
Matter effects on binary neutron star waveforms

Jocelyn S. Read,1, 2 Luca Baiotti,3, 4 Jolien D. E. Creighton,5 John L. Friedman,5 Bruno Giacomazzo,6

Koutarou Kyutoku,5 Charalampos Markakis,7, 9 Luciano Rezzolla,8 Masaru Shibata,4 and Keisuke Taniguchi10

1California State University Fullerton, Fullerton, CA 92831, USA
2California Institute of Technology, Pasadena, CA 91109, USA

3Institute of Laser Engineering, Osaka University, Suita, 567-0086, Japan
4Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, 606-8502, Japan

5Department of Physics, University of Wisconsin–Milwaukee, PO Box 413, Milwaukee, WI 53201, USA
6JILA, University of Colorado and National Institute of Standards and Technology, 440 UCB, Boulder, CO 80309, USA

7Theoretisch-Physikalisches Institut, Friedrich Schiller Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany
8Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, D-14476 Golm, Germany

9School of Mathematics, University of Southampton, Southampton, SO17 1BJ, United Kingdom
10Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro, Tokyo, 153-8902, Japan

Using an extended set of equations of state and a multiple-group multiple-code collaborative
effort to generate waveforms, we improve numerical-relativity-based data-analysis estimates of the
measurability of matter effects in neutron-star binaries. We vary two parameters of a parameterized
piecewise-polytropic equation of state (EOS) to analyze the measurability of EOS properties, via a
parameter Λ that characterizes the quadrupole deformability of an isolated neutron star. We find
that, to within the accuracy of the simulations, the departure of the waveform from point-particle
(or spinless double black-hole binary) inspiral increases monotonically with Λ, and changes in the
EOS that did not change Λ are not measurable.

We estimate with two methods the minimal and expected measurability of Λ in second- and third-
generation gravitational-wave detectors. The first estimate, using numerical waveforms alone, shows
two EOS which vary in radius by 1.3 km are distinguishable in mergers at 100Mpc. The second
estimate relies on the construction of hybrid waveforms by matching to post-Newtonian inspiral, and
estimates that the same EOS are distinguishable in mergers at 300Mpc. We calculate systematic
errors arising from numerical uncertainties and hybrid construction, and we estimate the frequency
at which such effects would interfere with template-based searches.

I. INTRODUCTION

Substantial uncertainty remains in the equation of
state (EOS) of cold matter above nuclear density. While
recent analyses of X-ray bursts and thermal emission
from quiescent low-mass X-ray binaries [1–7] constrain
simultaneously the mass and radius of neutron stars in
X-ray binaries, placing limits on allowed EOS, such mea-
surements depend on burst and atmosphere models. In
contrast, observations of gravitational waves from binary
inspiral provide a model-independent way to simultane-
ously measure the mass and radius of neutron stars in
double neutron-star and black-hole neutron-star binaries.

The detection of a gravitational wave from an inspi-
raling binary will determine mass parameters from the
early inspiral [8]. Strong signals may also constrain addi-
tional parameters that characterize the EOS. For widely
separated neutron-star pairs, EOS effects will be minus-
cule; however, binary systems drawn together by the loss
of orbital angular momentum to gravitational radiation
will exhibit increasing tidal interactions through the late
stage of binary inspiral, up to tidal disruption or merger.
The effects of tidal interactions imprint an EOS signa-
ture on the gravitational waveform of the merger of the
neutron stars.

The rate of binary neutron star mergers is uncertain,
but it is reasonable to expect that Advanced LIGO[9] will
detect several events per year [10]. In fact, over several

years of operation, there appears to be a good chance that
a strong signal, with signal-to-noise ratio (SNR) above
30, will be detected.
Neutron-star pairs in binary systems produce mutual

tidal stresses that deform the metric around the stars in
a manner prescribed by the EOS, via a parameter we
refer to as the tidal deformability, Λ, defined in Eq. (1)
below. This parameter describes the degree to which a lo-
cal metric suffers quadrupolar deformations when in the
tidal field of a companion, and scales as the fifth power
of the neutron-star radius, R5. The tidal interaction be-
tween two stars in a binary system alters both the binding
energy of the system and the gravitational-wave energy
flux [11–13], and in turn changes the phase evolution of
the gravitational waveform. When the stars are suffi-
ciently far apart, the phase evolution may be obtained
from a detailed balance of energy through a sequence of
orbits. This approach describes the secular evolution of
the binary system orbit under energy loss to gravitational
radiation (and distortion of the companions) and is valid
while the evolution is slow and the motions are not too
relativistic. Analysis using analytic models suggests that
tidal effects may be measurable using Advanced LIGO
[11, 14, 15], but only if the model can be extended to the
late, high-frequency stages of inspiral.
Large tidal effects on the merger of binary neutron

star systems terms have been observed in numerical sim-
ulations of late inspiral [16–20]. Additional information
is also present in the frequencies of neutron-star normal
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modes after the merger, should the EOS be stiff enough
to support a hypermassive neutron star [21–23]. In this
paper, we incorporate a wider range of EOS than previ-
ous work, with systematic parameter variation that al-
lows us to explicitly estimate how EOS parameters will
be constrained; we show that, to within the accuracy of
our simulations, the parameter Λ can also be used to
characterize the merger of binary neutron stars.

While numerical-relativity efforts can simulate binary
coalescence during the highly dynamical phase at the
endpoint of binary inspiral, there are additional chal-
lenges in determining the slow inspiral motion: simulat-
ing the length-scales and time-scales of widely separated
binary systems whose orbital decay occurs over many
cycles is computationally expensive, and the resolution
must be sufficiently high that the numerical scheme con-
serves angular momentum and energy with enough ac-
curacy that the relatively small gravitational radiation
dominates. However, if high-quality numerical simu-
lations extend into the region in which a given post-
Newtonian or other analytic approximation is valid, join-
ing the post-Newtonian waveform to the numerical wave-
form at a point when both waveforms are deemed accu-
rate will yield a complete hybrid waveform for the bi-
nary system, which includes both inspiral tidal effects
and other hydrodynamic effects that occur during coales-
cence. Hybrid waveforms can be used to better measure
the EOS-dependent properties of a neutron star. The
measurement will be limited not only by statistical er-
rors arising from the fact that the gravitational-wave sig-
nal must be extracted from detector noise, but also by
systematic errors arising from modeling errors in the ana-
lytic inspiral, the numerical simulations, and ambiguities
in the process of joining them together.

We also explore an alternative scenario: If systematic
errors arising from hybrid waveforms are intractable, it
is possible to use only numerical simulations of the late
inspiral, which are robust, to estimate structural param-
eters of the neutron star. The measurability of the tidal
deformability suffers in such an approach because the
unknown time and phase of the numerical waveform rel-
ative to the time and phase of post-Newtonian models
of the early inspiral must be marginalized over. How-
ever, we show that we are still able to constrain the tidal
deformability of neutron stars in binary neutron-star sys-
tems, using current numerical simulations, even if hybrid
waveforms cannot be constructed.

Our results are derived from data produced by two
independent numerical-relativity codes: SACRA [24] and
Whisky [25–27]. This has the advantages of checking the
actual numerical differences due to different implemen-
tations of the equations (Einstein equations, relativistic-
hydrodynamics equations) and of understanding if and
how much such differences are relevant to gravitational-
wave detection and analysis.

We use a spacelike signature (−,+,+,+) and a system
of units in which c = G = 1. Greek indices are taken to
run from 0 to 3, Latin indices from 1 to 3, and we adopt

TABLE I. EOS parameters and properties of individual neu-
tron stars for the reference mass 1.35M⊙ simulated in this
work. The parameter p∗ is measured in dyn/cm2, R is mea-
sured in km, C is the compactness (MNS/R), and the tidal pa-
rameter λ used in previous work [14] has units of 1036 g/cm2.

EOS log10 p∗ Γ R C λ Λ1/5 Λ

2H 34.9036 3.0 15.23 0.131 10.97 4.713 2325

H 34.5036 3.0 12.28 0.162 2.866 3.603 607.3

HB 34.4036 3.0 11.61 0.172 1.992 3.350 422.0

B 34.3036 3.0 10.96 0.182 1.362 3.105 288.7

Bs 34.3036 2.7 10.74 0.186 1.075 2.961 227.7

Bss 34.3036 2.4 10.27 0.194 0.6695 2.694 141.9

HBs 34.4036 2.7 11.58 0.172 1.770 3.275 376.9

HBss 34.4036 2.4 11.45 0.174 1.421 3.131 301.1

the standard convention for the summation over repeated
indices.

