-
tional materials science research papers®. NLP has also been used
for other tasks such as topic modeling in glasses, that is, to group
the literature into different topics in an unsupervised fashion and
to find images based on specific queries such as elements present,
synthesis, or characterization techniques, and applications'®.

A comprehensive review by Olivetti et al. (2019) describes
several ways in which NLP can benefit the materials science
community®**. Providing insights into chemical parsing tools like
OSCAR4* capable of identifying entities and chemicals from text,
Artificial Chemist>®, which takes the input of precursor information
and generates synthetic routes to manufacture optoelectronic
semiconductors with targeted band gaps, robotic system for
making thin films to produce cleaner and sustainable energy
solutions®’, and identification of more than 80 million materials
science domain-specific named entities, researches have
prompted the accelerated discovery of materials for different
applications through the combination of ML and NLP techniques.
Researchers have shown the domain adaptation capability of
word2vec and BERT in the field of biological sciences as
BioWordVec3® and BioBERT'®, other domain-specific BERTs like
SciBERT?! trained on scientific and biomedical corpus®?, clinical-
BERT*® trained on 2 million clinical notes in MIMIC-lI v1.4
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Fig. 1 Methodology for training MatSciBERT. We create the
Materials Science Corpus (MSC) through query search followed by
selection of relevant research papers. MatSciBERT, pre-trained on
MSC, is evaluated on various downstream tasks.

database*', mBERT*? for multilingual machine translations tasks,
PatentBERT?® for patent classification and FinBERT for financial
tasks?2. This suggests that a materials-aware LM can significantly
accelerate the research in the field by further adapting to
downstream tasks®34. Although there were no papers on
developing materials-aware language models prior to this work®3,
in a recent preprint**, Walker et al. (2021) emphasize the impact of
domain-specific language models on named entity recognition
(NER) tasks in materials science.

In this work, we train materials science domain-specific BERT,
namely MatSciBERT. Figure 1 shows the graphical summary of the
methodology adopted in this work encompassing creating the
materials science corpus, training the MatSciBERT, and evaluating
different downstream tasks. We achieve state-of-the-art results on
domain-specific tasks as listed below.

a. NER on SOFC, SOFC Slot dataset by Friedrich et al. (2020)*
and Matscholar dataset by Weston et al. (2019)°

b. Glass vs. Non-Glass classification of paper abstracts'®

c. Relation Classification on MSPT corpus*®

The present work, thus, bridges the gap in the availability of a
materials domain language model, allowing researchers to
automate information extraction, knowledge graph completion,
and other downstream tasks and hence accelerate the discovery
of materials. We have hosted the MatSciBERT pre-trained weights
at https://huggingface.co/m3rg-iitd/matscibert and codes for pre-
training and finetuning on downstream tasks at https://github.
com/M3RG-IITD/MatSciBERT. Also, the codes with finetuned
models for the downstream tasks are available at https://doi.org/
10.5281/zenodo0.6413296.

RESULTS AND DISCUSSION

Dataset

Textual datasets are an integral part of the training of an LM. There
exist many general-purpose corpora like BookCorpus®® and
EnglishWikipedia, and domain-specific corpora like biomedical
corpus?, and clinical database*', to name a few. However, none of
these corpora is suitable for the materials domain. Therefore, with
the aim of providing a materials specific LM, we first create a
corpus spanning four important materials science families of
inorganic glasses, metallic glasses, alloys, and cement and
concrete. It should be noted that although these broad categories
are mentioned, several other categories of materials, including
two-dimensional materials, were also present in the corpus.
Specifically, we have selected ~150 K papers out of ~1 M papers
downloaded from the Elsevier Science Direct Database. The steps
to create the corpus are provided in the Methods section. The
details about the number of papers and words for each family are
given in Supplementary Table 1. We have also provided the list of
DOIs and PlIs of the papers used to pre-train MatSciBERT in the
GitHub repository for this work.
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The materials science corpus developed for this work has
~285 M words, which is nearly 9% of the number of words used to
pre-train SciBERT (3.17B words) and BERT (3.3B words). Since we
continue pre-training SciBERT, MatSciBERT is effectively trained on
a corpus consisting of 3.17 + 0.28 = 3.45B words. From Supple-
mentary Table 1, one can observe that 40% of the words are from
research papers related to inorganic glasses and ceramics, and
20% each from bulk metallic glasses (BMG), alloys, and cement.
Although the number of research papers for “cement and
concrete” is more than “inorganic glasses and ceramics”, the
latter has higher words. This is because of the presence of a
greater number of full-text documents retrieved associated with
the latter category. The Supplementary Table 2 represents the
word count of important strings relevant to the field of materials
science. It should be noted that the corpus encompasses the
important fields of thermoelectric, nanomaterials, polymers, and
biomaterials. Also, note that the corpora used for training the
language model consists of both experimental and computational
works as both these approaches play a crucial role in under-
standing material response. The average paper length for this
corpus is ~1848 words, which is two-thirds of the average paper
length of 2769 words for the SciBERT corpus. The lower average
paper length can be attributed to two things: (a) In general,
materials science papers are shorter than biomedical papers. We
verified this by computing the average paper length of full-text
materials science papers. The number came out to be 2366. (b)
There are papers without full text also in our corpus. In that case,
we have used the abstracts of such papers to arrive at the final
corpus.

