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Abstract  53 

Growing up on a farm is associated with an asthma-protective effect but the underlying mechanisms 54 

are largely unknown. In the PASTURE birth cohort, we modeled maturation using 16S rRNA sequence 55 

data of the human gut microbiome in infants from 2 to 12 months. The estimated microbiome age 56 

(EMA) in infants at 12 months was associated with previous farm exposure (β=0.27 [0.12-0.43], 57 

p=0.001, n=618) and reduced risk of asthma at school age (OR=0.72 [0.56-0.93], p=0.011). EMA 58 

mediated the protective farm effect by 19%. In a nested case-control sample (n=138), we found 59 

inverse associations of asthma with measured level of fecal butyrate (OR=0.28 [0.09-0.91], p=0.034), 60 

bacterial taxa predicting butyrate production (OR=0.38 [0.17-0.84], p=0.017), and the relative 61 

abundance of the gene encoding butyryl-CoA:acetate CoA-transferase, a major enzyme in butyrate 62 

metabolism (OR=0.43 [0.19-0.97], p=0.042). The gut microbiome may contribute to asthma 63 

protection through metabolites, supporting the concept of a gut-lung axis in humans. 64 



Introduction 65 

Many adult diseases originate early in life.
1
 In the prenatal period, environmental influences on 66 

disease development are filtered by the maternal organism. After birth, however, the infant interacts 67 

directly with the environment, beginning with the colonization of the body surfaces by microbiota 68 

within the first hours of life.
2
 This process consists of mutual adaptation between host and 69 

microbiota and ultimately educates the host’s immune system.
3
 Studies in gnotobiotic mice support 70 

an essential role for microbial exposure in the development of the immune system.
4
 The inverse 71 

relation of microbial exposure and immune-mediated diseases such as allergies and asthma has been 72 

the basis for the hygiene hypothesis and its amendments explaining the epidemics of inflammatory 73 

diseases in a world that has abandoned traditional lifestyles.
5
  74 

A proposed mechanism by which a traditional lifestyle may grant strong protective effects against 75 

asthma involves the sustained microbial exposure on farms.
6,7

 This protective effect has mainly been 76 

attributed to consumption of farm milk and exposure to a variety of environmental microbiota in 77 

animal sheds.
6,8

  78 

A highly diverse microbial environment may influence the human microbiome and thus mitigate 79 

asthma risk, as shown for the microbiome of the upper airways.
9,10

 For the gut microbiome, the 80 

effect on airway disease is less obvious. Murine models have suggested protection from allergic 81 

inflammation in the lung through metabolites such as short chain fatty acids (SCFA) produced by 82 

certain gut bacteria.
11

 83 

The human gut microbiome undergoes profound changes during the first year of life and starts 84 

stabilizing thereafter.
12,13

 Hence, we hypothesized that particularly the first year of life represented a 85 

time window for exposures of the outer environment to shape the development of the human 86 

microbiome with possibly lasting consequences. The large population-based PASTURE birth cohort 87 

provided the unique opportunity to comprehensively assess farm-related environmental effects on 88 

the early gut microbiome and, through the gut microbiome, on respiratory health. 89 



Results 90 

The Protection against Allergy—Study in Rural Environments (PASTURE) birth cohort followed 91 

children in European rural areas, of whom 50% were born to mothers living on a family-run farm. In 92 

the Austrian, Finnish, German, and Swiss arms of this study (n=930, 49% females), fecal samples 93 

were taken at month 2 and month 12. At both time points, we obtained sequence reads for the 94 

bacterial 16S rRNA and the fungal internal transcribed spacer (ITS) region from samples from 618 95 

(66%) and 189 (20%) children, respectively, which represented all four centers at similar shares 96 

between 22% and 33% (Extended Data Fig. 1, Supplementary Table 1). Asthma was defined as a 97 

physician’s diagnosis of asthma or recurrent obstructive bronchitis established until 6 years of age 98 

and was present in 8.1% of the 930 children. 99 

Bacterial composition at month 2 and 12 100 

At month 2 (Fig. 1a), the genus Bifidobacterium was predominant. Despite a positive association of 101 

the relative abundance of Bifidobacterium with breastfeeding (β=0.43 [0.23; 0.64], p<0.001), this 102 

genus was not significantly related to subsequent asthma. At month 12 (Fig. 1b), the relative 103 

abundance of Bifidobacterium halved, whereas the genus Blautia of the family Lachnospiraceae 104 

increased substantially in relative abundance. In addition, various other genera including 105 

Coprococcus, Faecalibacterium, and Roseburia became detectable. By clustering bacterial 106 

composition over both time points by Dirichlet mixture modeling, we identified 5 clusters (DCs), with 107 

two clusters mainly representing the month 2 samples, two representing the month 12 samples and 108 

one cluster shared by both time points (Fig. 1c,d). The first two clusters (DC1 and DC2) were 109 

dominated by Bifidobacterium, whereas the third cluster (DC3) revealed considerable heterogeneity 110 

between samples with various different taxa accounting for at least 1% relative abundance (Fig. 1c, 111 

Supplementary Table 2). DC4 and DC5 demonstrated more stabilized bacterial patterns with the 112 

emergence of Firmicutes. In samples of month 12, children in this cluster showed a higher prevalence 113 

of asthma as compared to clusters DC4 and DC5 (Fig. 1e).  114 

Microbial maturation 115 

To better understand the physiologic changes of the gut microbiome during the first year, we 116 

modeled the exact age of fecal sampling by a random forest of the composition of bacterial genera at 117 

month 2 and 12 in individuals with samples available at both time points. Since this model estimates 118 

the biological age of the healthy microbiome, we termed the resulting prediction score ‘estimated 119 

microbiome age’ (EMA). To exclude interference with disease, we restricted the model building to 120 

133 healthy individuals (67 farm children and 66 non-farm children) without diarrhea between 121 

month 2 and 12 and never affected by wheeze or asthma.  122 



The taxa most importantly contributing to the prediction model were Blautia and Coprococcus (Fig. 123 

2a). When applying the prediction model to the entire population (n=618), the composition of genera 124 

did not vary notably with EMA at month 2 (Fig. 2b), whereas at month 12 a clear pattern emerged 125 

with an increase particularly in Ruminococcus, Roseburia, and Coprococcus (Fig. 2c). When stratifying 126 

for month 2 and 12 samples, the correlation of EMA with the exact sampling time point was largely 127 

removed (Fig. 2d, rho=0.10 and rho=0.15 for the month 2 and 12 samples, respectively), thereby 128 

indicating that EMA essentially reflects maturation from 2 to 12 months. DC3 comprised month 2 129 

samples with advanced and month 12 samples with delayed EMA (Fig. 2d) thereby describing 130 

individuals not following typical maturation. As an alternative surrogate for maturation we explored 131 

a PCoA over both time points (Extended Data Fig. 2a), whose first axis strongly correlated with EMA 132 

(Extended Data Fig. 2b). 133 

Children with any asthma displayed on average significantly lower EMA values at month 12 (Fig 2e). 134 

The prevalence of asthma was 12% in children with incomplete maturation as defined by the lowest 135 

quartile of EMA (Fig. 2e). Children with more advanced EMA had a lower risk of asthma (OR=0.48 136 