II. GENERATION OF WAVEFORMS

A. EOS variation

We specify EOS candidates in the framework of [16,
28]: A fixed crust EOS is joined to a core EOS that
we vary using a piecewise polytrope scheme. Currently
we consider a single core region, but we vary indepen-
dently two parameters: the adiabatic index Γ of the core
and the overall pressure scale p∗ at a fiducial density
ρ∗ = 1014.7g/cm3. Following the notation of [16, 29],
we categorize the EOS by the pressure scale: From high
pressure to low pressure we use 2H, H, HB, and B. The
adiabatic index variation is indicated by one or more oc-
currences of a lower case s: H (no s) has Γ = 3, Hs has
Γ = 2.7, Hss has Γ = 2.4. Eight EOSs (2H,H, HB, B, Bs,
Bss, HBs, HBss) were simulated using both the Whisky

and SACRA codes, at multiple resolutions and at different
initial stellar separations (see Sec. II B 1). EOS parame-
ters are summarized in Table I.
For a given neutron-star mass, each EOS can be iden-

tified by two useful macroscopic characteristic quantities,
R and Λ: R is the stellar radius of an isolated nonrotating
neutron star and

Λ ≡ 2

3
k2

(

R

M

)5

(1)

is the dimensionless quadrupole tidal deformability (k2
is the quadrupole Love number). These parameters are
tabled for the current models in Table I. Recent analysis
of neutron-star matter properties compatible with mod-
ern nuclear theory [30] suggests that the radius of the 2H
model is unrealistically large, and the neutron-star mass
measurement of 2.0 M⊙[31] rules out the “s” EOSs. Cur-
rent astrophysical constraints [1–6] further favor EOS H



3

8 10 12 14 16

0.5

1.0

1.5

2.0

2.5

3.0

R HkmL

M
a

s
s
HM
�
L

2H

H
HB

B

Bs

Bss

HBs

HBss

FIG. 1. The radius R of the simulated EOS as a function of
mass. The dashed lines indicated the simulated mass value of
1.35M⊙.

and HB. However, we consider this range useful for a
parameter study.
At leading order in the separation of the stars, Λ de-

termines the (ℓ,m) = (2, 0) departure of the asymptotic
metric from spherical symmetry and the departure of the
waveform phase evolution from its point-particle form.
Our results imply that Λ effectively determines the wave-
form’s departure from point-particle (or nonspinning BH-
BH) inspiral even for the late inspiral.
Fig. 2 (provided by B. D. Lackey) shows contours of

constant R and Λ for 1.35M⊙ stars in the EOS space.
Our simulations suggest that the contours in the EOS
parameter space of constant departure of the waveform
from point-particle inspiral coincide with similar accu-
racy with these contours of constant Λ, but the range of
high-resolution runs is not yet large enough for a quan-
titative conclusion.

B. Numerical simulations

Here we give only a brief overview of the codes, while
we refer the reader to previous articles for more de-
tails [24–26, 32–34].

1. Initial data

The initial configurations for our simulations are
produced using the numerical code of [35–37], based
on the multidomain spectral-method library, LORENE.
LORENE was originally written by the Meudon relativity
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FIG. 2. Contours of constant R and Λ (labeled by the value

of Λ1/5) in the two-parameter EOS space.

group and is publicly available [38]. We have added
a new method to treat the piecewise polytropic EOS
of Sec. II A, which is used in [32] for detailed study of
quasiequilibrium sequences with such EOS.

The total mass is fixed to be M = Mtot = 2.7M⊙ at in-
finite separation. We consider equal-mass binaries. The
initial data are prepared for two different orbital angular
velocities, MΩ0 = 0.0188 and 0.0221, where Ω0 denotes
the initial orbital angular velocity, subsequently labelled
by “I188” and “I221”. Nine models are prepared for our
simulations, varying the EOS and orbital angular veloc-
ity for fixed total mass. Some of the physical quantities
of the initial configurations are reported in Table II.

2. Overview of evolution codes

Both the SACRA and Whisky codes evolve the Einstein
equations in the Baumgarte-Shapiro-Shibata-Nakamura
formalism [39–42]. For the Whisky simulations, the Ein-
stein equations are solved using the CCATIE code, a three-
dimensional finite-differencing code based on the Cactus
Computational Toolkit [43]. A detailed presentation
of the CCATIE code and of its convergence properties has
been presented in [33]. For tests and details on SACRA,
see [24].

The gauges are specified in terms of the standard
Arnowitt-Deser-Misner (ADM) lapse function, α, and
shift vector, βi [44]. We evolve the lapse according to
the “1 + log” slicing condition [45]:

∂tα− βi∂iα = −2αK. (2)

The shift is evolved using the hyperbolic Γ̃-driver condi-
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TABLE II. Properties of the initial data: proper separation between the centers of the stars d/M̃
ADM

; baryon mass Mb of
each star in units of solar mass; total ADM mass M

ADM
in units of solar mass, as measured on the finite-difference grid with

the Whisky code and with the SACRA code; total ADM mass M̃
ADM

in units of solar mass, as provided by the Meudon initial
data; angular momentum J , as measured on the finite-difference grid with the Whisky code and with the SACRA code; angular
momentum J̃ , as provided by the Meudon initial data; initial orbital angular velocity expressed as M̃ADMΩ0; mean coordinate
equatorial radius of each star re along the line connecting the two stars; maximum rest-mass density of a star ρmax. Note that
the values of MADM and J are computed through a volume integral in Whisky, while in SACRA they are computed through the
extrapolation to r → ∞ of the ADM masses and angular momenta calculated as surface integrals at finite radii r.

Mass (M⊙) J (×1049g cm2/s) re ρmax

EOS d/M̃
ADM

Mb M Whisky
ADM M SACRA

ADM M̃ADM Whisky SACRA J̃ M̃
ADM

Ω0 (km) (g/cm3)

2H I188 13.4 1.455 2.671 2.682 2.678 6.772 6.781 6.772 0.0187 12.99 3.74× 1014

HB I188 13.5 1.493 2.671 2.682 2.678 6.761 6.769 6.761 0.0186 9.218 8.27× 1014

B I221 15.4 1.502 2.668 2.680 2.675 6.492 6.499 6.491 0.0219 8.48 9.77× 1014

Bss I221 11.9 1.501 2.669 2.680 2.675 6.493 6.501 6.493 0.0219 7.85 1.49× 1015

tion [46]

∂tβ
i − βj∂jβ

i =
3

4
Bi , (3)

∂tB
i − βj∂jB

i = ∂tΓ̃
i − βj∂jΓ̃

i − ηBi , (4)

where Bi is an auxiliary variable and η is a parameter
that acts as a damping coefficient. We set η = 1.0 or
η ≈ 0.5, in units of M⊙ = 1, for Whisky and SACRA

respectively.
Both codes adopt a flux-conservative formulation of

the hydrodynamics equations [47–49], in which the set of
conservation equations for the stress-energy tensor Tµν =
ρhuµuν + pgµν and for the matter current density Jµ =
ρuµ (where p is the pressure, ρ is the rest-mass density, ε
is the specific internal energy, h ≡ 1+ε+p/ρ is the specific
enthalpy, uµ is the four-velocity and gµν is the inverse
metric), namely ∇µT

µν = 0 and ∇µJ
µ = 0, are written

in a hyperbolic, first-order, flux-conservative form of the
type

∂tq+ ∂if
(i)(q) = s(q) , (5)

where f (i)(q) and s(q) are the flux vectors and source
terms, respectively [50]. The EOS closes the system by
relating pressure, rest-mass density, and internal-energy
density.
The system written in conservative form is solved with

high-resolution shock-capturing methods, in several vari-
ants for both codes. For the simulations of this work,
both codes employ 3rd order piecewise-parabolic method
(PPM) [51] reconstruction, but SACRA used Kurganov-
Tadmor’s central scheme [52] for Riemann solvers, while
Whisky [53] use the Marquina flux formula. The details
of the differences in the implementations of the Einstein
and hydrodynamics equations in the two codes are de-
scribed in [54], which contains also convergence tests and
the description of the differences in the implementations
of adaptive mesh refinement [24, 55].
For the highest-resolution runs with Whisky, the spac-

ing of the finest of the six grid levels is hfine = 0.096M⊙ ≈
0.1418 km and the spacing in the wave zone (the coarsest

grid) is hcoarse = 3.072M⊙ ≈ 4.536 km. The finest grid
always covers the whole stars. The outer boundary is
located at about 760 km.
For the runs with SACRA, the computational domain

comprises seven grid levels, with finest grid resolution
hfine = 0.1063M⊙ ≈ 0.1570 km and with spacing in the
wave zone (the coarsest grid) hcoarse = 6.804M⊙ ≈ 10.05
km for the highest-resolution runs. The finest grid covers
the stellar radius completely (the boundary of the finest
grid is at ≈ 115% of the stellar radius). The radius of
the outer boundary is about 603 km.
The properties of the grids adopted in the simulations

with the two codes are summarized in Table III. In gen-
eral, we use a naming convention to label results for a
given numerical simulation, e.g. “HB Whisky R141 I221”,
which summarizes the EOS (HB), the code (Whisky), the
resolution of the finest grid in meters (141), and the ini-
tial orbital angular velocity imposed for building the ini-
tial data expressed as M̃ADMΩ0 ∗ 104 (221).

C. Waveform extraction

This work is concerned primarily with the gravitational
waveform extracted from the simulation, rather than the
underlying density or pressure distributions, so we de-
scribe in some detail the gravitational-wave methods em-
ployed.

