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Abstract

Background: MicroRNAs (miRNAs) are a set of short (19,24 nt) non-coding RNAs that play significant roles as
posttranscriptional regulators in animals and plants. The ab initio prediction methods show excellent performance for
discovering new pre-miRNAs. While most of these methods can distinguish real pre-miRNAs from pseudo pre-miRNAs, few
can predict the positions of miRNAs. Among the existing methods that can also predict the miRNA positions, most of them
are designed for mammalian miRNAs, including human and mouse. Minority of methods can predict the positions of plant
miRNAs. Accurate prediction of the miRNA positions remains a challenge, especially for plant miRNAs. This motivates us to
develop MaturePred, a machine learning method based on support vector machine, to predict the positions of plant miRNAs
for the new plant pre-miRNA candidates.

Methodology/Principal Findings: A miRNA:miRNA* duplex is regarded as a whole to capture the binding characteristics of
miRNAs. We extract the position-specific features, the energy related features, the structure related features, and stability
related features from real/pseudo miRNA:miRNA* duplexes. A set of informative features are selected to improve the
prediction accuracy. Two-stage sample selection algorithm is proposed to combat the serious imbalance problem between
real and pseudo miRNA:miRNA* duplexes. The prediction method, MaturePred, can accurately predict plant miRNAs and
achieve higher prediction accuracy compared with the existing methods. Further, we trained a prediction model with
animal data to predict animal miRNAs. The model also achieves higher prediction performance. It further confirms the
efficiency of our miRNA prediction method.

Conclusions: The superior performance of the proposed prediction model can be attributed to the extracted features of
plant miRNAs and miRNA*s, the selected training dataset, and the carefully selected features. The web service of
MaturePred, the training datasets, the testing datasets, and the selected features are freely available at http://nclab.hit.edu.
cn/maturepred/.

Citation: Xuan P, Guo M, Huang Y, Li W, Huang Y (2011)MaturePred: Efficient Identification of MicroRNAs within Novel Plant Pre-miRNAs. PLoS ONE 6(11): e27422.
doi:10.1371/journal.pone.0027422

Editor: Akio Kanai, Keio University, Japan

Received July 17, 2011; Accepted October 17, 2011; Published November 16, 2011

Copyright: � 2011 Xuan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The work is supported by the Natural Science Foundation of China (60932008, 61172098, and 60871092), the Fundamental Research Funds for the
Central Universities (HIT.ICRST.2010 022), and the Natural Science Foundation of Heilongjiang Province (F201119). Yufei Huang is supported by the National
Science Foundation Grant CCF-0546345, the National Institute of Health Grant R01 CA096512, and the Qatar National Research Fund Grant 09-874-3-235. The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: maozuguo@hit.edu.cn (MZG); yufei.huang@utsa.edu (YFH)

Introduction

Derived from hairpin precursors (pre-miRNAs), mature micro-

RNAs (miRNAs) are non-coding RNAs that play important roles

in gene regulation by targeting mRNAs with cleavage or

translational repression [1,2]. Animal miRNAs play an important

role in processes like growth processes, hematopoiesis, apoptosis,

cell proliferation, and numerous diseases [3–5]. Plant miRNAs are

involved in many important biological processes including

development, metabolism, stress responses, and defense against

viruses [6,7]. In animals and plants, a primary transcript (pri-

miRNA) is first cropped into the double-stranded precursor

miRNA (pre-miRNA), which is further processed by Dicer or

DicerLike1 (DCL1) to release the miRNA:miRNA* duplex. The

stable strand of the duplex yields the mature miRNA which is

incorporated into the RNA-induced silencing complex (RISC) to

regulate the target mRNA.

A defining feature in miRNA biogenesis for both animals and

plants is that nearly all the pre-miRNAs have the stem-loop

hairpin structures. The existing of the stem loop is the key feature

adopted in the ab initio prediction methods to distinguish real pre-

miRNAs from pseudo pre-miRNAs. The machine learning

algorithms have been extensively applied to learn from the real

pre-miRNAs and pseudo pre-miRNAs and they include support

vector machines (SVM) [8–12], hidden Markov model [13,14],

naı̈ve bayes [15], random forest model [16] and kernel density

estimation model [17].

Computational prediction of the positions of miRNAs can

provide the most probable miRNA candidates for subsequent
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biological testing. Further, Plant miRNAs generally have near

perfect matches to their target mRNAs. Prediction of the

positions of miRNAs is helpful to identifying their target mRNAs.

The function of miRNAs in regulation network can be inferred. It

indicates the importance to predict the positions of miRNA

candidates within the new pre-miRNAs. While the existing

ab initio prediction methods show excellent performance for

discovering new pre-miRNAs, only a few methods can predict

the position of miRNAs within the new pre-miRNAs. ProMiR

[14] implemented hidden Markov model to identify the new

human pre-miRNAs. BayesMiRNAfind [15] used a Naı̈ve Bayes

classifier to predict new pre-miRNAs from mouse genome.