[0.25-0.93], p=0.030) and lung function impairment (OR=0.48 [0.27-0.82], p=0.008), when compared 137 

against the lowest quartile of EMA. Similarly as a continuous variable, higher EMA reduced the risk of 138 

asthma (OR=0.72 [0.56-0.93], p=0.011) and particularly of non-atopic asthma (Fig. 2f). The effect of 139 

EMA on asthma was not changed when adjusted for DC3 at month 12, whereas the effect of DC3 on 140 

asthma was largely removed when adjusting for EMA (Fig. 2f). The effect of EMA was more 141 

pronounced in carriers of the non-risk genotype encoded on chromosome 17q21 (Supplementary 142 

Table 3) and was also seen in a sensitivity analysis excluding the 133 children in whom the prediction 143 

model was established (Extended Data Fig. 2c/d). When predicting EMA at month 2, there was no 144 

clear association with asthma (OR=1.24 [0.93-1.65], p=0.135). 145 

Microbial maturation versus composition 146 

We analyzed microbial composition using a principle components analysis (PCA) approach designed 147 

for compositional data. At month 2, the 3
rd

 PCA-axis exerted an asthma-protective effect (OR=0.68 148 

[0.49-0.95], p=0.024) irrespective of concomitant atopy (Extended Data Fig. 3a). This axis correlated 149 

with the relative abundance of Bacteroides and Parabacteroides and inversely with Enterococcus 150 

(Extended Data Fig. 3b).  151 

At month 12, the 1
st

 PCA-axis was inversely related to non-atopic asthma (OR=0.62 [0.39-1.00], 152 

p=0.048) and correlated particularly with Roseburia, Ruminococcus, and Faecalibacterium (Extended 153 

Data Fig. 3c,d). A sensitivity analysis based on principle coordinate analysis (PCoA) using unweighted 154 

UniFrac as distance measurement corroborated these patterns (Extended Data Fig. 4). 155 



EMA correlated strongly with PCA-axis 1 at month 12 (rho=0.75) and α-diversity (rho=0.70 for 156 

richness), but not with PCA-axis 3 at month 2 (Extended Data Fig. 5). EMA and PCA-axis 3 at month 2 157 

emerged as independent determinants of asthma in a mutually adjusted model (Extended Data Fig. 158 

3e-g), whereas the effect of PCA-axis 1 at month 12 was explained by EMA.  159 

Estimated microbiome age and the farm effect on asthma 160 

The PASTURE study was designed to assess the farm effect on asthma (OR=0.53 [0.30-0.92], p=0.023, 161 

n=930). In the present subpopulation (n=618), farm children also had a lower risk of asthma as 162 

compared to rural nonfarm children (center-adjusted OR=0.56 [0.29-1.08], p=0.082). At month 2, no 163 

effect of farm exposure on the microbial composition was seen, while the asthma-protective PCA-164 

axis 3 was positively associated with breastfeeding and inversely with C-section and maternal 165 

smoking during pregnancy (Fig. 3a) independently from gestational age. In contrast, EMA was 166 

delayed by prolonged breastfeeding (Extended Data Fig. 6) but positively influenced by growing up 167 

on a farm (β=0.27 [0.12-0.43], p=0.001) and particular farm exposures such as stays in animal sheds 168 

or consumption of milk or eggs directly obtained from a farm (Fig. 3b). The latter variables also 169 

reflect a more diverse feeding pattern in farm children, as illustrated by a more frequent 170 

consumption of all six main food items cereals, meat, bread, yogurt, cake, and vegetables / fruits 171 

(Supplementary Table 4). A sensitivity analysis showed independent effects on EMA by a diverse 172 

feeding pattern (β=0.18 [0.01; 0.34], p=0.034) and prolonged breastfeeding (β=-0.41 [-0.62; -0.21], 173 

p<0.001). Farm children were allocated more commonly to the more advanced Dirichlet clusters DC4 174 

and DC5 at month 12 (p<0.001, Fig. 3c).  175 

The effect of EMA at month 12 on asthma was validated in 102 additional PASTURE children, i.e. 176 

individuals without measurements at month 2 (Fig. 3d). This effect was also consistent over the study 177 

centers, as was the effect of farm exposure on EMA (Fig. 3e,f). The effect of EMA withstood 178 

adjustment for the childhood asthma locus on chromosome 17q21 and potential confounders 179 

(Supplementary Table 5).  180 

A structure equation model revealed that EMA mediated the asthma-protective effect of growing-up 181 

on a farm by 19% (p=0.011, Fig. 3g), also in children of non-asthmatic mothers (25%, p=0.024). 182 

Likewise, PCA-axis 3 at month 2 tended to mediate the asthma-protective effect of breastfeeding by 183 

18% (p=0.100). Farm children were characterized by a more mature microbiome including 184 

Coprococcus and Roseburia (Fig. 3h), known producers of short chain fatty acids (SCFA). 185 

Bacterial metabolites and estimated microbiome age 186 

To assess bacterial taxa by their capacity to produce SCFA, we modeled SCFA measurements 187 

obtained at month 12 in 209 children by the composition of bacterial genera using random forest 188 



models. Production of butyrate, propionate, and acetate was most importantly predicted by 189 

Roseburia, Bacteroides, and Turicibacter, respectively (Fig. 4a). 190 

Since the SCFA prediction scores were correlated mutually and partially with EMA, we performed a 191 

four-dimensional PCA on EMA and the SCFA scores (Fig. 4b, n=720). Both the butyrate score and EMA 192 

loaded on dimension (Dim) 1, which was inversely associated with asthma and non-atopic asthma 193 

(Fig. 4c). The acetate score loaded particularly on Dim 2, which was unrelated to asthma. Dim 3 194 

represented the propionate score and partially EMA and was inversely related to atopic asthma. Dim 195 

4 mainly reflected the difference between EMA and the butyrate score and had an additional 196 

protective effect on non-atopic asthma. 197 

Dim 1 and 3 (representing EMA, butyrate and propionate scores) were positively related to growing 198 

up on a farm and particularly consumption of unprocessed farm milk (Fig. 4d). Dim 1 mediated 15% 199 

and Dim 3 an additional 6% of the farm effect on asthma (Fig. 4e). 200 

In a nested case-control sample (44 cases and 94 controls), we validated the butyrate score as the 201 

most relevant SCFA score. For this purpose we determined by qPCR the relative abundance of the 202 

gene encoding a major bacterial enzyme in the butyrate metabolism, i.e. butyryl-CoA:acetate CoA-203 

transferase. When comparing the results of this gene assay with the originally measured butyrate 204 

levels and the estimated butyrate score we found particularly high asthma prevalence figures in the 205 

lowest quartiles of the respective measures (Fig. 4f). The corresponding associations with the 206 

different asthma phenotypes were similar for all measures (Fig. 4g), e.g. OR with asthma = 0.28 [0.09-207 

0.91], p=0.034 for measured level, 0.38 [0.17-0.84], p=0.017 for butyrate score, and 0.43 [0.19-0.97], 208 

p=0.042 for the gene assay. Likewise, the associations of the asthma phenotypes with the propionate 209 

score resembled those with the corresponding measured levels in the same case-control sample 210 

(Extended Data Fig. 7). 211 

Network of bacteria versus single taxa 212 

Focusing on the result of the maturation process, i.e. the microbial composition and interrelation of 213 

the genera at 12 months, we performed a network analysis (Fig. 5a). This revealed five network 214 

modules with three hubs, which were closely connected. Two hubs reflected Roseburia and 215 