Both codes compute the gravitational waveforms us-
ing the Newman-Penrose formalism [56], which provides
a convenient representation for a number of radiation-
related quantities as spin-weighted scalars. In particular,
the curvature scalar

Ψ4 ≡ −Cαβγδn
αm̄βnγm̄δ (6)

is defined as a particular component of the Weyl cur-
vature tensor Cαβγδ projected onto a given null frame
{l,n,m, m̄} and can be identified with the gravitational
radiation field if a suitable frame is chosen at the extrac-
tion radius. In practice, we define an orthonormal basis
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TABLE III. Properties of the initial grids: the model name has the format: EOS name - code used for simulation - resolution
(R%, where % is the spacing of the finest grid in meters) - initial frequency (I%); n is the number of refinement levels (including
the coarsest grid); m is the number of finer levels that are moved to follow the stars; hfine is the spacing of the finest level;
Lfine is the length of the side of the finest level; hcourse is the spacing of the coarsest level; r is the outer-boundary location. All
lengths are expressed in km.

Refinement Moving Finest Grid (km) Coarsest Grid (km)

Model Levels n Levels m Spacing hfine Extent Lfine Spacing hcoarse Outer Boundary r

B Whisky R141 I221 (HR) 6 2 0.1418 44.33 4.54 760

B Whisky R177 I221 (MR) 6 2 0.1773 44.33 5.67 760

B Whisky R221 I221 (LR) 6 2 0.2216 44.33 7.09 760

B SACRA R157 I221 (HR) 7 4 0.1570 9.420 10.05 603

B SACRA R174 I221 (MR) 7 4 0.1744 9.420 11.16 603

B SACRA R202 I221 (LR) 7 4 0.2023 10.12 12.95 648

in the three-space (r̂, θ̂, φ̂), centered on the Cartesian ori-
gin and oriented with poles along ẑ. The normal to the
slice defines a timelike vector t̂, from which we construct
the null frame

l =
1√
2
(t̂− r̂), n =

1√
2
(t̂+ r̂), m =

1√
2
(θ̂ − iφ̂) .

(7)
We then calculate Ψ4 via a reformulation of (6) in terms
of ADM variables on the slice [57]:

Ψ4 = Cijm̄
im̄j , (8)

where

Cij ≡ Rij −KKij +Ki
kKkj − iǫi

kl∇lKjk (9)

and ǫijk is the Levi-Civita symbol. The gravitational-
wave polarization amplitudes h+ and h× are then related
to Ψ4 by time integrals [58]:

ḧ+ − iḧ× = Ψ4 , (10)

where the double overdot stands for the second-order
time derivative. Care is needed when performing such
time integrals [18, 59, 60]. In SACRA, they are computed
with the fixed-frequency integration method [61].

For the extraction of the gravitational-wave signal,
each code implements a second independent method that
is based on expressions involving the gauge-invariant
metric perturbations of a spherically symmetric back-
ground spacetime [62]. The wave data obtained in this
way give results compatible with those obtained with the
Newman-Penrose formalism and are not reported here.

We use only the (ℓ,m) = (2, 2) mode in this work. For
the equal-mass cases considered, other modes are much
smaller. The waveform is analyzed as a function of re-
tarded time t = tsim − r − 2M0 ln(r/M0) where M0 is
the ADM mass of the system at the initial time of the
simulation.

We will use the complex combination of the extracted
polarizations

h ≡ h+ − ih× = |h|eiφ (11)

in further analysis. Some relevant quantities of a detected
signal can be calculated for either polarization and in this
paper we will always show the average result for both
polarizations.
An instantaneous frequency is extracted by taking the

time derivative of the phase φ of the complex waveform.
The total accumulated phase is reconstructed by inte-
grating the instantaneous frequency in subsequent phase
plots.
The physical system simulated is the same under trans-

lations by arbitrary parameters, t0 and φ0, which de-
scribe, respectively, the time of the start of the simula-
tion relative to some reference time and the initial phase
of the simulation relative to some reference phase. When
comparing two waveforms, these free parameters amount
to a relative time shift and phase shift between the wave-
forms. For the numerical waveforms with the same initial
separation, one can take the time and phase to be zero at
the retarded time corresponding to the start of the sim-
ulation. For simulations of EOS B, detailed comparison
results between SACRA and Whisky are presented in [54].

D. Common structure of waveforms

In order to compare simulations with different starting
points, or to remove artificial effects of initial data, an
alternate alignment procedure is required. In fully real-
istic binary simulations, as in the binary black hole case,
the merger is the simplest reference point for waveform
comparison. With finite resolution, numerical dissipa-
tion may cause angular momentum to be artificially lost
during the evolution, increasing the rate of orbital de-
cay during the secular inspiral in a way that may mimic
the tidal effects that are being studied here. Evolutions
with different resolutions of the same initial data tend
to diverge from one another when they are aligned to
start at the same time and with the same phase. How-
ever, this direct comparison overemphasizes differences
that are less relevant to our purposes, as small differences
in phase accumulation in the early, low-frequency regime
will induce a corresponding time shift which translates
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FIG. 3. Waveforms and time-frequency relations near merger, for the set of simulations. We fix t = 0 and φ = arg h = 0 for all
waveforms at the peak amplitude point (see text). Time and phase are shown on the top and bottom horizontal scales. Times of
minimum amplitude are marked with vertical grey lines, typically overlapping for simulations of the same EOS. Instantaneous
frequency is not well-defined in the neighborhood of minimum amplitude (spikes or troughs there are spurious).
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to a large phase difference in the later high-frequency cy-
cles. During the late stages of binary coalescence, which
are driven by dynamical effects, the effects of numerical
dissipation are less significant. Comparable resolution-
dependent features of binary-black hole simulations mo-
tivated alignment of waveforms at merger in comparisons
such as those described in Hannam et al. [63].

We will align multiple waveforms with the same EOS
so that all waveforms have the same time and phase when
they reach their maximum amplitude (Fig. 3 and Fig. 5),
which also allows the comparison of waveforms with dif-
ferent initial separations. The numerical waveforms have
residual oscillations in their amplitude as they approach
the peak, so we smooth this by taking a moving average
of the amplitude over a range of 0.5ms before finding the
maximum amplitude.

Different simulations of the same physical system,
including those with differing initial data, agree well
through the last orbits when the waveforms are compared
this way, which we consider a strong indication that the
dynamical phase is being reliably simulated. We then es-
timate numerical inaccuracies on the waveforms relative
to the peak amplitude time to determine how much of
the inspiral we will use in subsequent analysis.

Looking at a set of waveforms, we find a common struc-
ture that is seen for each EOS in Fig. 3. As the neutron
stars spiral toward each other, at some point there is a
transition from an inspiral phase to a merger or coales-
cence phase, indicated by a maximum in the amplitude
at the end of the inspiral phase. The retarded time of the
peak amplitude corresponds roughly to the impact of the
two stars, after which shocks form and thermal and other
effects are expected to contribute to the waveform [64–
68].

Somewhat surprisingly, we find that the parameter Λ
effectively characterizes properties at this peak ampli-
tude. Fig. 4 shows the frequency at peak amplitude as
a function of both compactness, the dimensionless ra-
tio M/R for an individual star, and Λ for the individual
stars. We find that the frequency varies more smoothly
with Λ than with radius or compactness; a linear fit of
log fGW as a function of Λ1/5 is displayed. This may be
an analogous relation to those explored in [69].

The instantaneous frequency of the gravitational wave-
form continues to increase for a short time after the peak
amplitude is reached, as the stars coalesce. A mini-
mum in the gravitational wave amplitude follows, around
which the instantaneous frequency is not well defined and
may spike upwards or downwards.

After this point, the qualitative waveform behavior de-
pends strongly on the EOS: For EOSs with higher pres-
sure at the relevant densities, a differentially rotating hy-
permassive object may be supported, producing a quasi-
periodic post-merger oscillation waveform [34, 70]. This
can last for tens of milliseconds before the remnant col-
lapses to a black hole [71]. EOSs with lower pressure,
conversely, collapse quickly to black holes and have short
post-coalescence signals at roughly ringdown frequency,

0.13 0.14 0.15 0.16 0.17 0.18 0.19
1000

1200

1400

1600

1800

2000

2200

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

Compactness of individual stars

f G
W

a
t
p

e
a

k
a

m
p

lit
u

d
e
HH

z
L

M
Ω

line: HΠ M f L2�3= C

3.0 3.5 4.0 4.5
1000

1200

1400

1600

1800

2000

2200

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

L
1�5

f G
W

a
t
p

e
a

k
a

m
p

lit
u

d
e
HH

z
L

M
Ω

line: log10 HfGW�HzL=8.51155-0.303350 L1�5

FIG. 4. Instantaneous gravitational-wave frequency at the
point of peak amplitude, as a function of the tidal parameter
Λ1/5 (bottom panel) and as a function of individual star com-
pactness C (top). For each model, the highest-resolution sim-
ulation for a given EOS is plotted in black, lower-resolution

simulations in grey. The x = (πMf)2/3 = C relation used in
[15] to characterize merger frequency is shown in the compact-

ness plot. An empirical fit using Λ1/5 is shown in the bottom
plot; the frequency of merger is more tightly correlated with
Λ than with compactness/radius.

though of lower amplitude than their binary black hole
counterparts. The exact frequency and amplitude of this
signal varies with the EOS.

The differences in phase evolution of different wave-
forms with the same EOS are shown relative to a well-
resolved reference waveform in Fig. 5. We note that the
difference in the finest resolution between simulations ex-
plains much of the phase difference for all EOS; difference
between initial separation (and resulting differences in ec-
centricity at merger) have relatively small effects at these
resolutions.