Pre-training of MatSciBERT

For MatSciBERT pre-training, we follow the domain adaptive pre-
training proposed by Gururangan et al. (2020). In this work,
authors continued pre-training of the initial LM on corpus of
domain-specific text?®. They observed a significant improvement
in the performance on domain-specific downstream tasks for all
the four domains despite the overlap between initial LM
vocabulary and domain-specific vocabulary being less than
54.1%. BioBERT'® and FinBERT?? were also developed using the
similar approach where the vanilla BERT model was further pre-
trained on domain-specific text, and tokenization is done using
the original BERT vocabulary. We initialize MatSciBERT weights
with that of some suitable LM and then pre-train it on MSC. To
determine the appropriate initial weights for MatSciBERT, we
trained an uncased wordpiece*” vocabulary based on the MSC
using the tokenizers library®®, The overlap of MSC vocabulary is
53.64% with the uncased SciBERT?' vocabulary and 38.90% with
the uncased BERT vocabulary. Because of the larger overlap with
the vocabulary of SciBERT, we tokenize our corpus using the
SciBERT vocabulary and initialize the MatSciBERT weights with that
of SciBERT as made publicly available by Beltagy et al. (2019)*". It is
worth mentioning that a materials science domain-specific
vocabulary would likely represent the corpus with a lesser number
of wordpieces and potentially lead to a better language model.
For e.g., “yttria-stabilized zirconia” is tokenized as [“yt", “##tri”,

“##a”, "-", “stabilized”, “zircon”, “##ia"] by the SciBERT vocabulary,
whereas a domain-specific tokenization might have resulted in
["yttria”, “-", “stabilized”, “zirconia”]. However, using a domain-

specific tokenizer does not allow the use of SciBERT weights and
takes advantage of the scientific knowledge already learned by
SciBERT. Further, using the SciBERT vocabulary for the materials
domain is not necessarily detrimental since the deep neural
language models have the capacity to learn repeating patterns
that represent new words using the existing tokenizer. For
instance, when the wordpieces “yt”, “##tri”, and “##a” occur
consecutively, SciBERT indeed recognizes that some material
is being discussed, as demonstrated in the downstream tasks.
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Table 1. Macro-F1 scores on the test set for SOFC-Slot and SOFC datasets averaged over three seeds and five cross-validation splits.
Architecture LM = MatSciBERT LM = SciBERT LM = BERT SOTA
SOFC-Slot dataset
LM-Linear 63.82+2.53 58.64 +1.49 57.06 +2.86 62.6 (67.8+12.9)
(67.53 £4.23) (64.58 +3.73) (61.68 +5.23)
LM-CRF 65.35+2.73 59.07 £2.85 58.26+1.73
(70.07 + 3.36) (68.31 +2.88) (65.38 +3.96)
LM-BiLSTM-CRF 65.95 +2.69 61.68+1.42 55.44 £1.97
(69.76 £3.72) (68.44 +3.15) (65.36 + 3.68)
SOFC dataset
LM-Linear 82.28+1.11 79.91+£1.20 77.08 £1.75 81.5 (81.7+4.2)
(81.60 +2.63) (80.91 +2.37) (79.61 +3.01)
LM-CRF 82.39+1.23 81.07+0.93 78.93 +1.62
(82.61+2.34) (82.04 +2.36) (81.26 +2.87)
LM-BiLSTM-CRF 8224+1.12 80.12+1.00 78.15+1.55
(82.61+2.77) (81.92 +£2.27) (80.94 +2.72)
Values in the parenthesis show the results on the validation set.

This is also why most domain-specific BERT-based LMs like
FinBERT?2, BioBERT'®, and ClinicalBERT*? extend the pre-training
instead of using domain-specific tokenizers and learning from
scratch.

The details of the pre-training procedure are provided in the
Methods section. The pre-training was performed for 360 h, after
which the model achieved a final perplexity of 2.998 on the
validation set (see Supplementary Fig. 1a). Although not directly
comparable due to different vocabulary and validation corpus,
BERT?®, and RoBERTa*° authors report perplexities as 3.99 and
3.68, respectively, which are in the same range. We also provide
graphs for other evaluation metrics like MLM loss and MLM
accuracy in Supplementary Fig. 1b, c. The final pre-trained LM was
then used to evaluate different materials science domain-specific
downstream tasks, details of which are described in the
subsequent sections. The performance of the LM on the down-
stream tasks was compared with that of SciBERT, BERT, and other
baseline models to evaluate the effectiveness of MatSciBERT to
learn the materials’ specific information.

In order to understand the effect of pre-training on the model
performance, a materials domain-specific downstream task, NER
on SOFC-slot, was performed using the model at regular intervals
of pre-training. To this extent, the pre-trained model was
finetuned on the training set of the SOFC-slot dataset. The choice
of the SOFC-slot dataset was based on the fact that the dataset
was comprised of fine-grained materials-specific information.
Thus, this dataset is appropriate to distinguish the performance
of SciBERT from the materials-aware LMs. The performance of
these finetuned models was evaluated on the test set. LM-CRF
architecture was used for the analysis since LM-CRF consistently
gives the best performance for the downstream task, as shown
later in this work. The macro-F1 averages across three seeds
exhibited an increasing trend (see Supplementary Fig. 2a),
suggesting the importance of training for longer durations. We
also show a similar graph for the abstract classification task
(Supplementary Fig. 2b).