Ruminococcus and belonged to the green module, whose first eigenvector was correlated with EMA 216 

(r=0.73) and the butyrate score (r=0.68). The yellow module was moderately related to EMA (r=0.35) 217 

and contained two main taxa of EMA, i.e. Blautia and Coprococcus; the latter formed the third hub.  218 

When exploring the association of asthma with amplicon sequence variants (ASVs) related to the 219 

three hubs, two asthma-protective ASVs, one of genus Roseburia (OR=0.42 [0.18-1.01], p=0.053) and 220 



one of the genus Coprococcus (OR=0.38 [0.16-0.92], p=0.032) emerged (Supplementary Table 6). 221 

Using 16S ribosomal sequences database BLAST, the first ASV was more precisely assigned to 222 

Roseburia inulinivorans (100% identity), whereas the second ASV was more compatible with 223 

Anaerobutyricum hallii (98.4%) than Coprococcus eutactus (92.4%). Presence of these ASVs was 224 

strongly related to higher butyrate levels (GMR=1.76 [1.34-2.32], p<0.001 and 1.52 [1.12-2.05], 225 

p=0.008, respectively) and relative abundance of the butyryl-CoA:acetate CoA-transferase gene 226 

(GMR=3.33 (1.55-7.15), p=0.003 and 3.81 (1.74-8.34), p=0.001, respectively). The associations of 227 

these ASVs with asthma, however, did not withstand adjustment for EMA. Likewise, no genus was 228 

found with an independent protective effect on asthma (Supplementary Table 7), whereas 229 

Eggerthella (red module) exerted a particular risk effect on asthma (1.43 [1.07-1.92], p=0.016) 230 

independently from EMA. 231 

The mycobiome and fungal age 232 

In addition to bacteria, we further explored fungal colonization using ITS-data (n=189, Extended Data 233 

Fig. 1). Estimated fungal age (EFA) was calculated in analogy to EMA and mainly depended on 234 

changes in Saccharomyces, Alternaria, and Malassezia. EFA was determined by consumption of 235 

starchy foods and unrelated to subsequent asthma (Extended Data Fig. 8). Though EFA and EMA 236 

were uncorrelated (rho=0.02), relative abundance of the highly prevalent genus Alternaria at 2 237 

months was associated with subsequent bacterial maturation (β=0.05 [0.01-0.10], p=0.032).  238 

Sensitivity analyses 239 

EMA was also inversely associated with an asthma diagnosis established after 3 years of age 240 

(Extended Data Fig. 9) and particularly with the less common (Supplementary Table 8) persistent 241 

wheeze phenotype (OR=0.49 [0.35-0.70], p<0.001).
14

 EMA was unrelated to sensitization to seasonal, 242 

perennial, or food allergens. Stratification for atopic sensitization in children or for maternal asthma 243 

did not reveal major differences in the associations of asthma phenotypes with EMA (Supplementary 244 

Table 9). Similarly, the associations of EMA and asthma phenotypes were homogeneous between 245 

farm and non-farm children with the exception of the association of EMA and atopic asthma, which 246 

was only seen in non-farm children (0.68 [0.45-1.02], p=0.060). Unlike microbial maturation and 247 

composition, the butyrate score did not significantly vary between centers (p=0.191, Extended Data 248 

Fig. 10). 249 



Discussion 250 

In the PASTURE birth cohort, farm-related exposures influenced the maturation of the gut 251 

microbiome during the time window from 2 to 12 months. As a measure of maturation, estimated 252 

microbiome age (EMA) mediated a substantial proportion of the well-known farm effect on asthma. 253 

Bacterial communities with the potential of producing butyrate such as Roseburia and Coprococcus 254 

contributed to asthma protection (Fig. 5b). 255 

Mode of birth has often been associated with the subsequent colonization of the human gut, as 256 

exemplified for Bacteroides.
12

 The relevance of mode of birth for future health
15

 highlights the role of 257 

the maternal microbiome in the colonization of the neonatal gut. The current analyses, however, 258 

suggest that this maternal influence is gradually replaced by the increasing variety of environmental 259 

exposures affecting the growing child. Indeed, the most influential change in the development of the 260 

mammalian gut microbiome is probably the transition from breastfeeding to solid food.
16,17

 261 

bifidobacteria, whose early predominance may be fostered by the bifidogenic properties of 262 

breastmilk,
18

 decrease after weaning. In our analysis, the asthma-protective PCA-axis at month 2 was 263 

mainly influenced by mode of birth and correlated with Bacteroides. The positive association of this 264 

axis with breastfeeding and its asthma-protective effect was not explained by bifidobacteria. 265 

Independently from this very early phenomenon, bacterial maturation between month 2 and 12 266 

exerted a strong protective effect on asthma. Various shifts in bacterial composition including the 267 

bacterial families Lachnospiraceae, Ruminococcaceae, and Bifidobacteriaceae suggest high plasticity 268 

of the intestinal microbiome throughout the first year of life.
12,13

 Evidently, the window of 269 

opportunity for the establishment of an asthma-protective microbiome extends substantially beyond 270 

the well-studied
19-21

 period of the first 3 months of life. Early precipitate maturation might even be 271 

unfavorable for asthma,
22

 which may explain the tendency towards asthma risk by higher EMA values 272 

at month 2, particularly in children assigned to DC3. 273 

EMA predicted asthma better than DC3 at any time point, emphasizing the developmental aspect of 274 

a favorable microbiome. Possibly the bacterial composition is not beneficial by itself but may indicate 275 

successful maturation. This notion has vast implications for prevention strategies as the mere 276 

application of distinct probiotics or combinations thereof seems less promising for asthma 277 

prevention. 278 

In contrast to the early microbiome, which was favorably influenced by breastfeeding, the 279 

subsequent maturation process was hampered by prolonged breastfeeding. Since the effect of 280 

prolonged breastfeeding on EMA was independent from the diversity of solid foods, this finding 281 



supports the idea that cessation of breastfeeding is a key factor for microbial composition and 282 

maturation.
12,16,17

 283 

The particular setting of the PASTURE study revealed other main determinants of maturation, which 284 

were all related to farm exposure, the epitome of the hygiene hypothesis. Farm children are known 285 

to be exposed to a larger variety of environmental microbiota
6
 and potentially beneficial clusters of 286 

microorganisms.
23

 There may be various mechanisms involved in the mediation of the protective 287 

effect of environmental microbiota on asthma: when playing in animal sheds, e.g., children may 288 

inhale environmental microorganisms, which may exert their effects directly in the airways.
9,10

 In the 289 

present mediation analysis, we demonstrate that 19% of the farm effect on asthma was mediated 290 

through the maturation of the gut microbiome, suggesting that environmental microbiota are 291 

ingested and interact with the gut microbiome. At least, this notion is a reminder of the feco-orally 292 

transmitted infections postulated as protective by the hygiene hypothesis.
5
 The remaining 81% of the 293 

farm effect on asthma might be mediated by other mechanisms, operating also beyond the first year 294 

of life. 295 

When exploring a single taxa approach, we did not identify any taxon as protective in itself.  This was 296 

unlikely to be caused by insufficient statistical power, since we detected a risk effect by the single 297 

taxon Eggerthella, an emerging pathogen with asthma risk effects in adults.
24,25