Furthermore, we note that the magnitude of the phase
differences stemming from difference in resolution de-
pends on the EOS: more compact stars require higher
resolution to give comparably small phase error. This
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FIG. 5. Accumulation of phase differences between numerical simulations at different resolutions and initial frequencies, relative
to a reference waveform for each EOS. We fix t = 0 and φ = arg h = 0 for all waveforms at the peak amplitude point (see text).
Note that the convergence of the waveforms is poor after the peak amplitude (when the two stars begin to merge).

makes a quantitative comparison of resolution effects on
waveforms with different EOSs more challenging. For
this analysis, we use a simplified procedure: examining
the merger-aligned waveforms, we estimate which of the
given waveforms are sufficiently resolved by current sim-
ulations by comparison with the highest resolution avail-
able. We will consider only waveforms which differ from
the highest resolution simulation by less than 0.5 radians
over the last 15ms before the peak amplitude is reached.
The systematic error resulting from this level of phase er-
ror is calculated for the various measurability estimates
in subsequent sections.

1. Detectors considered and Fourier-amplitude spectra

For the merger of binary neutron stars, only detector
configurations with good high-frequency sensitivity will
give useful constraints; broadband configurations have
previously been shown to compare favorably to narrow-
band configurations tuned for high frequency sensitiv-

ity in distinguishing matter effects [28]. In this work,
we choose the zero-detuning high-power Advanced LIGO
configuration [72], and the ET-D Einstein telescope con-
figuration [73].

We use a reference effective distance of Deff = 100Mpc
to present results in this paper. The effective distance
Deff of a binary system is same as the true distance of
the system if it is optimally oriented (face-on) and opti-
mally located (directly above or below the detector) and
is greater than the true distance otherwise. The ampli-
tude of a signal is inversely proportional to its effective
distance.

The rate of signals with Deff = 100Mpc or smaller
can be estimated by comparing this to the fiducial Ad-
vanced LIGO horizon distance—the effective distance of
a detectable signal—of 445Mpc for NS-NS inspirals [10].
Within this horizon, we expect roughly 40 (0.4–400) de-
tectable inspirals per year. Since rate scales with D3

eff for
sufficiently large distances, we expect 1% of the detected
signals to be as strong or stronger than our reference
signal, making it a plausible “loudest” signal over a few
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FIG. 6. Fourier spectra of numerical waveforms in units that facilitate the comparison with gravitational-wave detector noise
curves. Example noise spectra are indicated by thick grey lines for the aLIGO high power noise [72] and the Einstein Telescope
ET-D noise [73]. The starting frequency depends on the initial orbital separation. The pre-merger waveform gives a roughly
monotonically decreasing amplitude, while post-merger oscillations contribute spikes at high frequency (1500 Hz–7000 Hz).
Black curves indicate the phenomenological BH-BH waveform model of Santamaŕıa et al. [74] for the same mass parameters
and red curves indicate the stationary phase approximation of a pont-particle post-Newtonian inspiral. The frequency of peak
amplitude is indicated by a colored dot on the upper axis.

years of observation with realistic event rates. However,
we will also consider how our results scale to other val-
ues of Deff and the constraints that weaker signals would
place on the EOS in the sections to follow.

The estimates in this paper conservatively use only a
single Advanced LIGO detector. However, two detec-
tors are being upgraded in the United States [9], a third
is planned in India [75], and an upgrade of comparable
high-frequency sensitivity is underway for Virgo [76] in

Italy; finally, a Japanese detector, KAGRA [77] is un-
der construction, although KAGRA’s sensitivity curve is
shifted slightly to lower frequency. A multiple-detector
network will provide additional discriminatory power, re-
ducing the statistical (though not the systematic) errors
from those estimated in this work.

In Fig. 6, we compare the amplitude of the simulated
waveforms as a function of frequency for each EOS to
the strain sensitivity of the detectors. Results of simu-
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lations with different codes, resolutions, and initial sepa-
rations are overlaid for each physically distinct inspiral.
The amplitude of the Fourier transform is an incomplete
representation of the waveform; similarities in amplitude
do not necessarily reflect similarities in phase evolution
and can camouflage slow secular phase contributions that
decohere two waveforms. However, the amplitude has
the advantage of being independent of shifts in time and
phase between two waveforms.
The consistent change of the spectra as Λ (and radius)

increase shows the effect of the EOS on the waveform
at high frequency. While insufficient resolution (e.g., the
dotted EOS B curve) may result in artificially low am-
plitudes at lower frequencies, varying resolutions tend
to agree in amplitude before the systems transition to
merger the characteristic frequency of the peak ampli-
tude. Note that the spectra of more compact neutron
stars (EOS B, HBss, and Bss) follow black-hole inspi-
ral to higher frequencies, but have significantly different
merger/ringdown amplitudes.
The finite length of the numerical waveforms leads to a

drop-off in the amplitude at low frequencies. In the lower-
resolution runs, resolution-dependent dissipation in early
cycles also results in a decrease in the Fourier amplitude
at lower frequencies relative to higher-resolution wave-
forms with the same initial separation.

E. Post-merger oscillations

Post-merger oscillations dominate the gravitational-
wave emission from hypermassive neutron-star remnant
formed after the merger. They are stronger, lower-
frequency, and longer-lasting than the ringdown of a
black hole formed in prompt collapse. The amplitude of
the post-merger oscillation spectra are shown in Fig. 7.
If strong enough, the high-frequency signals could be in-
dependently detected by a search triggered by the in-
spiral, and could constrain a combination of cold [78]
and hot [22] EOS. However, the SNR available in
these post-merger oscillations is significantly smaller than
that of the numerically-simulated inspirals in the detec-
tors considered, as summarized in Table IV; we present
ρ× (Deff/100Mpc) with entries which equal ρ at Deff =
100Mpc, and note that ρ scales as 1/Deff.
Results from this paper and others suggest that post-

merger oscillations will be more challenging to measure
than the EOS effects on late inspiral and merger. Al-
though a hot oscillating remnant may persist for tens or
hundreds of cycles, our simulations show nonlinear cou-
pling giving an effective damping time of less than ten
cycles until a low final amplitude is reached. The use
of more realistic density-pressure relations, thermal ef-
fects, and magnetic-field amplifications may change sig-
nificantly the longevity (and thereby the spectral ampli-
tude) of these signals. If we model the post-merger as
a damped oscillation of a single frequency, the SNR will
scale roughly as τ1/2 for longer-lasting oscillations [79].

TABLE IV. SNR of post-merger waveforms in advanced de-
tectors, and approximate peak frequency fp of the oscillations.
Cases 2H, H, and HB, show post-merger oscillations from a
hypermassive remnant, and the roughly exponential decay
timescale of the post-merger oscillations is shown. In other
cases, the neutron stars collapse to a black hole promptly af-
ter merger, with suppressed ringdown. The spectra can be
seen in Fig 7

ρ× (Deff/100Mpc) fp tdecay

EOS aLIGO Broadband ET-D (kHz) (ms)

2H 0.75–0.91 6.4–7.8 1.8 3–6

H 0.54–0.57 4.5–4.7 3.0 4–5

HB 0.43–0.47 3.5–3.9 3.5 3–4

B 0.04–0.07 0.4–0.6 6.5–7

Bs 0.04–0.06 0.3–0.6 6.5–7

Bss 0.03–0.06 0.3–0.6 6.5–7

HBs 0.04–0.06 0.4–0.5 6.5–7

HBss 0.04–0.05 0.4–0.5 6.5–7

The post-merger oscillations in the current simulations
have multiple overtones as seen in [23], which spread the
SNR over a range of frequencies, and produce the oscil-
lations in instantaneous frequency after merger in Fig. 3
for EOS H and HB. They display a roughly exponen-
tial decay in amplitude A ∼ exp (−t/τ) over timescales
τ = 3ms to 6ms.

III. MEASURABILITY USING ONLY

NUMERICAL RESULTS

Ideally, a data analysis program would coherently com-
bine information from the numerical waveforms (valid at
high frequencies) with post-Newtonian waveforms incor-
porating tidal effects (valid at low frequencies). Joining
a numerical waveform to a theoretical post-Newtonian
waveform relies on extremely accurate numerical simu-
lations with very large initial orbital simulation, as well
as an inspiral model that captures all relevant effects up
to and including the matching region. While we will at-
tempt this hybridization procedure in Sec. IV, we begin
with a simpler approach.
If we assume that the low-frequency theoretical wave-

form correctly measures the mass parameters and effec-
tive distance of the components, but cannot be coher-
ently combined with a numerically simulated waveform
at higher frequencies, we can still use the numerical sim-
ulations to try to identify the EOS that best reproduces
the high-frequency evolution, without using the informa-
tion about t0 and φ0 measured from the low-frequency
waveform. The numerical waveforms must all be allowed
to shift in time and phase individually to find the best
match to the observed gravitational-wave data: the pa-
rameters t0 and φ0 are marginalized over when measuring
the tidal effects.
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FIG. 7. Top panel: Post-merger waveforms for the different
EOS, with lines as described in Fig 3. Bottom panel: Numer-
ical inspiral-to-merger templates as described in Sec. III A,
which are smoothly turned on at 600Hz and stop at the min-
imum following the peak amplitude.