Downstream tasks

Here, we evaluate MatSciBERT on three materials science specific
downstream tasks namely, Named Entity Recognition (NER),
Relation Classification, and Paper Abstract Classification.

We now present the results on the three materials science NER
datasets as described in the Methods section. To the best of our
knowledge, the best Macro-F1 on solid oxide fuel cells (SOFC) and
SOFC-Slot datasets is 81.50% and 62.60%, respectively, as reported

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

by Friedrich et al. (2020), who introduced the dataset**. We run
the experiments on the same train-validation-test splits as done
by Friedrich et al. (2020) for a fair comparison of results. Moreover,
since the authors reported results averaged over 17 entities (the
extra entity is “Thickness”) for the SOFC-Slot dataset, we also
report the results taking the ‘Thickness’ entity into account.

Table 1 shows the Macro-F1 scores for the NER task on the
SOFC-Slot and SOFC datasets by MatSciBERT, SciBERT, and BERT.
We observe that LM-CRF always performs better than LM-Linear.
This can be attributed to the fact that the CRF layer can model the
BIO tags accurately. Also, all SciBERT architectures perform better
than the corresponding BERT architecture. We obtained an
improvement of ~6.3 Macro F1 and ~3.2 Micro F1 (see
Supplementary Table 3) on the SOFC-Slot test set for MatSciBERT
vs. SCiBERT while using the LM-CRF architecture. For the SOFC test
dataset, MatSciBERT-BiLSTM-CRF performs better than SciBERT-
BiLSTM-CRF by ~2.1 Macro F1 and ~2.1 Micro F1. Similar
improvements can be seen for other architectures as well. These
MatSciBERT results also surpass the current best results on SOFC-
Slot and SOFC datasets by ~3.35 and ~0.9 Macro-F1, respectively.

It is worth noting that the SOFC-slot dataset consists of 17 entity
types and hence has more fine-grained information regarding the
materials. On the other hand, SOFC has only four entity types
representing coarse-grained information. We notice that the
performance of MatSciBERT on SOFC-slot is significantly better
than that of SciBERT. To further evaluate this aspect, we analyzed
the F1-score of both SciBERT and MatSciBERT on all the 17 entity
types of the SOFC-slot data individually, as shown in Fig. 2.
Interestingly, we observe that for all the materials related entity
types, namely anode material, cathode material, electrolyte
material, interlayer material, and support material, MatSciBERT
performs better than SciBERT. In addition, for materials related
properties such as open circuit voltage and degradation rate,
MatSciBERT is able to significantly outperform SciBERT. This
suggests that MatSciBERT is indeed able to capitalize on the
additional information learned from the MSC to deliver better
performance on complex problems specific to the materials
domain.

Now, we present the results for the Matscholar dataset® in Table 2.
For this dataset too, MatSciBERT outperforms SciBERT, BERT as well
as the current best results, as can be seen in the case of LM-CRF
architecture. The authors obtained Macro-F1 of 85.41% on the
validation set and 85.10% on the test set, and Micro-F1 of 87.09%
and 87.04% (see Supplementary Table 4). We observe that our
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best model MatSciBERT-CRF has Macro-F1 values of 88.66% and
86.38%, both better than the existing state of the art.

In order to demonstrate the performance of MatSciBERT, we
demonstrate an example from the validation set of the dataset in
Supplementary Figs. 3 and 4. The overall superior performance of
MatSciBERT is evident from Table 2.

Table 3 shows the results for the Relation Classification task
performed on the Materials Synthesis Procedures dataset*s. We
also compare the results with two recent baseline models,
MaxPool and MaxAtt®°, details of which can be found in the
Methods section. Even in this task, we observe that MatSciBERT
performs better than SciBERT, BERT, and baseline models
consistently, although with a lower margin.

In Paper Abstract Classification downstream task, we consider
the ability of LMs to classify a manuscript into glass vs. non-glass
topics based on an in-house dataset'®. This is a binary
classification problem, with the input being the abstract of a
manuscript. Here too, we use the same baseline models MaxPool
and MaxAtt>°, Table 4 shows the comparison of accuracies
achieved by MatSciBERT, SciBERT, BERT, and baselines. It can be
clearly seen that MatSciBERT outperforms SciBERT by more than
2.75% accuracy on the test set.

Altogether, we demonstrate that the MatSciBERT, pre-trained on
a materials science corpus, can perform better than SciBERT for all
the downstream tasks such as NER, abstract classification, and
relation classification on materials datasets. These results also
suggest that the scientific literature in the materials domain, on
which MatSciBERT is pre-trained, is significantly different from the
computer science and biomedical domains on which SciBERT is

Anode
Cathode Material Working
Material (41 43 38.44) Temperature
(50.35, 44.44) (90.11, 89.66)
Conductivity
(90.76, 89.55)

Voltage
(70.41, 68.27)

Current
Density

(92.53, 92.39)

Thickness

(39.35, 25.45) (78.10, 76.20)

Support
Material

(49.39, 47.78)

Device
(69.99, 68.52)

Electrolyte
Material
(54.69, 45.69)
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(86.71, 83.53)

Fuel Power Density

Used Open  (96.97, 96.54)
(66.71, 69.43) Interlayer Circuit Sl

33';':‘;:3‘1'0 Voltage
(33.98,28.40) (74 37, 66.50)

—— MatSciBERT
—— SciBERT

Fig. 2 Comparison of MatSciBERT and SciBERT on validation sets
of SOFC-Slot dataset. The entity-level F1-score for MatSciBERT and
Scibert models in blue and red color respectively. The bold colored
text represents the best model’s score.

trained. Specifically, each scientific discipline exhibits significant
variability in terms of ontology, vocabulary, and domain-specific
notations. Thus, the development of a domain-specific language
model, even within the scientific literature, can significantly
enhance the performance in downstream tasks related to text
mining and information extraction from literature.