 Likewise in the nasal 298 

microbiome we previously identified individual taxa such as Moraxella catharralis merely as being 299 

harmful.
10

 Accordingly, single taxa are more likely to exert harm effects.  300 

Inconsistencies between studies may arise from differences in time point of sampling. For example, 301 

risk of atopic wheeze was associated with relative abundance of the taxa Faecalibacterium sp., 302 

Lachnospira sp., Veillonella sp., and Rothia sp. at 3 months but not at 12 months.
20

 The beneficial 303 

taxon Veillonella may not only lose its beneficial effect over time,
26

 but even emerge subsequently as 304 

an asthma-risk taxon.
27

 Though Bacteroides, Prevotella and Coprococcus were associated with allergic 305 

diseases from 6 months to 8 years, other taxa such as Ruminococcus have been shown to lose their 306 

beneficial effect within the first year.
28

 Though Bifidobacterium has been suggested as a beneficial 307 

probiotic in other contexts,
29

 it was increased in allergic children at later time points.
28

 In our 308 

analysis, Bifidobacterium did not contribute to the asthma-protective effect. These inconsistencies 309 

were another reason for our integrative approach considering changes in bacterial composition over 310 

time.  311 

A limitation of the current analysis might be seen in only two sampling time points, possibly missing 312 

fluctuations within this developmental window. Nevertheless, this drawback might emerge as an 313 

advantage, as comparing starting point and outcome of the core maturation process may highlight 314 



the essential changes of the microbiota in this time window. Further refinement occurs in the 315 

subsequent years
12,13

 and, on a smaller scale, throughout life.
22,30

 Another limitation is that parent-316 

reported diagnosis of asthma is susceptible to misclassification; in previous analyses, however, this 317 

outcome definition has been validated by lung function measurements.
14

 318 

To better understand how bacterial maturation may impact respiratory health we focused on the 319 

functional properties of the gut bacteria and modelled communities with a high likelihood of 320 

producing distinct SCFAs. As all resulting SCFA scores were correlated with EMA, we tried to 321 

disentangle the different aspects of EMA and the three SCFA scores by a PCA. The component of 322 

EMA that was shared with the likelihood of producing butyrate (Dim 1) exerted the strongest 323 

asthma-protective effect, predominantly for the non-atopic phenotype. For the atopic phenotype the 324 

aspect of EMA shared with propionate production (Dim 3) was particularly relevant. Moreover, both 325 

aspects were involved in the mediation of the protective farm effect on asthma. In contrast, the 326 

likelihood of producing acetate, which predominantly represented Dim 2, was unrelated to asthma. 327 

This finding might argue in favor of a specific effect of butyrate and propionate in the human setting, 328 

where these SCFA, but not acetate, have been shown to impair viability of eosinophils.
31

 Finally, Dim 329 

4 denoted an aspect of EMA that was not shared with butyrate production; hence, bacterial 330 

maturation may exert an individual protective effect on non-atopic asthma beyond butyrate 331 

production. 332 

In order to validate the relevance of SCFA production we related asthma directly to SCFA levels as 333 

measured in the fecal samples
32

 and found consistent associations with butyrate and a tendency for 334 

an association between atopic asthma and propionate. The gene assay targeting the main pathway 335 

of the bacterial butyrate metabolism, i.e. conversion of butyryl-CoA to butyrate via butyryl-336 

CoA:acetate CoA-transferase,
33

 corroborated the association of butyrate production and (non-atopic) 337 

asthma. 338 

Butyrate is the main source of energy for colon epithelial cells, contributes to the maintenance of the 339 

epithelial gut barrier, and has immunomodulatory and anti-inflammatory properties.
34

 Various taxa, 340 

whose composition considerably varies between individuals, can contribute to butyrate production 341 

directly and by cross-feeding.
35

 Likewise, propionate has an anti-inflammatory potential, but is 342 

mainly produced by intestinal Bacteroides taxa, though also some Roseburia, Coprococcus, and 343 

Blautia taxa can switch from butyrate to propionate production.
36

 In particular Roseburia has been 344 

suggested as a biomarker of health because of its anti-inflammatory properties.
37

  345 

We found two promising asthma-protective ASV candidates of the genera Roseburia and 346 

Coprococcus (or A. hallii), which were also directly related to butyrate production and the butyryl-347 



CoA:acetate CoA-transferase gene. Adjustment for EMA, however, revealed that these taxa do not 348 

carry the asthma-protective effect themselves. Rather they may represent a network of bacteria with 349 

the capacity to produce SCFA. This notion is supported by the role of the genera Roseburia and 350 

Coprococcus as hubs in the network analysis. 351 

Altogether, higher SCFA levels may reduce inflammation at various body sites including the airway 352 

mucosa. The effect of butyrate- and propionate-producing bacteria reflects an aspect of healthy 353 

maturation of the gut microbiome and adds an independent component to the asthma-protective 354 

EMA effect, thereby extending the concept of the gut-lung axis
38,39

 to the human setting.  355 

The beneficial effect of gut microbiota may not be specific to respiratory health. Bacteria related to 356 

maturation of the gut microbiome (Ruminococcus, Faecalibacterium, Roseburia, and 357 

Lachnospiraceae) were also identified in children with a low prevalence of enteric infections.
40

 358 

Moreover, a lower abundance of Roseburia was also seen in rheumatoid arthritis.
41

 Hence, the 359 

combination of the above taxa might be seen as a marker of a well-established host immune system 360 

and good general health in the absence of intestinal dysbiosis.
42

 361 

The definition of phenotypes of asthma and atopy may vary over studies. Some studies focused on 362 

early outcomes;
20,21,26

 few studies followed-up for atopic wheeze
43

 or an asthma diagnosis
27

 at age 5 363 

years, when it can be established with reasonable certainty. Therefore we assessed various asthma 364 

phenotypes defined by wheezing patterns or concomitant atopy. EMA was consistently associated 365 

with the non-atopic phenotype of asthma and persistent wheeze but not with atopic sensitization 366 

per se. A family history of atopy, however, did not influence the susceptibility to the microbiome-367 

associated farm effect on asthma. In contrast to the COPSAC 2010 study,
27

 we found an inverse 368 

association of EMA and asthma also in children of mothers without asthma. Therefore, studies 369 

focusing on atopic outcomes like atopic wheeze
20,43

 or performed in high-risk populations
27

 might 370 

reveal other facets of the microbial effect on asthma. The current analysis points towards an 371 

inflammatory pathology beyond atopy, supported by the anti-inflammatory properties of butyrate.
44

 372 

Certainly butyrate is just an example and may be a marker of other metabolites that might be 373 

directly involved in signaling between intestinal and respiratory mucosa, such as D-tryptophan.
45

 374 

Microbial carbohydrate metabolism has also been implied in the health effects of the gut 375 

microbiome.
46

 In addition, the vagus nerve can sense microbial metabolites with its afferent fibers 376 

and contribute to inflammation by a low tone of its efferent part, as illustrated for inflammatory 377 

bowel disease.
47

 In analogy to the so-called gut-brain axis,
48

 the vagus nerve may also be involved in 378 

neuro-immune crosstalk
49

 and in communication between the gut microbiome and the airway tone, 379 

as suggested by the EMA effect on lung function. 380 



Taken together, we found strong influences of an environment rich in microbial stimuli on the 381 

maturation of the gut microbiome. Maturation and prediction of butyrate production mediated 382 

partially the well-known asthma-protective farm effect, thereby suggesting a gut-lung axis in 383 

humans. In contrast, atypical microbial maturation may contribute to the pathogenesis of 384 

inflammatory diseases. This emphasizes the need for prevention strategies in the first year of life, 385 

when the gut microbiome is highly plastic and amenable to modification.  386 
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 577 