A. EOS-based differences in numerical waveforms

We first consider whether differences between EOS are
significant in this scenario. We restrict ourselves to con-
sidering only the inspiral part of the waveform, before the
stars merge, where the cold EOS is expected to be an ac-
curate description of relevant physics and the numerical
results are convergent. To cut off the post-merger por-
tion of the waveforms smoothly, the natural minimum in
amplitude (as shown in Fig. 3) is taken as the truncation
point after each inspiral.

Since our waveforms began with varying initial sep-
aration, and some residual effect of initial data can be
expected at early times, we drop the portion of the
time-domain waveforms before a fixed instantaneous fre-
quency. To do this consistently, the instantaneous fre-
quency is first averaged over segments of 1.5ms to re-
duce residual eccentricity effects, and then a one-sided
Hann window of width 4ms, centered on the time where
the averaged frequency reaches 600Hz, is applied to the
waveform data. Similar windowing was used in [28].
Fourier-domain amplitudes of the resulting numerical in-
spiral templates are shown in the bottom panel of Fig 7.

B. Distinguishability

We wish to estimate our ability to distinguish between
waveforms from different numerical simulations, given a
detected signal of the appropriate mass parameters.
To determine what model waveform best characterizes

a detected signal, we make use of the noise-weighted inner
product. This inner product of two waveforms h1 and h2,
for a detector with noise spectrum Sh(f), is defined by

〈h1 | h2〉 ≡ 4Re

∫ ∞

0

h̃1(f)h̃
∗
2(f)

Sh(f)
df. (12)

In terms of this inner product, the characteristic signal-
to-noise ratio of a given waveform h is ρ ≡ 〈h | h〉1/2.
Two waveforms, h1 and h2 are said to be marginally

distinguishable if the quantity

‖δh‖ ≡ ‖h2 − h1‖ ≡
√

〈h2 − h1 | h2 − h1〉 (13)

has a value ‖δh‖ & 1 [28, 80–82].
We wish to consider the minimum value of ‖δh‖ over

all possible relative shifts in time and phase between the
template waveforms, and it turns out to be most efficient
to calculate this via the overlap between two waveforms.
With the complex waveform h constructed for this anal-
ysis, and methods similar to Allen et al. [83] and Cho
et al. [84], we use the inverse Fourier transform appro-

priate to h̃ to construct a complex overlap as a function
of timeshift τ for each polarization:

〈h1×,+(t+ τ) | h2(t)〉 ≡ 4

∫ ∞

0

h̃1×,+(f)h̃
∗
2(f)

Sh(f)
e2πifτdf.

(14)
The absolute value of this quantity at a given τ is the
maximum overlap possible with shifts in phase. Maxi-
mizing its absolute value over τ thus gives the maximum
overlap for arbitrary shifts in both time and phase.
We use this maximum overlap to estimate the signal

to noise ratio of the difference between two templates

‖δh‖2 ≃ 〈h1|h1〉+ 〈h2|h2〉 − 2〈h1|h2〉max (15)

where 〈h1|h2〉max is maximized over shifts in time and
phase. Note that we do not normalize our templates: the
inspiral detection is expected to determine the relative
amplitude expected at merger, and EOS which merge
earlier give real differences in expected SNR which will
affect the maximum likelihood, as can be seen in Table V.
Because the value of ‖δh‖ depends on the distance to the
signal, we record ‖δh‖ × (Deff/100Mpc).
The differences between waveforms are presented in

Table V for the numerical waveforms discussed in
Sec. IIIA. EOS 2H, with the largest difference from
other EOSs (relative to EOS H, ∆R = 2.95 km and
∆Λ = 1717), and produces a ‖δh‖ ≃ 2. The more re-
alistic EOS give smaller differences, but H and B, with
∆R = 1.3 km and ∆Λ = 319, are marginally distinguish-
able atDeff = 100Mpc. For a given pair of waveforms, we
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TABLE V. The first row shows the expected SNR
×(Deff/100Mpc) of the numerical inspiral-to-merger wave-
forms described in Sec. III A, for each EOS. Note that the sig-
nal’s presence, amplitude, and mass parameters are assumed
to be established from an inspiral detection. Subsequent rows
show the expected SNR of differences between these wave-
forms and waveforms of the row-labelling EOS, minimized
over shifts in time and phase. The SNRs are calculated for
each possible pair of resolved waveforms, and the mean and
standard deviation of the resulting estimates for each pair of
EOS are tabled.

Advanced LIGO high-power detuned

EOS 2H H HB B Bss

SNR 2.22 2.77 2.81 2.87 2.89

2H 0.10±0.08 1.85±0.02 1.93±0.04 2.02±0.03 2.03±0.02

H 0.06±0.06 0.66±0.06 1.03±0.06 1.13±0.03

HB 0.09±0.06 0.61±0.07 0.86±0.03

B (symm.) 0.11±0.13 0.52±0.06

Bss 0.06±0.07

Einstein Telescope configuration D

EOS 2H H HB B Bss

SNR 22.3 27.4 27.8 28.2 28.4

2H 1.1±0.9 17.4±0.3 18.2±0.4 18.9±0.3 18.9±0.2

H 0.6±0.6 6.0±0.5 9.1±0.5 10.0±0.2

HB 0.9±0.6 5.5±0.7 7.5±0.3

B (symm.) 1.2±1.3 4.6±0.6

Bss 0.6±0.7

can determine the maximum effective distance to which
they can be distinguished, where ‖δh‖ = 1, since ‖δh‖
scales as 1/Deff. The result is plotted as function of ∆Λ
in Fig. 8.

Using numerical simulations that extend to earlier fre-
quencies can increase the distinguishability of EOS: nu-
merical waveforms starting at orbital angular frequency
of 188 are available for EOS 2H and HB, and can be used
to construct templates starting at 500Hz, which have
SNRs in Advanced LIGO of ρ2H = 3.24 and ρHB = 3.61
at the reference Deff = 100Mpc. The resulting ‖δh‖ =
2.14± 0.05 is larger than the ‖δh‖ = 1.93± 0.04 of tem-
plates starting at 600Hz. However, measures of system-
atic error roughly double; templates starting at 500Hz
have more than twice the duration of templates starting
at 600Hz. The relative impact of differing EOSs also be-
comes smaller at earlier times—‖δh‖/ρ is decreasing—
and required computational time will increase rapidly.
Simulations will also be more challenging for compact
neutron stars, which require higher resolution for equiv-
alent accuracy.

The importance of numerical effects can be estimated
in two ways: the value of ‖δh‖syst between two differ-
ent waveforms for the same EOS, and the variance in
‖δh‖ between two EOSs that arises from making differ-
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FIG. 8. For numerical merger templates, ‖δh‖ = ‖h1 − h2‖
between two waveforms is plotted as a function of |Λ1 − Λ2|
after being minimized over relative shifts in time and phase.
The distance Deff at which two waveforms would be distin-
guishable is labelled on the right axis. The result is not linear
in ∆Λ. At the reference Deff = 100 Mpc, the difference be-
tween waveforms has ‖δh‖ = 1 for ∆Λ ≃ 500 (dashed line)
and ‖δh‖ = 2 for ∆Λ ≃ 2000 (dotted line). This plot super-
imposes ∆Λ for all pairs of simulations for Advaned LIGO
high-power zero-detuning and optimally-oriented systems at
100 Mpc; ET-D gives similar plot with ‖δh‖ increased by a
factor of 10.

ent choices of the representative numerical waveform for
each EOS. These results are included in V and are vis-
ible in the spread of points at |Λ1 − Λ2| = 0 in Fig. 8.
The ‖δh‖ between two EOS changes by less than ∼ 10%
with different waveform choices; however, while ‖δh‖syst
(between numerical waveforms of the same EOS) is typ-
ically 0.1 (or 10%) at Deff = 100Mpc, it reaches 0.4 in
the worst case.

C. Parameter estimation

Given a parameterized family of waveforms, h(pi),
where pi includes an EOS-dependent parameter of in-
terest, we determine the value of the parameters pi that
produce the best match by comparing the detected sig-
nal to the members of this family. If the detected signal
is s, then the most likely values for the parameters pi
are those that best fit the data by minimizing the dis-
tance to the signal with the above-defined inner prod-
uct, 〈s− h(pi)|s− h(pi)〉. For normalized templates, the
best-fit pi maximize the overlap 〈s|h(p)〉 between signal
and waveform family.
The best-fitting values of pi will differ from the true

values because of two effects: The first effect is that the
measured pi will be shifted away from their true value
because of the presence of random detector noise; we
describe this statistical error by the root-mean-squared
value of the parameter shift, δpi,stat. The second effect
arises if there is a fundamental difference between the
true gravitational waveform and the nearest member of
the family of waveforms that are being used; such a sys-
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tematic error is given by δpi,syst [85]. The statistical er-
ror depends on the amplitude of the signal relative to
the level of detector noise, so it scales inversely with the
signal’s SNR. The systematic error is SNR-independent.

For large SNR signals, the statistical error δpstat can
be calculated using the Fisher matrix formalism. If a
waveform is parameterized by a set of parameters {pi},
then the Fisher matrix is given by

Γij =

〈

∂h

∂pi

∣

∣

∣

∣

∂h

∂pj

〉

, (16)

and the statistical error associated with the measurement
of a single parameter λj is

δpj, stat =
√

(Γ−1)jj , (17)

where the matrix (Γ−1)ij is the inverse of the Fisher ma-
trix Γij [86].