ProMiR and BayesMiRNAfind only incorporate miRNA position

prediction to increase the gene identification performance.

MatureBayes [18] incorporated a Naı̈ve Bayes classifier to identify

miRNA candidates and it can accurately predict the position of

miRNAs for human and mouse. mirCos [19] constructed a model

based on SVM to predict miRNAs conserved between human

and mouse. MiRPara [20] is designed for prediction of the

miRNA candidates for animal and plant using SVM. It can

predict most probable miRNA candidates from genome scale

sequences. Other ab initiomethods can only classify a pre-miRNA

candidate to be real/pseudo pre-miRNA. They can not predict

the position of miRNAs.

The plant pre-miRNAs usually have more complex secondary

structure than the animal pre-miRNAs. Therefore, accurate

prediction of the position of miRNAs within plant pre-miRNAs

remains a challenge. To this end, we propose a novel prediction

algorithm MaturePred according to the characteristics of plant pre-

miRNAs. MaturePred regards the miRNA:miRNA* duplexes as a

whole to capture more characteristics of miRNAs and miRNA*s.

The new features are extracted from the real/pseudo miRNA:-

miRNA* duplexes. The representative pseudo miRNA:miRNA*

duplexes are selected as negative training samples. An efficient

model based on SVM is constructed to predict the position of

miRNAs.

Methods

Features of plant miRNAs
Extraction of the informative features is the key for improved

performance of our SVM based prediction model. The proposed

model considers not only the position-specific features of a single

nucleotide but also the structure-related, energy-related and

stability-related features, totaling 160 features.

Position-specific features. The position-specific features

have been defined in MatureBayes. Each single nucleotide is

represented by one of the following 9 pairs, including the 8

possible combinations of sequence and structure and the

‘‘noValue’’ pair: {(A,M), (A,L), (C,M), (C,L), (U,M), (U,L), (G,M),

(G,L), (noValue,noValue)}. The A (Adenie), G (Guanine), C

(Cytosine), and U (Uracil) represent the nucleotide of each

position, corresponding to the base composition information. M

and L represent matches or mismatches of the respective

nucleotide pairing. The ‘‘noValue’’ pair is used to indicate the

lack of information on positions within the flanking region that

may be located outside the limits of the pre-miRNA. The 21

position-specific features in a miRNA candidate are named as

miRNA_1, miRNA_2, …, miRNA_21, respectively.

As an example shown in Figure 1, the 1-st position and 11-th

position in the miRNA are (a,M) and (g,L), respectively. The 2-nd

and the 3-rd positions after the miRNA are ‘‘-’’, representing that

there is no nucleotide in the current position. This is a novel

feature first proposed here and it is denoted as (-,L). (-,L) is useful

for description of the position-specific information of bugles in the

plant pre-miRNAs.

It is well studied that the Dicer or DCL1 usually cleaves

miRNA:miRNA* duplex according to the nucleotides composi-

tions in not only the miRNA and miRNA* but also their flanking

regions [18]. Thus, the same position-specific information is also

considered for the flanking regions of 12 nucleotides (nt). The 24

features in the flanking regions of a miRNA candidate are denoted

as bef_miRNA_1, bef_miRNA_2, …, bef_miRNA_12, aft_-

Figure 1. Illustration of the features used to describe the miRNA:miRNA* candidates.
doi:10.1371/journal.pone.0027422.g001
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miRNA_1, aft_miRNA_2, …, aft_miRNA_12. The distance of

the starting position of each miRNA from the closest hairpin of the

pre-miRNA is also calculated, named as dis.

New features for miRNA*. Since the plant pre-miRNAs are

cleaved into the miRNA:miRNA* duplexes, the prediction

model considers the position-specific features for the whole

miRNA:miRNA* duplexes. A miRNA* is defined to have the

same size as the miRNA candidate but lies on the opposite strand

with its 39 end starting 2 nucleotides before the matching position

of the miRNA candidate’s 59 end [1]. In order to obtain the

miRNA:miRNA* candidates, two windows slide with step 1 in a

pre-miRNA. As an example shown in Figure 2, if the sequence in

the sliding window 1 is regarded as a miRNA candidate, the

sequence in the sliding window 2 is regarded as the corresponding

miRNA* candidate. The combination of window 1 and 2 is a

miRNA:miRNA* candidate. When the starting position of the

miRNA candidate is coincident with the starting position of the

actual miRNA, the miRNA:miRNA* candidate is a real

miRNA:miRNA* duplex. Otherwise, the candidate is a pseudo

miRNA:miRNA* duplex.