Applications in materials domain

Now, we discuss some of the potential areas of application of
MatSciBERT in materials science. These areas can range from the
simple topic-based classification of research papers to discovering
materials or alternate applications for existing materials. We
demonstrate some of these applications as follows: (i) Document
classification: A large number of manuscripts have been published
on materials related topics, and the numbers are increasing
exponentially. Identifying manuscripts related to a given topic is a
challenging task. Traditionally, these tasks are carried out
employing approaches such as term frequency-inverse document
frequency (TFIDF) or Word2Vec, which is used along with a
classification algorithm. However, these approaches directly
vectorize a word and are not context sensitive. For instance, in
the phrases “flat glass”, “glass transition temperature”, “tea glass”,
the word “glass” is used in a very different sense. MatSciBERT will
be able to extract the contextual meaning of the embeddings.
Thus, MatSciBERT will be able to effectively classify the topics
thereby enabling improved topic classification. This is evident
from the binary classification results presented earlier in Table 4,
where we observe that the accuracy obtained using MatSciBERT
(96.22%) was found to be significantly higher than the results
obtained using pooling based BiLSTM models (91.44%). This
approach can be extended to a larger set of abstracts for the
accurate classification of documents from the literature.

(i) Topic modeling: Topic modeling is an unsupervised
approach of grouping documents belonging to similar topics
together. Traditionally, topic modeling employs algorithms such
as latent Dirichlet allocation (LDA) along with TF-IDF or Word2Vec
to cluster documents having the same or semantically similar
words together. Note that these approaches rely purely on the
frequency of word (in TF-IDF) or the embeddings of the word (in
Word2Vec) for clustering without taking into account the context.
The use of context-aware embeddings as learned in MatSciBERT
could significantly enhance the topic modeling task. As a
preliminary study, we perform topic modeling using MatSciBERT
on an in-house corpus of abstracts on glasses and ceramics. Note
that the same corpus was used in an earlier work'® for topic
modeling using LDA. Specifically, we obtain the output embed-
dings of the [CLS] token for each abstract using MatSciBERT.
Further, these embeddings were projected into two dimensions
using the UMAP algorithm®' and then clustered using the
k-means algorithm®2. We then concatenate all the abstracts
belonging to the same cluster and calculate the most frequent
words for each cluster/topic.

Table 2. Macro-F1 scores on the test set for Matscholar averaged over three seeds.
Architecture LM = MatSciBERT LM = SciBERT LM = BERT SOTA
LM-Linear 85.46+0.13 83.80+0.32 82.10+0.81 85.10 (85.41)
(87.83+£1.21) (86.05 £ 0.55) (82.79 £ 0.20)
LM-CRF 86.38 £0.49 85.04£0.77 84.07 £0.19
(88.66 +0.88) (88.07 £0.96) (84.61+0.81)
LM-BiLSTM-CRF 86.09 £ 0.46 85.66 + 0.24 83.39+0.20
(89.15+0.57) (87.66 +0.29) (84.07 £0.29)
Values in the parenthesis show the results on the validation set.
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Table 3. Test set results for Materials Synthesis Procedures dataset averaged over three seeds.

MaxPool MaxAtt

85.40 + 1.45(85.95 +0.78)

MatSciBERT SciBERT BERT
Macro-F1  89.02+0.27(88.31£0.14) 87.22+0.58(87.21£0.17)
Micro-F1 ~ 91.94+0.20(91.50£0.20)  91.04 +0.32)(91.03 £ 0.08

90.16 + 0.69(90.44 + 0.54)

81.19+ 1.54(80.93 £0.71)
86.81 £ 1.55(86.68 + 0.84)

80.39+0.85(81.53 £2.23)
87.16 £ 0.60(87.62 + 1.34)

Values in the parenthesis represent the results on the validation set.

Table 4. Test set results for glass vs. non-glass dataset averaged over three seeds.

MatSciBERT SciBERT BERT MaxPool MaxAtt
Accuracy 96.22+0.16 93.44 +0.57 93.89+0.68 91.44+0.31 91.44+0.68
(95.33+0.27) (94.00 + 0.00) (93.33+0.98) (92.22+0.56) (91.22+0.16)

Values in the parenthesis represent the results on the validation set.

The Supplementary Tables 5 and 6 shows the top ten topics
obtained using LDA and MatSciBERT, respectively. The top 10
keywords associated with each topic are also provided in the
table. We observe that the topics and keywords from MatSciBERT-
based topic modeling are more coherent than the ones obtained
from LDA. Further, the actual topics associated with the keywords
are not very apparent from Supplementary Table 5. Specifically,
Topic 9 by LDA contains keywords from French, suggesting that
the topic represents French publications. Similarly, Topic 5 and
Topic 3 have several generic keywords that don’t represent a topic
clearly. On the other hand, the keywords obtained by MatSciBERT
enable a domain expert to identify the topics well. For instance,
some of the topics identified based on the keywords by three
selected domain experts are dissolution of silicates (9), oxide thin
films synthesis and their properties (8, 6), materials for energy (0),
electrical behavior of ceramics (1), and luminescence studies (5).
Despite their efforts, the same three domain experts were unable
to identify coherent topics based on the keywords provided by
LDA. Altogether, MatSciBERT can be used for topic modeling,
thereby providing a broad overview of the topics covered in the
literature considered.