For the subsequent analysis, we will consider variation
only in the single parameter Λ which best characterizes
the EOS. When restricting to cases where multiple well-
resolved waveforms are available, current simulations do
not cover a two-dimensional region of the EOS parameter
space, so we are restricted to single-parameter estimates.
For an example of generalization to multi-parameter de-
scriptions of the EOS, see [87].

The numerical simulations considered here are of
equal-mass systems with fixed total mass, so correlations
with mass parameters can not yet be determined. We as-
sume that accurate measurements of the chirp mass M
and dimensionless mass ratio η can be made from the
detected inspiral preceding the merger, which is a rea-
sonable assumption for loud signals (ρ & 20). In the
post-Newtonian case, one can (at least to first order) re-
cast the tidal effect of generic-mass systems in terms of
a single effective Λ̃(M, η) of the system [11, 14] which
depends primarily on M, and uncertainties in mass ra-
tio do not overwhelm tidal effects. This may not be so
straightforward for the coalescence, especially if amplified
tidal disruption occurs in unequal mass systems. The de-
pendance of such a Λ̃ on the less-easily measured mass
ratio parameter may also obfuscate the tidal dependence
in more general systems. While spin should also be con-
sidered in a full analysis, especially as it may obscure
mass ratio measurements, spin uncertainty has a rela-
tively weak impact on measurement of tidal parameters
in binary neutron star systems [15]. Results in the mixed
binary case [88] suggest a factor of 3 increase in δΛ when
phenomenological inspiral-to-merger waveforms are used
for a coherent analysis of both mass and tidal parame-
ters, compared to an analysis considering tidal variation
alone.

Given a single discretely sampled parameter, the
Fisher “matrix” can be estimated using a finite differ-
ence approximation to the derivative as Γ ≈ ‖δh‖/(∆Λ)2.
This finite difference estimate of the random error in a

parameter is then given by [28]

δΛrand =
|Λ1 − Λ2|

√

〈h1 − h2|h1 − h2〉
, (18)

or δΛrand = ∆Λ/‖δh‖, and we note that the δΛrand is
exactly the value of ∆Λ where two waveforms are distin-
guishable using the criteria above.
While Eq. (18) is an approximation to the Fisher ma-

trix, it is a more accurate characterization of the informa-
tion contained in a finite strength signal than the Fisher
matrix itself, as discussed in Cho et al. [84] and references
therein. The usefulness of the Fisher matrix breaks down
in part when overlap between two signals of Λ1 and Λ2

no longer scales quadratically with Λ1 − Λ2. We can di-
rectly calculate the overlap between the two signals to
determine how well two parameter values can be distin-
guished. In the Fisher matrix analysis, a first-order and
linear relation ‖δh‖ ∝ ∆Λ is assumed, as would be valid
for small ∆Λ; in the discrete approximation, nonlinear
structure in ‖δh‖ as a function of ∆Λ is revealed (Fig. 8).
The estimate of δΛrand will thus depend on the effective
SNR scale. The effective δΛrand gives ‖δh‖ = 1 for for
marginally distinguishable signals. The difference in Λ
that is marginally distinguishable at a given Deff is the
expected δΛrand at that distance.
When Λ is used to parameterize the simulations, we

find that plotting ‖δh‖ = ‖h2 − h1‖ versus ∆Λ = |Λ2 −
Λ1| for all available choices of Λ1 and Λ2 gives a well-
defined pattern: ‖δh‖ is well-described as a function of
∆Λ only, so there is only weak dependence of δΛrand on
the value of Λ. This is not true for other parameter
choices, such as Λ1/5 or radius. For the Deff = 100Mpc
reference waveform here, δΛrand ≃ 300, but for a Deff =
200Mpc signal δΛrand ≃ 2000.
If the true signal waveform g differs from all members

of the parameterized family of waveforms h({pi}) then
there will be a systematic error in the measurement of
the parameters {pi}[85]; the systematic error is given by

δpj, syst =
∑

i

(Γ−1)ij

〈

h− g

∣

∣

∣

∣

∂h

∂pi

〉

. (19)

To assess the systematic error associated with imperfec-
tions in the numerical waveforms, we take g and h to
be variant waveforms that purport to represent the same
system, e.g., numerical waveforms from two simulations
of the same EOS, and as before we replace the deriva-
tive with respect to the parameter with a finite difference
of waveforms with different EOS parameters. With the
subscript labeling the choice of EOS, the resulting ap-
proximate formula for the systematic error in measuring
the parameter Λ is

δΛsyst ≈ (Λ1 − Λ2)
〈h1 − g1 | h1 − h2〉
〈h1 − h2 | h1 − h2〉

. (20)

If we apply a Cauchy-Schwarz inequality to the numera-
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tor of the above equation, we find that

|δΛsyst| . |Λ1 − Λ2|
( 〈h1 − g1 | h1 − g1〉
〈h1 − h2 | h1 − h2〉

)1/2

, (21)

which we can rewrite using magnitude of the difference
between the two variant waveforms, ‖δh‖syst, compared
to the magnitude of the difference of two waveforms of
different parameter values ‖δh‖ defined in Eq. (13), as

|δΛsyst| . |∆Λ| ‖δh‖syst‖δh‖ . (22)

Both of the ‖δh‖ scale with effective distance, giving a
constant ‖δh‖syst for a given ∆Λ. In an effective error
calculation, where the estimate appropriate to a given
Deff is the value of ∆Λ where ‖δh‖ = 1, the relative
systematic error will simply be the ratio of ‖δh‖syst to
‖δh‖ at that distance.
Later we will present estimates of systematic error

‖δh‖syst × (Deff/100Mpc). In Table V, the diagonal en-
tries are the average ‖δh‖syst at the reference distance.
In plots such as Fig. 8 and 12, these are visible as the
scatter of points above |Λ1 − Λ2| = 0.

IV. HYBRID CONSTRUCTION AND

IMPROVED MEASURABILITY

For low-mass binary systems, such as those which in-
clude neutron stars, numerical waveforms start at fre-
quencies that are high compared to the sensitive band.
Ideally, EOS effects will be measured using hybrid wave-
forms which combine post-Newtonian inspiral (includ-
ing tidal effects) with the numerical simulation results.
However this introduces additional sources of systematic
error, as discussed in [82, 89]. If a numerical simula-
tion is begun at too high a frequency, the theoretical
point-particle post-Newtonian (or other analytical inspi-
ral waveform) will no longer be valid. If the resolution of
the numerical simulation is too low (so that there is too
much numerical dissipation through the high-frequency
band in which the tidal effects become strong) then reli-
able hybrid waveforms cannot be constructed.
In this work, we use results of highly accurate numer-

ical simulations [20, 90] to justify extending our analytic
model to sufficiently high frequencies that the simulations
considered in this work, which cover more EOS param-
eter space with lower resolution, will have sufficient ac-
curacy to model the final orbits without systematic error
overwhelming our estimate.

A. Hybrid construction

We fix a baseline 3.5 order post-Newtonian Taylor-T4
model [91, 92] for subsequent analysis. While the impact
of choosing a post-Newtonian expansion is large in the

last orbits, this choice accurately mimics equal-mass bi-
nary black holes up to Mω = 0.01 [91], which is within
114M of peak amplitude for all binary neutron stars sim-
ulated here: the hybrid waveforms do not use the post-
Newtonian inspiral waveform beyond the frequency range
where it approximates binary black holes.

We include post-Newtonian estimates of the tidal con-
tributions to the waveform phasing from [11, 13], at lead-
ing and next-to-leading order, which have been shown to
give potentially significant contributions to measurability
for the EOS considered if waveform models are extended
to high frequency [14, 15].

Our inclusion of tidal effects is done by simply adding
additional contributions to the baseline model. In a full
parameter estimation, a calibrated phenomenological or
EOB description of the point-particle dynamics may be
required to accurately capture intermediate-order post-
Newtonian terms. However, [15] shows that the magni-
tude of tidal phase contributions in EOB is accurately
approximated by the addition of post-Newtonian tidal
terms into 2.5 or higher post-Newtonian models, justify-
ing their use of Taylor F2 waveforms for measurability
estimates. Here we add Newtonian and post-Newtonian
tidal contributions to the 3.5 post-Newtonian Taylor T4
waveforms used to model point-particle dynamics; the
differences between waveforms of different EOS should
likewise be accurately captured by this scheme.

It has been conjectured [12, 17] that additional higher-
order post-Newtonian tidal corrections would be required
to match of the inspiral of numerical waveforms, but
the calculated next-to-leading order terms in [13] were
smaller than those previously obtained by fitting [18].
More recently, [19] and [20] have each independently cal-
culated the expected waveforms of binary neutron star
inspiral and merger using high-resolution numerical sim-
ulations with careful error analysis. The phase evolu-
tion of these high-accuracy waveforms is compared to
both post-Newtonian and EOB waveforms, which each
incorporate current analytically calculated tidal terms.
Within numerical uncertainties, both groups find that
the numerical waveforms and the various analytic inspi-
ral models all agree until roughly 300M to 500M before
merger.