Figure legends 578 

Figure 1: Composition of the bacterial gut microbiome at month 2 and 12 579 

a,b. Log-scaled boxplots for relative abundance in 618 children at 2 and 12 months, respectively. 580 

Lower and upper hinges of the boxes denote the first and third quartiles, respectively; the bold 581 

central line represents the median; the whiskers extend to the most extreme data point within 1.5 582 

times the interquartile range from the hinges; extreme values lie beyond the whiskers and are 583 

marked by circles. If names are in brackets, the respective bacterial genus shows a relative 584 

abundance < 0.5% at the respective time point. ‘(F)’ stands for unclassified genus of the respective 585 

bacterial family. c. Log-scaled heat map for relative abundance of genera within the 5 clusters of a 586 

Dirichlet multinomial mixture modeling analysis across both time points resulting in 2 times 618 587 

samples. d. Transition of all 618 individuals between the Dirichlet clusters (DC) from month 2 to 588 

month 12 e. Prevalence of asthma (with standard error bars, n=618) within the most prevalent 589 

clusters at month 2 and at month 12, respectively. 590 



Figure 2: Estimated microbiome age (EMA) as a measure of maturation of the gut 591 

microbiome 592 

a. Variable importance in the prediction model of estimated microbiome age (EMA) in the 133 593 

healthy individuals. b. Stacked bar plots of relative abundance of main genera plotted against 594 

increasing EMA values. The individual samples (n=618 for each time point) are ordered by increasing 595 

EMA, the genera are ordered by Spearman’s correlation with change in relative abundance between 596 

month 2 and 12. c. Spearman’s correlation of EMA at month 12 with change in relative abundance 597 

between month 2 and 12 in 618 children. The color code corresponds to panel b. Correlation p-598 

values were below 0.05 except for Escherichia to Bacteroides. d. Scatter plot for chronological age at 599 

fecal sampling against EMA at both time points (n=2 x 618). The color code reflects grouping by 600 

Dirichlet clusters over both time points. All subsequent analyses relate only to EMA at month 12. e. 601 

Scatter plot for chronological age at fecal sampling against EMA at month 12. The color code reflects 602 

asthma status at age 6 years. The red and blue lines denote average values for chronological age 603 

(horizontal) and EMA (vertical) by asthma status. Distribution of EMA values and estimated density 604 

curve is given on top of the scatter plot (n=618); the vertical line denotes the lowest quartile, i.e. 10.6 605 

months. f. Association of asthma phenotypes with Dirichlet clusters (left panel) and EMA values (right 606 

panel). Odds ratios are derived from logistic regression models (n=544 children with data on asthma). 607 

Simple models are only adjusted for center, mutually adjusted models are adjusted for center and 608 

the other microbial variable, i.e. EMA in the model for Dirichlet clusters and vice versa (A. = Asthma).   609 

Figure 3: Estimated microbiome age and the farm effect on asthma 610 

a. Bivariate associations of environmental determinants and the asthma-protective PCA-axis 3 at 611 

month 2 (n=618); colored bars denote determinants in the forward selection model. b. Bivariate 612 

associations of environmental determinants and the estimated microbiome age (EMA); colored bars 613 

denote determinants in the forward selection model. c. Transition of the 618 individuals between the 614 

previously defined Dirichlet clusters (DC) stratified by farming status. d. Meta-analysis for the effect 615 

of EMA on asthma in the 618 children with fecal samples at 2 and 12 months and in the 102 children 616 

with fecal samples only at 12 months. For 626 of these 720 children data on asthma were available. 617 

e. Meta-analysis of the effect of EMA on asthma over the study centers (n=720 children; Austria 173, 618 

Switzerland 209, Germany 176, Finland 162). f. Meta-analysis of the effect of growing up on a farm 619 

on EMA over the study centers (n=720 children, center distribution as in e). g. Mediation analysis of 620 

the protective effect of farming on asthma mediated by the estimated microbiome age (EMA, 621 

n=626). Shown are the estimates of the path model for indirect and direct effects; the proportion of 622 

the mediated (indirect) effect was 19%. h. Associations of growing up on a farm with the 20 topmost 623 

single genera (n=720, Pseudor. = Pseudoramibacter). 624 



Figure 4: Bacterial metabolites and estimated microbiome age 625 

a. Variable importance for the prediction scores of the short chain fatty acids (SCFA) butyrate, 626 

propionate, and acetate, as modeled in 209 children with measured values. b. Principle component 627 

analysis (PCA) for estimated microbiome age (EMA) and the three SCFA scores (n=720). For 628 

illustrative purposes, Dimension (Dim) 3 is plotted against Dim 1 and Dim 4 against Dim 2. Explained 629 

variance is given in brackets. c. Associations of asthma phenotypes with the four PCA dimensions. d. 630 

Associations of growing up on a farm and consumption of farm milk with the four PCA dimensions. e. 631 

Mediation analysis of the protective effect of farming on asthma mediated by the four PCA 632 

dimensions (n=626). Shown are the estimates of the path model for indirect and direct effects; the 633 

proportion of the mediated (indirect) effect was 23%. f. Validation of the butyrate score in a case-634 

control subsample of 138 children (44 asthma cases and 94 healthy controls). Proportion of asthma 635 

cases (with standard error bars) is given within quartiles of the originally measured butyrate level, 636 

the estimated butyrate score, and the gene assay, i.e. the relative abundance values of the gene for 637 

butyryl-CoA:acetate CoA-transferase, an enzyme of the bacterial metabolic pathway for butyrate 638 

production. g. Associations of asthma phenotypes with the originally measured butyrate level, the 639 

estimated butyrate score, and the gene assay, all dichotomized at the lowest quartile. 640 

Figure 5: Network of single taxa and summary of findings 641 

a. Network analysis of single genera (n=720). The resulting 5 modules are marked by different colors 642 

of the nodes. Positive correlations are marked by blue, negative correlations by red edges. Thickness 643 

of edges denotes strength of SparCC correlation ranging from -0.2 to +0.5. Only correlations with an 644 

absolute value of at least 0.2 are shown. Network hubs as defined by an eigenvector centrality value 645 

above the 99th percentile are marked by black circles.  646 

b. Summary of findings. At month 2, the intestinal microbiome was mainly determined by pre-, peri-, 647 

and early postnatal influences such as prenatal smoke exposure or its absence, mode of birth, and 648 

breastfeeding. An inverse association with asthma at school age was found for a principle component 649 

at month 2. The maturation of the microbiome from 2 to 12 months was quantified by ‘estimated 650 

microbiome age’ (EMA), a prediction score derived from a random forest of sampling time point in 651 

relation to changes in the composition of bacterial genera over time. This EMA mediated the 652 

protective farm effect on asthma by about a fifth. At month 12, the resulting intestinal microbiome 653 

formed distinct network modules with Roseburia, Ruminococcus, and Coprococcus as hubs. EMA 654 