(iii) Information extraction from images: Images hold a large
amount of information regarding the structure and properties of
materials. A proxy to identify relevant images would be to go
through the captions of all the images. However, each caption
may contain multiple entities, and identifying the relevant
keywords might be a challenging task. To this extent, MatSciBERT
finetuned on NER can be an extremely useful tool for extracting
information from figure captions.

Here, we extracted entities from the figure captions used by
Venugopal et al. (2021)'° using MatSciBERT finetuned on the
Matscholar NER dataset. Specifically, entities were extracted from
~110,000 image captions on topics related to inorganic glasses.
Using MatSciBERT, we obtained 87,318 entities as DSC (sample
descriptor), 10,633 entities under APL (application), 145,324 as
MAT (inorganic material), 76,898 as PRO (material property),
73,241 as CMT (characterization method), 33,426 as SMT (synthesis
method), and 2,676 as SPL (symmetry/phase label). Figure 3 shows
the top 10 extracted entities under the seven categories proposed
in the Matscholar dataset. The top entities associated with each of
the categories are coating (application), XRD (characterization),
glass (sample descriptor, inorganic material), composition (mate-
rial property), heat (synthesis method), and hexagonal (symmetry/
phase). Further details associated with each category can also be
obtained from these named entities. It should be noted that each
caption may be associated with more than one entity. These
entities can then be used to obtain relevant images for specific
queries such as “XRD measurements of glasses used for coating”
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or “emission spectra of doped glasses”, or “SEM images of
bioglasses with Ag”, to name a few.

Further, Fig. 4 shows some of the selected captions from the
image captions along with the corresponding manual annotation
by Venugopal et al. (2021)'°. The task of assigning tags to each
caption was carried out by human experts. Note that only one
word was assigned per image caption in the previous work. Using
the MatSciBERT NER model, we show that multiple entities are
extracted for the selected five captions. This illustrates the large
amount of information that can be captured using the LM
proposed in this work.

(iv) Materials caption graph: In addition to the queries as
mentioned earlier, graph representations can provide in-depth
insights into the information spread in figure captions. For
instance, questions such as “which synthesis and characterization
methods are commonly used for a specific material?”, “what are
the methods for measuring a specific property?” can be easily
answered using knowledge graphs. Here, we demonstrate how
the information in figure captions can be represented using
materials caption graphs (MCG). To this extent, we first randomly
select 10,000 figure captions from glass-related publications.
Further, we extract the entities and their types from the figure
captions using the MatSciBERT finetuned on Matscholar NER
dataset. For each caption, we create a fully connected graph by
connecting all the entities present in that caption. These graphs
are then joined together to form a large MCG. We demonstrate
some insights gained from the MCGs below.

Figure 5 shows two subsets of graphs extracted from the MCGs.
In Fig. 5a, we identified two entities that are two-hop neighbors,
namely, T4 and anneal. Note that these entities do not share an
edge. In other words, these two entities are not found
simultaneously in any given caption. We then identified the
intersection of all the one-hop neighbors of both the nodes and
plotted the graph as shown in Fig. 5a. The thickness of the edge
represents the strength of the connection in terms of the number
of occurrences. We observe that there are four common one-hop
neighbors for Ty and anneal, namely, XRD, doped, glass, and
amorphous. This means that these four entities occur in captions
along with Ty and anneal, even though these two entities are not
directly connected in the captions used for generating the graph.
Figure 5a suggests that Tq is related to glass, amorphous, and
doped materials and that these materials can be synthesized by
annealing. Similarly, the structures obtained by annealing can be
characterized by XRD. From these results, we can also infer that Tg
is affected by annealing, which agrees with the conventional
knowledge in glass science.

Similarly, Fig. 5b shows all the entities connected to the node
XRD. To this extent, we select all the captions having XRD as CMT.
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Fig.3 Top-10 entities for various categories. a APL Application, b CMT Characterization method, ¢ DSC Sample descriptor, d MAT Inorganic

material, @ PRO Material Property, and f SMT Synthesis method.

After obtaining all the entities in those captions, we randomly
sample 20 pairs and then plotted them as shown in Fig. 5b. Note
that the number of edges is 18 and the number of nodes is 19
because of one pair being (XRD, XRD) and two similar pairs (XRD,
glass). The node color represents the entity type, and the edge
width represents the frequency of the pair in the entire database
of entities extracted from the captions where “XRD” is present.
Using the graph, we can obtain the following information:

1. XRD is used as a characterization method for different
material descriptors like glass, doped materials, nanofibers,
and films.

Materials prepared using synthesis methods (SMT) like
aging, heat-treatment, and annealing are also characterized
using XRD.

While studying the property (PRO) glass transition tempera-
ture (Tg), XRD was also performed to characterize the
samples.

In the case of silica glass ceramics (SGCs), phosphor, and
phosphor-in-glass (PiG) applications (APL), XRD is used
as CMT.

For different materials like ZnO, glasses, CsPBr3, yttria
partially stabilized zirconia (YPSZ), XRD is a major CMT
which is evident from the thicker edge widths.