The position-specific features are also extracted from the

miRNA* candidate and its flanking regions (12 nt). The 21

position-specific features in a miRNA* candidate are named as

miRNA*_1, miRNA*_2, …, miRNA*_21, respectively. The 24

features in a flanking region before/after a miRNA* candidate are

denoted as bef_miRNA*_1, bef_miRNA*_2, …, bef_miRNA*_12,

aft_miRNA*_1, aft_miRNA*_2, …, aft_miRNA*_12.

New stability-related features. According to miRNA

biogenesis, the 59 end of a miRNA is usually less stable than

that of the corresponding miRNA* [6]. It is useful for determining

the functional strands where the miRNAs locate. Therefore, the

stability of the first nucleotide at the 59 end of miRNA/miRNA* is

considered and denoted as miRNA_59end and miRNA*_59end,

respectively. When the first position is (A, L), (G, L), (C, L), or (U,

L), the feature (miRNA_59end/miRNA*_59end) value is assigned

to 0. When it is (G, M) or (U, M), and there is a G-U or U-G

wobble pair, the feature value is assigned to 1. When it is (A, M) or

(U, M), and there is an A-U or U-A pair, the feature value is

assigned to 2. When it is (G, M) or (C, M), and there is a G-C or

C-G pair, the feature value is assigned to 3.

New minimum free energy-related features. The real

miRNA:miRNA* duplexes typically are of greater binding stability

and are less likely to be broken. As shown in Figure 1, the miRNA

candidate and the miRNA* candidate are connected by a linker

sequence, ‘‘LLLLLL’’. It is helpful to calculate the minimum free

energy (MFE) of the miRNA:miRNA* candidate. Since ‘‘L’’ is not

a RNA nucleotide, it does not bind with any nucleotides in the

miRNA candidate and the miRNA* candidate. The MFE value of

the linked miRNA candidate and miRNA* candidate is denoted as

MFE1. In addition, the MFE value of the sequence with the

flanking regions of 3 nt is calculated and denoted as MFE2. The

one with the flanking regions of 6 nt is denoted as MFE3.
Local contiguous triplet structure features. As was

defined in triplet-SVM [12], for any 3 adjacent nucleotides, there

are 8 possible structure compositions: ‘‘(((’’, ‘‘((.’’, ‘‘(..’’, ‘‘(.(‘‘, ‘‘.((’’,

‘‘.(.’’, ‘‘..(’’, and ‘‘…’’. ‘‘(’’ and ‘‘.’’ represent the status of each

nucleotide in the predicted secondary structure, paired or

unpaired, respectively. Let xM{A,C,G,U} be the middle

nucleotide among the 3, and then there are 32 (468) possible

structure-sequence combinations, which are denoted as ‘‘U(((’’,

‘‘A((.’’, etc. A set of these 32 triplet structure features are extracted

from the miRNA candidates and the miRNA* candidates,

respectively, amounting to a total of 64 triplet structure features.

The 32 features from a miRNA are denoted as ‘‘miRNA_U(((’’,

‘‘miRNA_A((.’’, etc. and the ones from miRNA*s are denoted as

‘‘miRNA*_U(((’’, ‘‘miRNA*_A((.’’, etc. The triplet structure

features are used to describe the miRNA candidates and

miRNA* candidates in this study for the first time.

In total, 160 features are obtained from the miRNA:miRNA*

candidates. The informative feature subset is selected in section

Feature Selection to improve the prediction accuracy.

Support vector machine
Due to the excellent generalization ability of support vector

machine (SVM), we use SVM to identify real/pseudo miRNA:-

miRNA* duplex with m-dimensional (m=27,48,72,136,86, see

Results and Discussion) feature vectors. Given a training dataset T,

each xi M T (i= 1,…,N) is a feature vector of real/pseudo

miRNA:miRNA* duplex with the corresponding label zi (zi=+1

or 21, real miRNA:miRNA* duplex or pseudo miRNA:miRNA*

duplex). SVM constructs a decision function. The decision value is

used as the prediction score of the miRNA:miRNA* candidate x.
The miRNA:miRNA* candidate with the highest prediction score

for a pre-miRNA is the most probable miRNA:miRNA* duplex.

g(x)~
X

N

i~1

ziaiK(x,xi)zw0 ð1Þ

ai is the coefficient to be learned (0#ai#C) and K is a kernel

function. In our study, a radial basis function (RBF) kernel is used,

where the parameter c determines the similarity level of the

features so that the model becomes optimal. Since the miRNA:-

miRNA* duplex is considered as a whole, the kernel function is as

follows.

Figure 2. Illustration of miRNA:miRNA* candidate. This is Arabidopsis thaliana miR390a stem-loop. The 21 nucleotides in pink is the real
miRNA, and the 21 nucleotides in blue is the real miRNA*.
doi:10.1371/journal.pone.0027422.g002
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K(x,xi)~K((miRNAx,miRNA�
x),(miRNAi,miRNA�

i ))

~exp({c (miRNAx,miRNA�
x){(miRNAi,miRNA�

i )
�

�

�

�

2
)

ð2Þ

The penalty parameter C and the RBF kernel parameter c are

tuned based on the training dataset using the grid search strategy

in libSVM (version 2.9).