correlated with two dimensions of a principle component analysis combining EMA and short-chain-655 

fatty acid scores. These two dimensions almost exclusively explained the mediation of the protective 656 

farm-effect on asthma and mainly represented bacterial producers of butyrate and propionate, 657 

respectively. 658 



Tables 659 

No tables in main text. 660 



Online Methods 661 

Study population  662 

The Protection against Allergy—Study in Rural Environments (PASTURE) birth cohort has been 663 

recruited in rural areas of Austria, Finland, France, Germany, and Switzerland with the aim to explore 664 

protective effects of growing up on a farm on asthma.
50

 Detailed information on the study design can 665 

be found in the Life Sciences Reporting Summary. Briefly, adult pregnant women were invited to 666 

participate during their third trimester; half of them lived on family-run livestock farms. Their 667 

children were recruited at birth and seen at 2, 12, 56, and 72 months during home visits. Additional 668 

questionnaires were completed at 2, 12, 18, 24, 36, 48, 60 and 72 months.  669 

Additional detailed information on the children’s health, nutrition, and farm-related exposures was 670 

gathered by using weekly diaries and monthly questionnaires covering the 9th to 52nd weeks of 671 

life.
51,52

 Stool samples were collected from the child’s napkin at the 2- and 12-month home visits. 672 

Because fecal sampling was not performed by design in the French arm, these children were 673 

excluded from the current analyses a priori. All aspects of the study were approved by the local 674 

institutional review boards in each country (Austria: Ethikkommission für das Land Salzburg; Finland: 675 

The Research Ethics Committee, Hospital District of Northern Savo; Germany: Ethik-Kommission der 676 

Bayerischen Landesärztekammer; Switzerland: Kantonale Ethik-Kommission St. Gallen; France: 677 

Comité Consultatif pour la Protection des Personnes en Recherche Biomédicale (CCPPRB) 678 

Commission Informatique et Libertés (CNIL)). Written informed consent was obtained from the 679 

parents or guardians.  680 

Definition of health outcomes 681 

Asthma was defined as a physician’s diagnosis of asthma at least once until 6 years or recurrent 682 

diagnoses of spastic, obstructive, or asthmatic bronchitis as reported by the parents at age 6 years.
14

  683 

For a sensitivity analysis we defined ‘asthma after 3 years’ as an asthma diagnosis established in the 684 

4th, 5th, or 6th year of life. Wheeze phenotypes were derived from a latent class analysis as 685 

described previously.
14

 686 

Allergen-specific IgE was assessed at 6 years. Seasonal IgE was defined as at least one specific IgE to 687 

alternaria, alder, birch, hazel, grass pollen, rye, mugwort, or plantain≥0.7 IU/ml at age 6 years. 688 

Perennial IgE (D. pteronyssinus, D. farinae, cat, horse, dog) and food IgE (hen's egg, cow's milk, 689 

peanut, hazelnut, carrot and wheat flour) were defined in analogy. Assessment was done in 690 



peripheral blood by using the semi-quantitative Allergy Screen test panel for atopy (Mediwiss 691 

Analytic, Moers, Germany) in a central laboratory.
53

 The atopic and non-atopic phenotypes of asthma 692 

were defined by presence or absence of concomitant sensitization to inhalant (seasonal or perennial) 693 

allergens with specific IgE ≥0.7 IU/ml at age 6 years while the reference always were children without 694 

asthma.  695 

Spirometry was performed as described previously,
54

 and spirometric indices were calculated 696 

according the equations of a Task Force of the European Respiratory Society (https://www.ers-697 

education.org/guidelines/global-lung-function-initiative/spirometry-tools.aspx). FEV1-values were 698 

determined as z scores and the lower quintile was defined as children with “bad lung function”. 699 

Assessment of exposures 700 

Assessment of environmental exposures by questionnaires covered pregnancy and the first year of 701 

life and included premature birth (less than 37
 
weeks of gestation), low birthweight (below 2500g) as 702 

well as variables for birthweight and gestational age dichotomized at the median, APGAR-score at 5 703 

minutes, and delivery mode including natural vaginal birth, vaginal birth with forceps or vacuum 704 

extraction or cesarean section. Data on treatment with systemic antibiotics was available for the first 705 

2 months and the first year beyond two months; maternal treatment with antibiotics during the first 706 

two months of lactation was also considered.  707 

Breastfeeding was defined at any breastfeeding until 2 months or current breastfeeding at month 2. 708 

Duration of breast feeding was dichotomized at various cut-off levels from 2 to 12 months. Food 709 

diversity was defined as introduction of 5 out of 6 main food items (vegetables or fruits, cereals, 710 

meat, bread, yogurt, cake) within the first year as previously described.
55

 In a sensitivity analysis we 711 

explored an extended list of 15 food items (main food items plus egg, fish, nut, soy, margarine, 712 

chocolate, other milk products, cow's milk, butter), which were dichotomized at at least 11 items. 713 

Furthermore, the children’s diet was assessed with respect to the type of supplemental food and its 714 

introduction in terms of at least weekly consumption.
56

 Farm milk consumption was defined as 715 

weekly consumption of any milk obtained directly from a farm irrespectively of boiling or skimming. 716 

Farm exposure was assessed as growing up on a farm or more specifically by regular contact to hay 717 

or stays in animal sheds including sheds with bigger animals such as cows, poultry sheds, or barns. As 718 

further environmental determinants, we assessed the number of siblings (at least two siblings), 719 

presence of pets (cats, dogs) in the respective time periods, smoking in pregnancy, and 720 

environmental smoke exposure defined as at least one cigarette smoked at home by any person per 721 

day. In addition, parental history of atopy, which is a combination of asthma, hay fever, and atopic 722 



eczema, or only asthma (maternal, paternal or of both) and high parental education (at least 723 

completion of secondary school) were included. 724 

DNA-extraction of fecal samples 725 

Fecal samples were frozen within 10 minutes from collection and stored at -20°C until further 726 

processing. At a central laboratory (THL Kuopio, Finland), DNA was extracted from the fecal samples 727 

in batches as follows: Partially defrosted fecal samples were homogenized using Stomacher® 80 728 

micro-Biomaster (Seward Ltd, UK) laboratory paddle blender (2 min at high speed). DNA was 729 

extracted from 150 mg of ice-cold homogenized fecal sample, using bead-beating method with Zymo 730 

Research fecal DNA MiniPrep™ kit (Catalog No. D6010, Zymo Research, Irvine, CA) according to the 731 

manufacturer’s instructions. The bead-beating step was done using FastPrep® FP120 homogenizer (2 732 

min at full speed 6.5 m/s). Finally, the samples were eluted with 100 µL of elution buffer D3004-4-10 733 

(Zymo Research, Freiburg, Germany). The sample extracts were kept on ice throughout the entire 734 

procedure. The extracted DNA was immediately frozen at -20°C and stored at -80°C.  735 