Note this information covers a wide range of materials and
applications in materials literature. Similar graphs can be
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generated for different entities and entity types using the MCG
to gain insights into the materials literature.

(v) Other applications such as relation classification: MatSciBERT
can also be applied for addressing several other issues such as
relation classification and question answering. The relation
classification task demonstrated in the present manuscript can
provide key information regarding several aspects in materials
science which are followed in a sequence. These would include
synthesis and testing protocols, and measurement sequences. This
information can be further used to discover an optimal pathway
for material synthesis. In addition, such approaches can also be
used to obtain the effect of different testing and environmental
conditions, along with the relevant parameters, on the measured
property of materials. This could be especially important for those
properties such as hardness or fracture toughness, which are
highly sensitive to sample preparation protocols, testing condi-
tions, and the equipment used. Thus, the LM can enable the
extraction of information regarding synthesis and testing condi-
tions that are otherwise buried in the text.

At this juncture, it is worth noting that there are very few
annotated datasets available for the material corpus. This
contrasts with the biomedical corpus, where several annotated
datasets are available for different downstream tasks such as
relation extraction, question-answering, and NER. While the
development of materials science specific language model can
significantly accelerate the NLP-related applications in materials,
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the development of annotated datasets is equally important for
accelerating materials discovery.

In conclusion, we developed a materials-aware language model,
namely, MatSciBERT, that is trained on materials science corpus
derived from journals. The LM, trained from the initial weights of
SciBERT, exploits the knowledge on computer science and
biomedical corpora (on which the original SciBERT was pre-
trained) along with the additional information from the materials
domain. We test the performance of MatSciBERT on several
downstream tasks such as document classification, NER, and
relation classification. We demonstrate that MatSciBERT exhibits
superior performance on all the datasets tested in comparison to
SciBERT. Finally, we discuss some of the applications through
which MatSciBERT can enable accelerated information extraction
from the materials science text corpora. To enable accelerated text
mining and information extraction, the pre-trained weights of
MatSciBERT are made publicly available at https://huggingface.co/
m3rg-iitd/matscibert.

METHODS
Dataset collection and preparation

In the training of an LM in a generalizable way, a considerable amount of
dataset is required. For example, BERT?® was pre-trained on BookCorpus?®
and English Wikipedia, containing a total of 3.3 billion words. SCiBERT?', an
LM trained on scientific literature, was pre-trained using a corpus
consisting of 82% papers from the broad biomedical domain and 18%
papers from the computer science domain. However, we note that none of
these LMs includes text related to the materials domain. Here, we consider
materials science literature from four broad categories, namely, inorganic
glasses and ceramics, metallic glasses, cement and concrete, and alloys, to
cover the materials domain in a representative fashion.

The first step in retrieving the research papers is to query search from
the Crossref metadata database®>. This resulted in a list of more than 1M
articles. Although Crossref gives the search results from different journals
and publishers, we downloaded papers only from the Elsevier Science
Direct database using their sanctioned API°*. Note that the Elsevier API
returns the research articles in XML format; hence, we wrote a custom XML
parser for extracting the text. Occasionally, there were papers having only
abstract and not full text depending upon the journal and publication
date. Since the abstracts contain concise information about the problem
statement being discussed in the paper and what the research
contributions are, therefore, we have included them in our corpus.
Therefore, we have included all the sections of the paper when available
and abstracts otherwise. For glass science-related papers, the details are
given in our previous work'®. For concrete and alloys, we first downloaded
many research papers for each material category using several queries
such as “cement”, “interfacial transition zone”, “magnesium alloy”, and
“magnesium alloy composite materials”, to name a few.

Since all the downloaded papers did not belong to a particular class of
materials, we manually annotated 500 papers based on their abstracts,
whether they were relevant to the field of interest or not. Further, we
finetuned SciBERT classifiers®'*>, one for each category of material, on
these labeled abstracts for identifying relevant papers among the
downloaded 1M articles. We consider these selected papers from each
category of materials for training the language model. A detailed
description of the Materials Science Corpus (MSC) is given in the Results
and Discussion section of the paper. Finally, we divided this corpus into
training and validation, with 85% being used to train the language model
and the remaining 15% as validation to assess the model’s performance on
unseen text.

Note that the texts in the scientific literature may have several symbols,
including some random characters. Sometimes the same semantic symbol
has many Unicode surface forms. To address these anomalies, we also
performed Unicode normalization of MSC to:

a. get rid of random Unicode characters like

b. map different Unicode characters having similar meaning and
appearance to either a single standard character or a sequence of
standard characters.

For example, % gets mapped to %, > to>, >>to>>, = and =to=, %
to 3/4, to name a few. First, we normalized the corpus using BertNormalizer
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from the tokenizers library by Hugging Face®®*’. Next, we created a list
containing mappings of the Unicode characters appearing in the MSC. We
mapped random characters to space so that they do not interfere during
pre-training. It's important to note that we also perform this normalization
step on every dataset before passing it through the MatSciBERT tokenizer.

Pre-training of MatSciBERT

We pre-train MatSciBERT on MSC as detailed in the last sub-section. Pre-
training LM from scratch requires significant computational power and a
large dataset. To address this issue, we initialize MatSciBERT with weights
from SciBERT and perform tokenization using the SciBERT uncased
vocabulary. This has the additional advantage that existing models relying
on SciBERT, which are pre-trained on biomedical and computer science
corpora, can be interchangeably used with MatSciBERT. Further, the
vocabulary existing in the scientific literature as constructed by SciBERT
can be used to reasonably represent the new words in the materials
domain.