Construction of MaturePred with plant data
A SVM based predictor called MaturePred is constructed to

predict the real miRNA:miRNA* duplex and its position in a pre-

miRNA. As shown in Figure 3, the process of constructing this

predictor can be summarized as the following. (1) 1455 real

miRNA:miRNA* duplexs from 1323 experimentally verified plant

pre-miRNAs are collected as positive dataset. The 129951 pseudo

miRNA:miRNA* duplexs are obtained from these pre-miRNAs as

negative dataset. The 160 features are extracted from the real/

pseudo miRNA:miRNA* duplexes. (2) The informative feature

subset is selected through calculating the information gain of

features. (3) First, the representative negative samples (pseudo

miRNA:miRNA* duplexes) are selected as training samples

according to their distribution density in the high-dimensional

sample space. Second, the representative negative samples are

selected according to their prediction deviation. (4) A SVM based

plant miRNA prediction modelMaturePred is trained by using these

samples.

Prediction of real miRNA:miRNA* duplex and the starting
position
To predict the real miRNA:miRNA* duplex and its position,

the secondary structure of an input pre-miRNA is first predicted

by RNAfold from the Vienna package [21]. The miRNA:miRNA*

candidates are then extracted from the pre-miRNAs by sliding 2

windows with step size 1 (Figure 2). MaturePred is applied to each of

these candidates to obtain the respective prediction scores. The

miRNA:miRNA* candidates are ranked by their scores and the

one with highest prediction score is the most probable miRNA.

The starting position of a probable miRNA is obtained as its

predicted position. The feature extraction, feature selection and

sample selection modules are implemented in Java. The web

service of predicting the starting position of miRNAs is developed

in PHP on the Linux platform.

Prediction optimization
Filtering the miRNA:miRNA* candidates. The plant pre-

miRNAs have more diversities than the animal pre-miRNAs.

Generally, the plant pre-miRNAs have longer stems and bigger

loops, as shown in Figure 4A. There could be big bugles and big

unmatched regions in the stems, as shown in Figure 4B and 4C.

Since the miRNAs rarely appear on the big loops, the big bugles,

and the unmatched regions, the miRNA:miRNA* candidates

containing them are filtered out. This filtering step can save the

computational cost in the prediction process and reduce the

prediction false positives.

Optimization of the size of sliding window and flanking

region. Experimentally verified plant miRNAs from the miRBase

Figure 3. Construction of SVM prediction model based on feature selection and sample selection. Each circle represents a real/pseudo
miRNA:miRNA* duplex.
doi:10.1371/journal.pone.0027422.g003
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database (version 14) [22] were collected. The minimum length,

the maximum length, and the average length of these miRNAs

are 19 nt, 24 nt, and 21 nt. The miRNAs of length 21 nt

account for more than 60% of all plant miRNAs. Thus, the

length of the sliding window is set to 21 nt. The experiment also

indicated that the best prediction result is obtained when the

size is 21 nt. Six different lengths of the flanking region

(s M {0,2,3,6,9,12}) were investigated by experiments. Table S1

shows that prediction performance was maximized for a flanking

region of s= 6 nt.

Feature selection
Feature selection aims to select a group of informative

features that can retain most information of original data and

lead to best prediction performance. Our adopted feature

selection method considers the information gain of features.

The discrimination ability of a feature is measured by information

gain based on Shannon entropy. Suppose a feature of miRNA:-

miRNA* duplexes is x, and the entropy of x is denoted asH(x). When

the value of feature y is given, the conditional entropy is H(x|y).

IG(c,x) is the information gain of x relative to the class attribute c [23].
c is assigned to 1 (real miRNA:miRNA* duplex) or 21 (pseudo

miRNA:miRNA* duplex).

IG(c,x)~H(c){H(cjx)

~

X

c,x

p(cx) log2
p(cx)

p(c)p(x)

ð3Þ

Suppose that the complete feature set is X={x1, x2, …, x160}.

The information gain of feature xi (1#i#160) is calculated on the

dataset composed of 1455 real plant miRNA:miRNA* duplexes

and 129951 pseudo plant miRNA:miRNA* duplexes. It is denoted

as IG(c,xi). The features with greater information gain are given

higher preference.

The 160 features are categorized into 4 feature subsets: (1)

position-specific feature subset S1={miRNA_X, miRNA*_Y,

bef_miRNA_Z, aft_miRNA_Z, bef_miRNA*_Z, aft_miRNA*_Z

|1#X,Y#21, 1#Z#12} (90 features); (2) secondary structure-

related feature subset S2={‘‘miRNA_A(((’’, …, ‘‘miRNA_U…’’}

(32 features) and S3={‘‘miRNA*_A(((’’, …, ‘‘miRNA*_U…’’} (32

features); (3) the feature subset S4={dis, miRNA_59end, miR-

NA*_59end, MFE1, MFE2, MFE3} (6 features).