Sequencing analyses 736 

Amplification and sequencing of fecal samples were performed as described previously for bacterial 737 

and fungal communities.
57

 738 

Primers F515 (5′–NNNNNNNNGTGTGCCAGCMGCCGCGGTAA–3′) and R806 (5′–739 

GGACTACHVGGGTWTCTAAT–3′)58
 were used to amplify the V4 region of the 16S rRNA gene. The 740 

forward primers had unique 8 bp barcodes (indicated by ‘N’) and a 2 bp linker sequence at the 5′ 741 

end. PCR reactions contained DNA template, 1 x GoTaq Green Master Mix (Promega), 1 mM MgCl2, 742 

and 2 pmol of each primer. Samples were amplified in triplicate PCR reactions. Conditions consisted 743 

of an initial 94 °C for 3 min followed by 25 cycles of 94 °C for 45 s, 50 °C for 60 s, and 72 °C for 90 s, 744 

and a final extension of 72 °C for 10 min.  745 

Primers BITS (5′–NNNNNNNNCTACCTGCGGARGGATCA–3′) and B58S3 (5′–746 

GAGATCCRTTGYTRAAAGTT–3′) were used to amplify fungal internal transcribed spacer region 1.
59

 747 

Again, the forward primers had unique 8 bp barcodes and a linker sequence (bold portion) at the 5’ 748 

end. PCR reactions contained DNA template, 1 x GoTaq Green Master Mix (Promega), 1 mM MgCl2, 749 

and 2 pmol of each primer. Reaction conditions consisted of an initial 95 °C for 2 min followed by 40 750 

cycles of 95 °C for 30 s, 55 °C for 30 s, and 72 °C for 60 s, a final extension of 72 °C for 5 min.  751 

Amplicons were run on an 0.8 % agarose gel to verify amplification by gel electrophoresis. Bacterial 752 

and fungal amplicons were combined into two separately pooled samples, purified using the 753 



Qiaquick spin kit (Qiagen), and submitted to the University of California Davis Genome Center DNA 754 

Technologies Core for Illumina paired-end library preparation, cluster generation, and 250-bp paired-755 

end sequencing on an Illumina MiSeq instrument in separate runs. 756 

Raw sequencing data from each run was demultiplexed using sabre.
60

 Demultiplexed data was 757 

imported into QIIME2-2018.6
61

 and quality trimmed. Reads were denoised using DADA2
62

 as 758 

implemented in QIIME2. Taxonomy was assigned to representative sequences using a naïve Bayes 759 

classifier
63,64

 pre-built from the 99% GreenGenes database
65

 specific to the 515F/806R region for 760 

bacterial data. For fungal sequences, a classifier was built from the UNITE dynamic database for 761 

taxonomic assignment.
66

 For fungal data, no tree was created because there is currently no valid 762 

taxonomy available with respect to ITS sequences.  763 

Taken sequences from 2 and 12 months together, 5,915 amplicon sequence variants (ASVs) were 764 

retrieved from 16S rRNA sequences, after excluding Chloroplasts. For ITS 54,459 ASVs were retrieved 765 

when restricted to fungi. Our analyses are reported on the genus level. If genera were not identified 766 

we used the name of the lowest identified level. If information was only available on the kingdom 767 

level we named the taxon ‘completely unidentified’. Samples with <1000 reads were removed.  768 

Genetics 769 

Genotyping for 939 children with available DNA samples in the PASTURE study was performed at the 770 

Centre National de Génotypage, Evry, France, using the iPLEX Gold technology, a matrix assisted laser 771 

desorption / ionization – time of flight (MALDI-TOF) mass spectrometry system from SEQUENOM.
67

 772 

Technical errors were minimized by comparing genotype frequencies with the expected allelic 773 

population equilibrium based on the Hardy-Weinberg equilibrium test. cDNA was amplified in 774 

duplicate using an iCycler (Bio-Rad Laboratories, Hercules, Calif) and 18S as reference gene. Quality 775 

checks were passed by samples of 896 children (95%). Of these, 512 children were included in the 776 

present analysis for 16S rRNA. 777 

Selection of single nucleotide polymorphisms (SNPs) was based on previous reports and included 778 

polymorphisms at the chromosome 17q21 childhood-onset asthma risk locus.
68-70

 Specifically, 779 

rs8076131 related to the ORMDL3 gene and rs2290400 / rs7216389 related to the GSDMB gene at 780 

this locus were found to interact for childhood asthma with environmental tobacco smoking
71

 and 781 

viral infections.
72

 SNP rs8076131 was selected for the current analysis because it has been described 782 

in the context of functional regulation.
73

 783 

Short chain fatty acids 784 



Metabolite levels of short-chain fatty acids (SCFA) were measured in fecal samples obtained from 785 

301 children of the PASTURE study at the age of 12 months.
32

 These fecal samples were processed as 786 

previously described.
74

 Briefly, 1 ml of 0.15 mM H2SO4 was added to 0.3 g feces to generate a fecal 787 

suspension. After rigorous vortexing, the samples were centrifuged twice (14’000 g for 30 min) and 788 

sequentially filtered through a 0.45 µm Millex-HA filter and a 0.2 µm Millex-LG filter (Merck, 789 

Darmstadt, Deutschland). The resultant fecal homogenates were analyzed by High Performance 790 

Liquid Chromatography (Merck Hitachi, Schaumburg, USA) using an Rezex ROA-Organic Acid H+ ion 791 

exchange column together with a SecurityGuard Cartidges Carbo-H from Phenomenex (Torrance, 792 

USA) at a flow rate of 0.4 ml at 40 °C with 10 mM H2SO4 as eluent solution. The samples were 793 

quantified in relation to standards.
75

 Of these 301 children, 209 (69%) were included in the present 794 

16S rRNA analysis (Figure S1). 795 

Relative abundance of butyryl-CoA:acetate CoA-transferase gene 796 

Relative abundance of the butyryl-CoA:acetate CoA-transferase gene was measured in a nested 1:2 797 

case-control sample of 51 asthmatics and 106 healthy controls with available fecal samples at 12 798 

months. Quantitative PCR (qPCR) primers and annealing temperatures against total bacteria (primers 799 

UniF and UniR, 0.5 µM final concentration) and the butyryl-CoA:acetate CoA-transferase gene 800 

(primers BCoATscrF and BCoATscrR, 2.5 µM final concentration) are described in Ramirez-Farias et al 801 

(2009).
76

 qPCR equipment and reagents are described in Reichardt et al (2018).
35

 DNA samples were 802 

used without further dilution unless their concentration (determined with a Qubit dsDNA HS assay 803 

kit, Thermo Fisher Scientific, Renfrew, UK) exceeded 4 ng/µl in the qPCR assay. The data are 804 

expressed as percent butyryl-CoA:acetate CoA-transferase gene copies of total bacterial 16S rRNA 805 

gene copies as detailed in Ramirez-Farias et al, 2009.
76

 Measurement of relative abundance of the 806 

butyryl-CoA:acetate CoA-transferase gene was performed in duplicates, and measurements were 807 

considered valid if standard deviation was below 0.4. This was necessary to eliminate technical 808 

artefacts such as air bubbles that may interfere with the optical fluorescence reading. Of all 157 809 

children selected into the case-control study, valid results were obtained in 138 individuals (88%). 810 