To pre-train MatSciBERT, we employ the optimized training recipe,
RoBERTa*, suggested by Liu et al. (2019). This approach has been shown
to significantly improve the performance of the original BERT. Specifically,
the following simple modifications were adopted for MatSciBERT pre-
training:

1. Dynamic whole word masking: It involves masking at the word level
instead of masking at the wordpiece level, as discussed in the latest
release of the BERT pre-training code by Google®®. Each time a
sequence is sampled, we randomly mask 15% of the words and let
the model predict each masked wordpiece token independently.

2. Removing the NSP loss from the training objective: BERT was pre-
trained using two unsupervised tasks: Masked-LM and Next-
Sentence Prediction (NSP). NSP takes as input a pair of sentences
and predicts whether the two sentences follow each other or not.
RoBERTa authors claim that removing the NSP loss matches or
slightly improves downstream task performance.

3. Training on full-length sequences: BERT was pre-trained with a
sequence length of 128 for 90% of the steps and with a sequence of
the length of 512 for the remaining 10% steps. RoBERTa authors
obtained better performance by training only with full-length
sequences. Here, input sequences are allowed to contain segments
of more than one document and [SEP] token is used to separate the
documents within an input sequence.

4. Using larger batch sizes: Authors also found that training with larger
mini-batches improved the pre-training loss and increased the end-
task performance.

Following these modifications, we pre-train MatSciBERT on the MSC with
a maximum sequence length of 512 tokens for fifteen days on 2 NVIDIA
V100 32GB GPUs with a batch size of 256 sequences. We use the AdamwW
optimizer with 8, = 0.9, 8, = 0.98, £ = 1e7%, weight decay = 1e~2 and linear
decay schedule for learning rate with warmup ratio =4.8% and peak
learning rate = 1e~*. Pre-training code is written using PyTorch>® and
Transformers®” library and is available at our GitHub repository for this
work https://github.com/M3RG-IITD/MatSciBERT.

Downstream tasks

Once the LM is pre-trained, we finetune it on various supervised
downstream tasks. Pre-trained LM is augmented with a task-specific
output layer. Finetuning is done to adapt the model to specific tasks as
well as to learn the task-specific randomly initialized weights present in the
output layer. Finetuning is done on all the parameters end-to-end. We
evaluate the performance of MatSciBERT on the following three down-
stream NLP tasks:

1. Named Entity Recognition (NER) involves identifying domain-
specific named entities in a given sentence. Entities are encoded
using the BIO scheme to account for multi-token entities®®. Dataset
for the NER task includes various sentences, with each sentence
being split into multiple tokens. Gold labels are provided for each
token. More formally, Let E ={e;, ... e be the set of k entity types
for a given dataset. If [x;, ... x,] are tokens of a sentence and [y, ...
¥l are labels for these tokens, then each y; € L ={B-ey, |-ey, ... B-gy,
l-e,, O}. Here, B-e; and I-; represent the beginning and inside of
entity e;.

2. Input for the Relation Classification® task consists of a sentence and
an ordered pair of entity spans in that sentence. Output is a label
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denoting the directed relationship between the two entities. The
two entity spans can be represented as s;={(i, j) and s, =(k, ),
where i and j denote the starting and ending index of the first entity
and similarly k and / denote the starting and ending index of the
second entity in the input statement. Here, i<j, k</,and (j<kor I <
i). The last constraint guarantees that the two entities do not overlap
with each other. The output label belongs to L, where L is a fixed set
of relation types. An example of a sentence from the task is given in
Fig. 6. The task is to predict the labels like “Participant_Material”,
“Apparatus_Of" given the sentence and pair of entities as input.

In the Paper Abstract Classification task, we are given an abstract of
a research paper, and we have to classify whether the abstract is
relevant to a given field or not.

Datasets

We use the following three Materials Science-based NER datasets to
evaluate the performance of MatSciBERT against SciBERT:

1. Matscholar NER dataset® by Weston et al. (2019): This dataset is
publicly available and contains seven different entity types. Training,
validation, and test sets consist of 440, 511, and 546 sentences,
respectively. Entity types present in this dataset are inorganic
material (MAT), symmetry/phase label (SPL), sample descriptor
(DSC), material property (PRO), material application (APL), synthesis
method (SMT), and characterization method (CMT).

Solid Oxide Fuel Cells - Entity Mention Extraction (SOFC) dataset by
Friedrich et al. (2020)*: This dataset consists of 45 open-access
scholarly articles annotated by domain experts. Four different entity
types have been annotated by the authors, namely Material,
Experiment, Value, and Device. There are 611, 92, and 173 sentences
in the training, validation, and test sets, respectively.

Solid Oxide Fuel Cells - Slot Filling (SOFC-Slot) dataset by Friedrich
et al. (2020)*: This is the same as the above dataset except that
entity types are more fine-grained. There are 16 different entity
types, namely Anode Material, Cathode Material, Conductivity,
Current Density, Degradation Rate, Device, Electrolyte Material, Fuel
Used, Interlayer Material, Open Circuit Voltage, Power Density,
Resistance, Support Material, Time of Operation, Voltage, and
Working Temperature. Two additional entity types: Experiment
Evoking Word and Thickness, are used for training the models.