In terms of S1, the feature subset evaluation indicated that the

21 position-specific features of miRNAs and that of miRNA*s are

Figure 4. Optimizing the miRNA:miRNA* candidates. A. The candidates in the sliding windows containing the big loop are filtered out, like the
one in ath-MIR168a. B. The candidates containing the big bugle are filtered out, like the one in gma-miR166b. C. The candidates containing the big
unmatched part in the left end of stem are filtered out, like the one in ppt-miR166i.
doi:10.1371/journal.pone.0027422.g004
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important for prediction of the starting position of miRNAs. Also,

we found that the 24 features about the flanking regions (6 nt) of

miRNA/miRNA* are necessary for improving the prediction

accuracy (see Feature subset evaluation). Thus, 66 features are selected.

For each subset (S2 or S3), the features are sorted by information

gain in descending order. The 14 features with information gain

greater than a threshold l are selected. l is determined by the

experiments. l1 is 0.0239 for the pre-miRNAs whose miRNAs

locate their 59 arms. l2 is 0.0289 for the pre-miRNAs whose

miRNAs locate their 39 arms. In terms of S4, we found the 6

features are all important for constructing efficient prediction

model. In the end, a total of 86 features are selected for plant

miRNA prediction model and listed in Feature selection result.

Two-stage sample selection
The plant training samples include much larger number of

negative samples and the average ratio of positive samples to

negative samples is nearly 1:89. This is because the majority

regions of a pre-miRNA are pseudo miRNA:miRNA* duplexes

and the stems of plant pre-miRNAs are typically longer

(60 nt,more than 400 nt). It results in the serious problem of

data imbalance. The prediction model constructed by such an

imbalanced positive and negative dataset can only lead to poor

prediction accuracy [24]. It is therefore essential to select

representative negative training samples.

Figure 5. Negative sample selection based on K-NN density
estimation. Each circle represents a negative sample. The circles in
orange are the selected negative samples. The circles in black are the
deleted samples. A big circle in dotted line represents the range
covered by a selected sample.
doi:10.1371/journal.pone.0027422.g005

Figure 6. Iterative negative sample selection process.
doi:10.1371/journal.pone.0027422.g006
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We proposed a two-stage sample selection algorithm. In the first

stage, the density of each negative sample in its k-Nearest

Neighbor (k-NN) region is estimated. The sample selection

algorithm selects the representative negative samples that conform

to the data distribution. In the second stage, we iteratively select

the representative negative samples. The representative samples

are the ones that lead to the largest deviation on the current

prediction model. The negative training set is composed of the

representative samples.

The k-NN based density estimation strategy was originally

proposed to reduce data set [25]. The condensed set is effective for

important data mining tasks like clustering and rule generation on

large data sets. We use the k-NN based density estimation in the

first stage.

K-Nearest Neighbor Density Estimation
In order to calculate the distances between a negative sample

(pseudo miRNA:miRNA* duplex) and its k neighbor samples, a

distance measure is defined. Suppose that there are m features for

each negative sample. A negative sample is represented with an m-

dimensional feature vector. Let vx and vi be the feature vector of

the x-th and the i-th negative samples, respectively. The distance

between vx and vi, d(vx,vi), is defined by

d(vx,vi)~1{
vtx
:vi

vtx
:vxzvti

:vi{vtx
:vi

ð4Þ

where vx
t(vi

t) represents the transpose of vector vx(vi).

Assume that rk,vi is the distance from vi to the k-th nearest

negative samples. Now, let V(vi,rk,vi) represent the volume of the m-

dimensional hypersphere of radius rk,vi at vi. g(vi,rk,vi) is the number

of negative samples in V(vi,rk,vi). L is the number of negative

sample in the whole negative sample space. Then, the probability

density of at vi in radius rk,vi, f(vi,rk,vi) can be estimated as

f (vi,rk,vi )~
g(vi,rk,vi )=L

V (vi,rk,vi )
ð5Þ

The first stage sample selection
Suppose that the pre-miRNA data set composed of N pre-

miRNAs, including pre1, pre2,…, and preN. All the negative samples

(pseudo miRNA:miRNA* duplexes) extracted from the i-th pre-

miRNA prei are defined as the i-th negative sample group Gi. The

number of negative samples from the i-th pre-miRNA is Ni. Since

each negative sample group has its own size and distribution, the

negative training samples are first selected from each negative

sample group, which are merged into the overall negative training

dataset T. The negative sample selection process of the i-th
negative group Gi is as follows.

1. For each negative sample nx M Gi, calculate the distance of nx
from the k-th nearest neighbor. The distance is denoted as rk,nx.