In this work, we do not have waveforms with the same
level of accuracy, but we restrict our analysis to use only
the last 15ms or 1128M , of the numerical waveforms,
over which the effect of the waveform resolution used
in this work is small for the “resolved” waveforms we
have been considering (Fig. 5). We use the high-accuracy
waveform results to justify our use of Taylor T4 inspi-
ral models, with leading-order and next-to-leading order
tidal terms, for earlier times.

We note that, in addition to secular tidal effects, there
may be other effects that are not encompassed in the
post-Newtonian (or current EOB) expansion framework,
for example f-mode resonances [23, 93]. Our transition
to a numerical waveform in the final orbits will include
the high-frequency contributions of such effects, but they
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are not incorporated in the analytic model.
To construct hybrids, we match the analytic and nu-

merical waveforms over a time-domain matching region
using the maximum correlation method of [28]. If one
defines the complex correlation z in a restricted time do-
main {TI, TF} for two waveforms h1(t) and h2(t) with a
relative time shift τ by

z(δt;h1, h2) ≡
∫ TF

TI

h1(t)h
∗

2(t− τ)dt, (23)

then the correlation between the two waveforms with no
phase shift is Re z(τ ;h1, h2). Introducing a phase shift δφ
to h2 produces a correlation Re exp(iδφ)z. For a given τ ,
the maximum correlation between two waveforms for any
phase shift will be |z|, and the phase shift which produces
that correlation is δφ = − arg z (cf. [83]).

Previous waveform analyses have performed similar
matching via least squares difference over a segment [63,
74] or have matched time and phase at a single point in
the inspiral [94], either in the time or frequency domain.
Our procedure maximizes a cross-term averaged between
polarizations which contributes negatively to the least
squares distance between waveforms. It is a time-domain
analogue of procedure used above to maximize Fourier-
domain overlap in Sec. III B—for infinitely long time
domains, it is equivalent to an unweighted frequency-
domain match, similar to that used for detection.
We use only the final orbits and transition to merger

from the numerical waveforms, as captured in the final
10ms or 752M before merger: specifically, the match re-
gion is set relative to the time of peak amplitude for each
numerical waveform, from (tpeak−10ms) to (tpeak−2ms).
The numerical waveform is aligned to post-Newtonian
inspiral by the maximum correlation above, and then a
hybrid waveform is constructed by windowing between
inspiral and numerical waveforms over the last half of
the match region. An example of this construction is
shown in Fig. 9 for the full set of variant HB wave-
forms. The resulting hybrids are Fourier-transformed,
and the amplitude of the difference between two wave-
forms 〈h1 − h2|h1 − h2〉 is calculated directly using the
inner product defined in Sec. III B.

B. Measurement using hybrid waveforms

To calculate the differences between hybrid EOS, we
use a somewhat less conservative estimate than in the
previous sections; to save computational time, we do not
include the long low-frequency portion of the waveform
in our analysis and therefore cannot minimize differences
over shifts in time and phase. However, the time and
phase of a high-frequency waveform that is coherent with
the low-frequency inspiral are no longer free parameters.
Damour et al. [15] calculate the frequency range over
which each waveform parameter is determined: 90% of
the total ρ2 from a binary neutron star inspiral is col-
lected from frequencies below 200Hz. Mass parameters
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FIG. 9. Example hybrid construction for the four resolved
waveforms with EOS HB. The reference t = 0 is the coales-
cence time of a point particle inspiral. A post-Newtonian in-
spiral with tidal corrections appropriate to EOS HB is shown
in grey. The numerical waveforms used to construct hybrids
overlaid with their maximum-correlation alignment between
vertical lines indicate the start and end of the numerical
matching region. The frequency dependence of the waves
is also shown; the post-Newtonian point particle inspiral is
shown with a dashed black line, the post-Newtonian with
tidal corrections in grey, and the four numerical waveforms
in blue following the line indication scheme of Fig. 3.

are determined using the waveform at even lower fre-
quencies, and tidal effects on the inspiral are determined
only by the highest-frequency portion; the two regions
decouple.

We assume that the waveform portion below 200Hz,
which is virtually identical for models of different EOS,
will fix the relative time and phase of template and sig-
nal waveforms; if the overlap of very long PN-only wave-
forms with different tidal contributions is maximized over
variations in time and phase, the relative time of coa-
lescence is approximately that of waveforms which are
exactly aligned at 200Hz. We then consider only differ-
ences that accumulate from 200Hz and up when com-
paring waveforms of different EOS. The resulting phase
accumulation is shown in Fig. 10. With the contributions
from the inspiral, the differences |h(Λ1)−h(Λ2)| between
the hybrid waveforms become more significant. The SNR
of the differences between all pairs of waveforms is shown
in Table VI. Fig. 11 illustrates the Fourier transform of
the difference between pairs of waveforms, in which one
member has EOS H, plotted as a signal against the Ad-
vanced LIGO noise curve.

As before, we compile the set of differences for all wave-
form pairs into a plot of ‖h1−h2‖ vs. |Λ1−Λ2| in Fig. 12.
The result is again not linear in ∆Λ, so the statistical er-
ror estimate will depend nonlinearly on the loudness of
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FIG. 10. Top panel: The phase departures from point-particle
Taylor-T4 due to post-Newtonian tidal contributions. From
highest to lowest, the lines indicate EOS 2H, H, HB, B, and
Bss. Bottom panel: The phase departures due to hybrid wave-
forms, with lines as described in Fig. 3. Integration is begun
at 200Hz, after the accumulation of the majority of the SNR
[15] is expected to have fixed the relative phase, but before
significant tidal contributions arise.

the signal. At the reference Deff = 100Mpc, the differ-
ence between waveforms has ‖δh‖ ≃ 2 for ∆Λ = 150, al-
lowing each EOS to be distinguished from a binary black
hole. Marginally distinguishable parameter differences
are at then δΛ = 150 at Deff = 200 and δΛ = 350 at
300Mpc (where BNS inspirals are detected with ρ ≃ 16
and 11). This means that a combination of weaker sig-
nals can be used to give significant constraints on the
EOS, as seen in [95].

C. Additional systematics with hybridization

The systematic error stemming from alternate meth-
ods of generating the waveforms and alignment used to
calculate measurability can be estimated using Eq. (20)
where the two waveforms g and h may be taken to be
different hybrid waveforms. As hybrid waveforms incor-
porate choices in the construction beyond simply choos-
ing the numerical waveform, additional systematic errors
are introduced.
Systematic errors are estimated using the set of “well-
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FIG. 12. For hybrid waveforms aligned at 200Hz, the dis-
tinguishability is estimated using the inner product of differ-
ences between waveforms. At the reference Deff = 100Mpc,
the difference between waveforms has ‖δh‖ ≃ 2 for ∆Λ = 150
(dashed line) and ‖δh‖ ≃ 3 for ∆Λ = 350 (dotted line). These
results are for Advanced LIGO high-power zero-detuning; ET-
D gives similar plot with an order of magnitude increase in
ρ (and decrease in distinguishable distance). Note that the
distinguishability is improved by a factor of 3 to 4 compared
to numerical-only estimates in Fig. 8.

resolved” waveforms, using the criteria of Sec. IID, which
have phase differences of ∼ 0.1 radians to ∼ 0.4 radians
over the last 1.5ms (1100M) before merger. For a fixed
hybrid construction method and PN model, the diagonal
entries of Table VI give ‖δh|syst . 0.3 at Deff = 100Mpc,
for ‖δh‖syst/‖δh‖ of roughly 5–20% from variant numer-
ical simulations of these EOS.
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TABLE VI. The first row shows SNR ×(Deff/100Mpc)
for the full hybrid waveforms. The remaining rows show
‖δh‖ × (Deff/100Mpc) between hybrid waveforms, averaged
over resolved waveforms for each EOS. The standard devi-
ation of the set of resulting estimates is also provided. The
average difference between waveforms of the same EOS is a
measure of systematic error from numerical inaccuracies for
the given hybridization procedure.

Advanced LIGO high-power detuned

EOS 2H H HB B Bss

SNR 33.72 33.78 33.78 33.79 33.80

2H 0.08±0.06 6.70±0.01 7.05±0.01 7.28±0.01 7.5±0.01

H 0.08±0.10 2.18±0.02 3.06±0.03 3.82±0.01

HB 0.13±0.10 1.87±0.09 2.94±0.02

B (symm.) 0.35±0.31 2.01±0.09

Bss 0.07±0.08

TABLE VII. Effect of shifting match window in hybrid con-
struction to earlier times with waveform resolutions used in
this analysis: ‖δh‖syst at 100Mpc between two hybrids con-
structed with the same numerical waveform, or between a
hybrid waveform and a PN inspiral waveform. Systematic er-
rors decrease as waveform resolution increases; more compact
stars require higher resolution. For EOS Bss, the hybridiza-
tion error is as large as that from neglecting hybridization
entirely; this can also be seen in the difference between or-
ange curves in Fig. 1.