For relation classification, we use the Materials Synthesis Procedures
dataset by Mysore et al. (2019)*. This dataset consists of 230 synthesis
procedures annotated as graphs where nodes represent the participants of
synthesis steps, and edges specify the relationships between the nodes.
The average length of a synthesis procedure is nine sentences, and 26
tokens are present in each sentence on average. The dataset consists of 16
relation labels. The relation labels have been divided into three categories
by the authors:

a. Operation-Argument relations: Recipe target, Solvent material,
Atmospheric material, Recipe precursor, Participant material, Appa-
ratus of, Condition of

Non-Operation Entity relations: Descriptor of, Number of, Amount of,
Apparatus-attr-of, Brand of, Core of, Property of, Type of

Operation-Operation relations: Next operation

The train, validation, and test set consist of 150, 30, and 50 annotated
material synthesis procedures, respectively.

The dataset for classifying research papers related to glass science or not
on the basis of their abstracts has been taken from Venugopal et al.
(2021)™. The authors have manually labeled 1500 abstracts as glass and
non-glass. These abstracts belong to different fields of glass science like
bioactive glasses, rare-earth glasses, glass ceramics, thin-film studies, and

b.

C.
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optical, dielectric, and thermal properties of glasses, to name a few. We
divide the abstracts into a train-validation-test split of 3:1:1.

Modeling

For NER task, we use the BERT contextual output embedding of the first
wordpiece of every token to classify the tokens among |L | classes. We
model the NER task using three architectures: LM-Linear, LM-CRF, and LM-
BiLSTM-CRF. Here, LM can be replaced by any BERT-based transformer
model. We take LM to be BERT, SciBERT and MatSciBERT in this work.

1. LM-Linear: The output embedding of the wordpieces are passed
through a linear layer with softmax activation. We use the BERT
Token Classifier implementation of transformers library>”.

LM-CRF: We replace the final softmax activation of the LM-Linear
architecture with a CRF layer®' so that the model can learn to label
the tokens belonging to the same entity mentioned and also learn
the transition scores between different entity types. We use the CRF
implementation of PyTorch-CRF library®2.

LM-BiLSTM-CRF: Bidirectional Long Short-Term Memory®® is added
in between the LM and CRF layer. BERT embeddings of all the
wordpieces are passed through a stacked BIiLSTM. The output of
BiLSTM is finally fed to the CRF layer to make predictions.

In case of Relation Classification task, we use the Entity Markers-Entity
Start architecture®® proposed by Soares et al. (2019) for modeling. Here, we
surround the entity spans within the sentence with some special
wordpieces. We wrap the first and second entities with [E1], [\E1] and
[E2], [\E2] respectively. We concatenate the output embeddings of [E1] and
[E2] and then pass it through a linear layer with softmax activation. We use
the standard cross-entropy loss function for the training of the linear layer
and finetuning of the language model.

For the baseline, we use two recent models, MaxPool and MaxAtt,
proposed by Maini et al. (2020)°. In this approach too, the pair of entities
are wrapped with the same special tokens. Then glove embeddings'® of
words in the input sentence are passed through a BiLSTM, an aggregation
mechanism (different for MaxPool and MaxAtt) over words, and a linear
layer with softmax activation.

In Paper Abstract Classification task, we use the output embedding of
the CLS token to encode the entire text/abstract. We pass this embedding
through a simple classifier to make predictions. We use the BERT Sentence
Classifier implementation of the transformers library®’. For the baseline, we
use a similar approach as relation classification except that there is no pair
of input entities.

Hyperparameters

We use a linear decay schedule for the learning rate with a warmup ratio of
0.1. To ensure sufficient training of randomly initialized non-BERT layers,
we set different learning rates for the BERT part and non-BERT part. We set
the peak learning rate of the non-BERT part to 3e-4 and choose the peak
learning rate of the BERT part from [2e >, 3e~>, 5], whichever results in
a maximum validation score averaged across three seeds. We use a batch
size of 16 and an AdamW optimizer for all the architectures. For LM-
BiLSTM-CRF architecture, we use a 2-layer stacked BiLSTM with a hidden
dimension of 300 and dropout of 0.2 in between the layers. We perform
finetuning for 15, 20, and 40 epochs for Matscholar, SOFC, and SOFC Slot
datasets, respectively, as initial experiments exhibited little or no
improvement after the specified number of epochs. All the weights of
any given architecture are updated during finetuning, i.e., we do not freeze
any of the weights. We make the code for finetuning and different
architectures publicly available. We refer readers to the code for further
details about the hyperparameters.
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Evaluation metrics

We evaluate the NER task based on entity-level exact matches. We use the
CoNLL evaluation script (https://github.com/spyysalo/conlleval.py). For
NER and Relation Classification tasks, we use Micro-F1 and Macro-F1 as
the primary evaluation metrics. We use accuracy to evaluate the
performance of the paper abstract classification task.

DATA AVAILABILITY

Any data used for the work are available from the corresponding authors upon
reasonable request. The Plls and DOlIs of the research papers used in this work are
available at https:/github.com/M3RG-IITD/MatSciBERT/blob/main/pretraining/piis_dois.
csv.

CODE AVAILABILITY

All the codes used in the present work are available at https://github.com/M3RG-IITD/
MatSciBERT. Also, the codes with finetuned models for the downstream tasks are
available at https://doi.org/10.5281/zenodo.6413296.
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