Further, the probability density of nx, f(nx,rk,nx), is obtained.

2. Sort the negative samples by their probability densities.

3. Select the negative sample nj M Gi, with the maximum f(nj,rk,nj)
and add it into the i-th negative training subset Ti.

4. Delete from Gi all the negative samples whose the distance from

nj is equal or less than rk,nj.

5. Repeat steps (2)–(4) until Gi is null.

6. All the negative training subset Ti (1#i#N) are merged as the

negative training set T.

The density based negative sample selection is illustrated in

Figure 5. Since rk,nj is inversely proportional to the estimated

density at nj, regions of higher density are covered by smaller

hypersphere, and sparser regions are covered by larger hyper-

sphere. Consequently, more negative samples are selected from

the regions of higher density.

The number of selected negative samples is dependent on the

parameter k. If k is too great, the entire data may be represented by

only a few of negative samples. Then, the selected negative

samples are not sufficient to represent the entire negative sample

space. If k is too small, the redundant negative samples will be

included, which will not contribute to the improvement of the

prediction performance. The k is determined by the prediction

accuracy based on a 10-fold cross validation experiment. The k is
chosen as 11 when the highest prediction accuracy is achieved.

The second stage sample selection
In the second stage, the representative negative samples are

iteratively collected from the remaining negative samples exclud-

ing the selected ones in the first stage. For each pre-miRNA, the

positive/negative samples are selected independently. The initial

Table 1. Feature combination of MaturePred27,MaturePred86.

Prediction

model F1 F2 F3 F4 F5 F6 F7 F8 F9

MaturePred27 ! ! ! !

MaturePred48 ! ! ! ! !

MaturePred72 ! ! 6 nt 6 nt ! ! !

MaturePred136 ! ! ! ! ! ! ! ! !

MaturePred86 ! ! 6 nt 6 nt ! ! ! g g

doi:10.1371/journal.pone.0027422.t001

Table 2. Average distance distribution of MaturePred27,MaturePred86.

Distance from actual miRNA 0 nt ±1 nt ±2 nt ±4 nt ±6 nt ±8 nt E (nt) P (%)

MaturePred27 (%) 43.54 54.84 60.26 70.66 78.79 85.21 6.273 65.46

MaturePred48 (%) 49.37 59.01 64.99 75.87 82.92 87.84 5.284 73.77

MaturePred72 (%) 50.66 59.95 65.44 76.37 83.64 90.45 4.889 74.45

MaturePred136 (%) 48.63 59.26 64.71 75.25 82.36 87.20 5.708 75.21

MaturePred86 (%) 51.09 61.60 67.54 77.73 85.43 90.62 4.617 74.60

doi:10.1371/journal.pone.0027422.t002
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training dataset U is composed of all the real miRNA:miRNA*

duplexes (positive samples) and the selected pseudo miRNA:-

miRNA* duplexes (negative samples) in the first stage. The

validation dataset V consists of all the real/pseudo miRNA:-

miRNA* duplexes from the N pre-miRNAs.

MaturePred is based on SVM supported by the libSVM 2.9

(http://www.csie.ntu.edu.tw/,cjlin/libsvm/). The libSVM 2.9

was changed and compiled again to get the decision value as the

prediction score of a miRNA:miRNA* candidate. The candidate

with the highest score is the most probable miRNA:miRNA*

duplex. In the process of iteratively selecting negative samples,

MaturePred evaluates all the positive/negative samples of in the

validation set V. Now, let the y-th (1#y#4) positive sample in a

pre-miRNA be denoted as py. When the prediction is accurate, the

scores of all the negative samples from the pre-miRNA are less

than that of py with the highest score. When the prediction is not

sufficiently accurate, the scores of a subset of negative samples are

higher than that of py with the highest score. Let us define the

prediction deviation of a miRNA:miRNA* candidate x as

s(x) = score(x)2max{score(py)} (1#y#4). At this time, their s

values are more than 0. The higher the s value of a negative

sample is, the greater its prediction deviation is. The negative

sample with the highest s value is most useful for the i-th pre-

miRNA since it causes the greatest deviation on the current

prediction model.

The iterative process is demonstrated in Figure 6. The black

squares represent the real miRNA:miRNA* duplexes. The grey

squares represent the pseudo miRNA:miRNA* duplexes. The real

and pseudo miRNA:miRNA* duplexes from a pre-miRNA are

circled in pink dotted line. The iteration process of negative

sample selection is as follows.

1. Initially, a prediction model MaturePred is constructed by the

initial training dataset U.

2. The MaturePred is validated by the validation dataset V. The

negative samples with the highest prediction deviation are

selected from each pre-miRNA. They are represented by green

squares in Figure 6.

3. The new selected negative samples are added into U. The

MaturePred is updated with the U.