Hybrid Variation PN Inspiral

EOS aLIGO ET-D aLIGO ET-D

2H SACRA R309 I188 1.60 14.86 2.34 22.08

2H SACRA R274 I188 1.48 13.73 2.34 22.13

2H SACRA R247 I188 1.46 13.52 2.35 22.22

2H Whisky R177 I188 1.16 10.63 2.34 22.09

2H Whisky R142 I188 1.08 09.90 2.35 22.22

H SACRA R209 I221 0.97 08.57 1.75 15.71

H SACRA R188 I221 0.87 07.66 1.75 15.62

HB SACRA R194 I188 0.88 07.67 1.68 14.90

HB SACRA R175 I188 0.89 07.76 1.62 14.40

HB Whisky R177 I188 1.09 09.53 1.65 14.63

HB Whisky R177 I221 0.93 08.15 1.63 14.44

B SACRA R174 I221 0.90 07.79 1.58 13.87

B SACRA R156 I221 0.85 07.41 1.42 12.48

B Whisky R177 I221 1.32 11.53 1.62 14.26

Bss SACRA R127 I221 1.36 11.80 1.48 12.88

Bss Whisky R142 I221 1.47 12.83 1.48 12.90

We explore the impact of changing hybridization pro-
cedures by shifting the window used to match PN and
numerical waveforms, within the assumptions outlined in
Sec. IVA. The procedure of Sec. IVB is repeated with a
variant match window of (tpeak−12ms) to (tpeak−4ms).
The results for ‖δh‖, distinguishability, and measurabil-

ity of Λ do not change appreciably. However, the system-
atic error from differences between numerical simulations
doubles as earlier inspiral portions of lower-resolution nu-
merical waveforms come into play.
We estimate the impact of uncertainty in the

hybridization procedure used to produce parameter-
estimation templates by comparing waveforms con-
structed from the same numerical simulation using dif-
ferent hybridization windows. The results in Table VII
show that the variant hybridization gives ‖δh‖syst ≃ 0.9–
1.6, which decreases with increasing resolution. Even
with the best resolution, ‖δh‖syst ranges from 20–75%
of ‖δh‖ at 100Mpc, largest for compact stars and small
differences in EOS. As in the binary black hole case [82],
longer and more accurate numerical simulations will be
required to reduce the systematic error associated with
hybridization. We also note that while these variants
seem to cover a reasonable range given the assumptions
outlined in Sec. IVA, a more systematic analysis with
accurate waveforms would be required to quantify the
uncertainties for parameter estimation.
The tidal contributions discussed in this paper include

the leading order and next-to-leading order tidal contri-
butions from [96, 97]. The significance of higher-order
PN tidal terms can be estimated by dropping the next-
to-leading order tidal contribution. This results in sys-
tematic error of ≈ 9–15% of ‖δh‖ at 100Mpc; always
smaller than systematic error from varying the hybrid
procedure, but most important for large-radius stars.
We have throughout assumed that an underlying

point-particle inspiral model is accurate up to Mω ≃ 0.1.
In practice, for equal-mass systems, the time-domain
Taylor-T4 signal appears to satisfy this requirement, but
calibrated phenomenological or EOB models may be re-
quired to accurately capture the underlying dynamics of
more general systems. We also assume, based on the
agreement seen in [19, 20], that there are no EOS effects
beyond tidal contributions before the hybridization times
used in this paper; this neglects any contributions smaller
than best current numerical errors and low-frequency res-
onances [98].

V. USE OF INSPIRAL-ONLY TEMPLATES

We can also estimate the impact of neglecting numer-
ical simulation results entirely in a waveform model of
binary neutron star inspiral and merger. To do this, we
calculate the difference between the hybrid waveforms
and our inspiral model extended to coalescence. The to-
tal ‖δh‖syst is shown in Table VII. For compact stars
(EOS B, Bss), the hybrid error is comparable to the error
from neglecting the numerical merger entirely. However,
larger neutron stars (EOS 2H, H) have a reduction in sys-
tematic error from using hybrids instead of inspiral-only
waveforms.
One can estimate the extent to which inspiral-only

waveforms can be trusted by considering an inner prod-
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FIG. 13. The accumulation of ‖δh‖syst between inspiral-only
waveforms and the two variant cases of hybrid waveforms as
a function of upper cutoff frequency on the inner product.
The impact of hybridization is significantly larger for compact
EOS (EOS Bss, in orange, has a radius of 10.2 km)—the total
acumulation is comparable to the difference between hybrids,
as seen in Table VII.

uct calculated only up to an upper cutoff frequency.
The frequency dependence of the difference between hy-
brid and inspiral-only waveforms is shown in Fig. 13.
If this cutoff frequency is low, or the signal is weak,
there is no measurable impact from using inspiral-only
waveforms. All hybrids and analytic inspirals agree (to
within numerical error) below 700Hz. However, strong
signals or large neutron stars produce significant differ-
ences from post-Newtonian models. The EOS 2H model,
which is an extremely large (R = 15.2 km) neutron star,
begins to depart from post-Newtonian inspiral at ap-
proximately 700Hz, even if the hybrid window includes
higher frequencies, and hybrids constructed for EOS 2H
reach ‖δh‖ × (100Mpc/Deff) = 2.0 (distinguishable at
Deff = 2000Mpc with total ρ ≃ 16) at f ≃ 1023Hz. Hy-
brids for more realistic EOS (H and HB) are not distin-
guishable from post-Newtonian inspiral until total SNR
ρ ≃ 22 and upper frequency ∼ 1400Hz to ∼ 1600Hz,
although this is sensitive to the choice of hybridization
window.

Aside from the systematic error introduced by using
inspiral-only waveforms to measure EOS effects, one can
consider the usefulness of inspiral-only models to esti-
mate EOS measurability. In Fig. 12, we overlay the result
of an analogous estimation using only post-Newtonian
inspirals, including leading order and next-to-leading or-
der tidal effects, and extended to post-Newtonian coales-
cence. We again again align waveforms at 200Hz and use
only differences above 200Hz in the calculation, and also
consider the same finite parameter spacings. For small
differences in EOS, the PN inspiral models accurately
mimic the measurability estimates of hybrid EOS. The
nonlinear behavior is also seen, but for large EOS differ-
ences there is some overestimate from using inspiral-only

models; this could be improved by using post-Newtonian
inspirals cut-off at a representative merger frequency.

VI. MULTIPLE SIGNALS

A combination of N identical signals, each with un-
certainty δΛ would give an overall uncertainty δΛ/

√
N

if all events occurred at the same effective distance Deff.
When δΛ scales linearly with Deff, we can use the results
of [99] to estimate how the uncertainty δΛ0 at a reference
Deff,0 translates to an expected combined error δΛ from
signals randomly distributed within a horizon distance
Dhorizon. The combined uncertainty from the signals is
given by

〈δΛ−2〉−1/2 = δΛ0
Dhorizon

Deff,0
(3N)

−1/2
, (24)

where N is the total number of events.
For the numerical-only estimates, linear scaling does

not apply. We take the maximum range where we have
calculated distinguishability of signals, δΛ ≃ 2000 at
Deff = 200Mpc, within which we expect to find N200

equalling 9% of the total number of signals (again fol-
lowing [10]). We conservatively take linear scaling from
this limiting distinguishability, and find 〈δΛ−2〉−1/2 ≃
670

√

3/N200.
For hybrid estimates, we can use the dotted line in

Fig. 12, which gives δΛ ≃ 350 for Deff = 300Mpc, to
provide a roughly linear scaling within the horizon dis-
tance of 445Mpc. Eq. (24) then gives an estimate for
the expected measurement uncertainty of 〈δΛ−2〉−1/2 ≃
21
√

40/N .
We expect, from studies with mixed binaries [88], that

correlations with mass parameters will increase δΛ by a
factor of ∼ 3. Full bayesian parameter estimation using
post-Newtonian waveforms including tidal terms suggests
that a combination of multiple signals can still used to
distinguish between realistic EOS[95]. However, the sta-
tistical uncertainty would then be significantly smaller
than the systematic errors estimated in this work, which
do not decrease with number of signals. Uncertainty in
waveform modeling would therefore limit our ability to
measure EOS parameters using binary neutron star sys-
tems.

VII. CONCLUSIONS

It is now clear that tidal effects due to the finite size of
neutron stars can produce a detectable signature in grav-
itational signals that are likely to be observed by ground-
based gravitational wave detectors such as Advanced
LIGO. The observation of these tidal effects presents the
possibility of measuring neutron star properties which in
turn will constrain models for the neutron-star EOS. In
particular, using only numerical simulations of the final
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orbits, we estimate two EOS, H and B, which produce
isolated neutron-star radii that differ by δR ∼ 1.3 km,
are distinguishable at Deff = 100Mpc. This gives an
effective δR/R ∼ 10%. However, the measurement ac-
curacy does not improve linearly with SNR, and weaker
signals will have less discriminatory power.
If trusted hybrids can be constructed, incorporating

additional information from the tidal post-Newtonian
terms, then measurement errors drop significantly, and
the above EOS can be distinguished at Deff = 300Mpc.
Numerical relativity efforts are required to generate the
waveforms needed to make these measurements, but the
current state-of-the-art simulations are already up to the
task for large-radius neutron stars. Future advances in
numerical relativity will provide waveforms of higher ac-
curacy, and extending to lower frequencies, which will re-
duce systematic errors on measurements of tidal effects.
Further improvements in the scope of physical processes
that are simulated by numerical relativity will also enable
us to follow the waveform through binary coalescence and
past merger, and therefore could allow for the measure-
ment of additional EOS properties from oscillations of a
post-merger hypermassive remnant.
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