Data were stored in EXCEL. 811 

Statistical analysis 812 

Statistical analysis was performed with R 3.4.3 and 3.6.1 (https://www.R-project.org), particularly 813 

with package phyloseq, and MPlus (Muthén & Muthén, 1998-2012). Upon request, computer code 814 

will be made available to readers. 815 

Relative abundance was used to describe taxonomic distribution of bacteria and fungi. Rare taxa 816 

were defined by a relative abundance below 0.5% in the respective population and subsumed in a 817 



category termed “rare”. For logarithmic presentations, values were transformed by decadic 818 

logarithm; where necessary zero values were replaced by the lowest measured value. All statistical 819 

tests were performed two-sided, and an effective p-value <0.05 was considered statistically 820 

significant.  821 

Dirichlet Clustering 822 

Dirichlet multinomial mixtures (DMM) modelling was performed with R package 823 

DirichletMultinomial. We clustered the samples over both time points and as a sensitivity analysis 824 

separately for both time points. DMM bins samples on the basis of microbial community structure.
77

 825 

The number of clusters was determined by a local minimum of a Laplace approximation score, i.e. 5 826 

clusters over both time points and 3 clusters for the separate models. Transition between clusters 827 

was illustrated by R package Gmisc. 828 

Random Forests 829 

Random Forests regression was performed by R-package ranger to model sampling age on the basis 830 

of the relative abundance of bacterial or fungal genera present at 2 and 12 months in a subsample of 831 

133 (in case of fungi 35) healthy individuals, i.e. children without asthma, wheeze ever, or diarrhea 832 

during the first year. The models were estimated using 2000 trees and the ceiling of the square root 833 

of the number of selected variables per level.  The resulting prediction model, mainly defined by 834 

alterations in relative abundance of all genera were subsequently applied to the entire population, 835 

using the function predict of ranger. These estimates were used as a proxy for bacterial or fungal 836 

maturation and subsequently called estimated microbiome age (EMA) or estimated fungal age (EFA). 837 

To confirm that results were independent of the training sets, we performed sensitivity analyses 838 

restricting the models to children not included in model building. Taxa were ranked by their variable 839 

importance in random forest models for EMA and EFA, respectively, which discriminate best 840 

between the two measurement time points. 841 

A similar approach was used to estimate short chain fatty acids (SCFA) scores for Butyrate, 842 

Propionate, and Acetate. SCFA levels were modeled by the relative abundance of bacterial genera in 843 

children with SCFA measures available. These prediction models were applied to predict SCFA 844 

production scores in the entire population. Taxa were ranked by their variable importance in random 845 

forest models for SCFA production. The number of randomly picked variables was optimized by 10-846 

fold cross-validation. As a member of the out-of-bag methods, random forest carries the advantage 847 

over classical cross-validation that it yields an unbiased error estimate, i.e. high validity.
78

 As random 848 

forest integrates all information on microbial taxa in a single model no correction for multiple 849 

comparisons was necessary. Besides continuous variables, the estimated microbiome age as well as 850 



the butyrate score were also dichotomized at the lowest quartile in respective subsamples to give an 851 

estimate for a threshold phenomenon. 852 

Microbial diversity and composition 853 

Samples were rarefied at the minimum sequence numbers in the available biosamples, i.e. 1029 16s 854 

rRNA sequences and 1000 ITS sequences. Rarefaction and calculation of species richness and 855 

Shannon’s diversity index was iterated 1000 times and the resulting measures of alpha-diversity were 856 

subsequently averaged. An independent rarefying step was done in the sample of month 12 only for 857 

analyses of presence vs. absence of specific ASVs. For the assessment of the bacterial composition, 858 

the R package composition was used to perform centered-log ratio (clr) transformation after adding 859 

a pseudocount of 0.5 to abundance values. This approach developed by Aitchison was shown to be 860 

essential in microbiome analyses.
79

 The clr transformed abundance values were entered in principal 861 

component analyses (PCA) for assessing beta-diversity. In addition, beta-diversity was assessed by 862 

principal coordinate analyses (PCoA) on the ASV-level using unweighted UniFrac as distance measure 863 

calculated by R package GUnifrac. Samples taken at 2 months and at 12 months were evaluated 864 

separately by PCA and PCoA. In addition, PCoA was also applied in a sensitivity analysis combining all 865 

samples from both time points. Associations of indices of maturation, butyrate production, or 866 

microbial composition (as determined by PCA) with asthma or determinants were based on 867 

regression models, in which the microbial variables were usually z-standardized to render them 868 

comparable against each other. All analyses were adjusted for center. Models only adjusted for 869 

center were termed “simple models”, whereas the term “mutually adjusted models” refers to 870 

models where two exposures were compared and forced in the same model. Interaction was 871 

analyzed by including a product term in the regression models. 872 

Confirmatory analyses on estimated microbiome age and farming or asthma were replicated over 873 

study centers and assessed by a meta-analysis with fixed effects (R package rmeta). 874 

To compare indirect and direct effects, mediation models were calculated in Mplus (Muthén & 875 

Muthén, 1998-2012) and validated with the R package mediation. The mediated effect is reported as 876 

the proportion of the estimated indirect effect of the total effect.  877 

To test for associations of single taxa with asthma we first tested for differences in relative 878 

abundance by Wilcoxon test; main associations (p<0.1) were then confirmed in the clr-transformed 879 

variables with logistic regression models. These models were adjusted for center only or additional 880 

for EMA to determine single taxa effects independent of the general maturation process. Single taxa 881 

were assessed in an exploratory approach; therefore, adjustment for multiple comparisons was not 882 

performed. All statistical tests were performed two-sided.  883 



Box and whiskers plots were used as follows: lower and upper hinges denote the first and third 884 

quartiles, respectively; the bold central line represents the median; the whiskers extend to the most 885 

extreme data point within 1.5 times the interquartile range from the hinges; extreme values lie 886 

beyond the whiskers and are marked by circles. Forest plots give point estimates with 95%-887 

confidence intervals. 888 

Spearman coefficient was used to calculate any kind of correlations between different measures 889 

except for network analyses. 890 

Network analyses 891 

Correlations between pairs of bacterial genera were estimated using the SparCC approach.
80

 The 892 

corresponding correlation network was visualized using the R package qgraph. In the network plot, 893 

only correlations with an absolute value greater than or equal to 0.2 are shown. For readability, 894 

nodes without any connections were removed. Node sizes were scaled on the eigenvector centrality 895 

measure, which was determined via the function eigen_centrality from the R package igraph.  896 

Hubs were defined as nodes with an eigenvector centrality value greater than the 99
th

 percentile of 897 

all eigenvector centrality values in the network. Groups of highly connected nodes, also called 898 

clusters or modules, were identified via the igraph function cluster_fast_greedy, which is a fast 899 

greedy algorithm for determining clusters via maximizing the modularity measure over all possible 900 

clusterings.
81

  901 

To relate the composition of the network modules to EMA and the butyrate score, we used an 902 

approach similar to the eigengene analysis,
82

 i.e. we used the first eigenvector of a PCA using the clr-903 

transformed taxa passing the threshold-criteria to build the network plots as representative for the 904 

respective module.  905 

Data availability 906 

Taxonomy was assigned using the GreenGenes database (greengenes.lbl.gov) for 16S rRNA 907 

sequences and the UNITE dynamic database (unite.ut.ee) for ITS sequences. All 16S rRNA and ITS 908 

sequences are deposited in the Supplementary Information without metadata. PASTURE is an 909 

ongoing birth cohort with fieldwork still being executed. As long as the study is not yet anonymized, 910 

European data protection legislation prohibits sharing of individual data, also when pseudonymized. 911 

Upon request, the authors will share aggregate data that do not allow identification of individuals. 912 
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