4. Repeat step 2–3 until all N pre-miRNAs satisfy termination

conditions.

The iteration process will terminate the selection of negative

samples for the i-th pre-miRNA when the predicted miRNA:-

miRNA* is the real miRNA:miRNA*, or all the negative samples

of the i-th pre-miRNA are selected. When all the pre-miRNAs

satisfy one of two termination conditions, the whole iteration is

finished.

Results and Discussion

Data collection
There are 2043 plant pre-miRNAs in the miRNA database

miRBase 14 (http://www.mirbase.org/), including 1366 experi-

mentally verified pre-miRNAs. In this work, the real miRNA:-

miRNA* duplexes and the pseudo miRNA:miRNA* duplexes are

only extracted from the experimentally verified pre-miRNAs.

Table 3. Prediction results over different training datasets.

Distance from actual

miRNA Training dataset 0 nt ±1 nt ±2 nt ±4 nt ±6 nt ±8 nt E (nt) P (%)

MaturePred86 (%) selected dataset 35.46 46.10 54.47 64.82 73.62 78.16 5.896 68.12

MaturePredrand (%) random dataset 31.83 43.32 50.89 61.98 70.38 75.30 6.081 67.63

MaturePredwhole (%) whole dataset 31.21 42.36 50.09 59.57 69.54 74.18 9.301 68.99

doi:10.1371/journal.pone.0027422.t003

Figure 7 Average distance distributions of MaturePred86 and MiRPara over the miR15–17 plant testing dataset. A. Average distance
distribution of MaturePred86. B. Average distance distribution of MiRPara.
doi:10.1371/journal.pone.0027422.g007
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Positive dataset. After eliminating the specific pre-miRNAs

with complex secondary structures, the plant positive dataset

consists of 1455 real miRNA:miRNA* duplexes from 1323 pre-

miRNAs. Since some pre-miRNAs might have 2–4 miRNAs, the

number of real miRNA:miRNA* duplexes is somewhat more than

the number of pre-miRNAs. The real miRNA:miRNA* duplexes

are extracted from the pre-miRNAs by two windows of 21 nt. The

starting position of the window 1 is coincident with the starting

position of the real miRNA. The combined sequence in the

window 1 and 2 is a real miRNA:miRNA* duplex which is

regarded as a positive sample. All the positive samples are used as

the positive training samples.

Negative dataset. It is well known that pre-miRNAs do not

produce multiple overlapping miRNAs from the same arm of the fold-

back stem-loop [26]. Thus, the pseudo miRNA:miRNA* duplexes are

extracted from the respective pre-miRNAs by sliding two 21 nt

windows with step 1. When the starting position of the sliding window

1 does not coincide with the starting position of the real miRNA, the

combined sequence in the window 1 and 2 is a pseudo

miRNA:miRNA* duplex. The pseudo miRNA:miRNA* duplex is

regarded as the negative sample. The plant negative dataset is

composed of the 129951 negative samples from the 1323 pre-miRNAs.

Testing dataset. 1035 experimentally verified plant pre-

miRNAs have recently been reported in miRBase 15–17. These

pre-miRNAs produce 1341 miRNAs. The ‘‘miR15–17 plant testing

dataset’’ is composed of these 1341 real miRNA:miRNA* duplexes

and 100807 pseudo miRNA:miRNA* duplexes. There is no overlap

between the training and testing datasets as the former contains the

real/pseudo miRNA:miRNA* duplexes extracted from the pre-

miRNAs inmiRBase 14. To assess the performance of the prediction

model, the completely independent testing dataset is used.

Evaluation method
The informative feature subset and the training samples were

used to construct the prediction model MaturePred. The distance

distribution is generated by calculating the distance between the

starting position of predicted probable miRNAs and the starting

position of actual miRNA. The distribution is used to evaluate

the prediction performance of MaturePred. Assume that there are

N pre-miRNAs in a testing dataset. For the i-th pre-miRNA, the

position deviation between the starting position of the predicted

miRNA (pi) and that of the actual miRNA (ai) is xi= pi-ai. When

the predicted miRNA is in front of the actual miRNA, xi is less

than 0. When the predicted miRNA is behind the actual

miRNA, xi is greater than 0. The average position deviation E(x)

is defined as

E(x)~

P

N

i~1

xij j

N
ð6Þ

It is clear that the smaller E(x) is, the more accurate the position

prediction is.

The strand in which a miRNA locates is referred to as the

functional strand and the prediction accuracy of the functional

Table 4. Prediction results of MaturePred86 and MiRPara over
the miR15–17 plant testing dataset.

Distance from

actual miRNA 0 nt ±1 nt ±2 nt ±4 nt ±6 nt ±8 nt E (nt)

MaturePred86 (%) 59.31 74.86 82.27 91.14 95.12 96.20 1.696

MiRPara (%) 25.85 46.29 56.05 66.72 72.15 76.67 10.835

doi:10.1371/journal.pone.0027422.t004

Table 5. Prediction results of MaturePred86 and MiRPara over
the miR13 plant testing dataset.

Distance from

actual miRNA 0 nt ±1 nt ±2 nt ±4 nt ±6 nt ±8 nt E (nt)

MaturePred86 (%) 75.15 84.60 88.41 93.45 94.82 96.19 1.243

MiRPara (%) 23.48 46.04 53.35 64.02 69.21 73.02 11.722

doi:10.1371/journal.pone.0027422.t005

Figure 8 Average distance distributions of MaturePred86 and MiRPara over the miR13 plant testing dataset. A. Average distance
distribution of MaturePred86. B. Average distance distribution of MiRPara.
doi:10.1371/journal.pone.0027422.g008
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strand is also an important criterion for assessing the prediction

performance. The prediction accuracy, P(y), is defined as

P(y)~

P

N

i~1

yij j

N
ð7Þ

where yi represents whether the predicted miRNA in the i-th

pre-miRNA is on the functional strand. yi is assigned to 1 (on the

functional strand) or 0 (not on the functional strand). The

greater P(y) is, the more accurate the prediction of the functional

strands is.

Feature subset evaluation
The 160 features are extracted from the real/pseudo miRNA:-

miRNA* duplexes. In order to evaluate the features, they are

divided into 9 subsets, including F1={21 position-specific features

of miRNAs}, F2={21 position-specific features of miRNA*s},

F3={24 position-specific features of flanking regions of miRNAs},

F4={24 position-specific features of flanking regions of miR-

NA*s}, F5={2 stability-related features: miRNA_59end and

miRNA*_59end}, F6={1 distance-related feature: dis}, F7={3

energy-related features: MFE1, MFE2, MFE3}, F8={32 structure-

related features of miRNAs}, and F9={32 structure-related

features of miRNA*s}. The selected feature subset has greatly

effect on the prediction performance ofMaturePred. The 4 instances

of MaturePred: MaturePred27 (27 features), MaturePred48 (48 features),

MaturePred72 (72 features), and MaturePred136 (136 features) are

evaluated by performing 10-fold cross validation. With 10-fold

cross validation, all real/pseudo miRNA:miRNA* duplexes in the

training dataset are randomly divided into 10 equal subsets, 9 of

which are used for training the prediction model, while the left out

subset is used for validation. Table 1 illustrates the combination of

features in each instance. ‘‘!’’ means that the whole feature subset

is selected. ‘‘g’’ represents that the partial feature subset is

selected. ‘‘6 nt’’ represents that the flanking regions are set to 6 nt

long.

For each MaturePred instance, the representative pseudo

miRNA:miRNA* duplexes are selected by the two-stage sample

selection method to train the instance. We performed 10 repeated

evaluations and averaged the results.

Table 2 shows the average distance between the predicted

miRNAs and the actual miRNAs. MaturePred27 correctly identified

the functional strands for 866 of 1323 pre-miRNAs. The average

position deviation is 6.273 nt. 43.54% of the predicted miRNAs

match the starting position of actual miRNAs, while 60.26% and

85.21% are within 62 and 68 nt distances, respectively. Correct

identification of the functional strands was successful for 976 of

1323 pre-miRNAs by MaturePred48. The average position deviation

is 5.284 nt. 49.37% of the predicted miRNAs match the starting

position of the actual miRNAs. 64.99% and 87.84% are within62

and 68 nt distances, respectively. It is obviously that MaturePred48
outperforms MaturePred27. MaturePred27 only considered the

position-specific features of miRNAs. MaturePred48 considered not

Figure 9. Average distance distributions over 10-fold cross validation. A. Average distance distribution of MaturePred86. B. Average distance
distribution of MatureBayes.
doi:10.1371/journal.pone.0027422.g009

Table 6. Prediction results over different testing datasets.

Testing dataset Size

Distance from actual

miRNA 0 nt ±1 nt ±2 nt ±4 nt ±6 nt ±8 nt E (nt) P (%)

10-fold cross validation 1323 MaturePred86 (%) 51.09 61.60 67.54 77.73 85.43 90.62 4.617 74.60

MatureBayes (%) 40.81 48.17 53.06 63.03 70.32 77.68 7.876 71.05

miR15–17 plant testing
dataset

1035 MaturePred86 (%) 35.46 46.10 54.47 64.82 73.62 78.16 5.896 68.12

MatureBayes (%) 27.09 33.72 38.76 47.98 54.47 59.65 10.336 67.05

doi:10.1371/journal.pone.0027422.t006
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only the position-specific features of miRNAs but also that of

miRNA*s. The prediction accuracy of functional strand (P)

increased by 8.31%. The average position deviation (E) decreased

by 0.989 nt. This indicates that it is necessary to regard the

miRNA:miRNA* duplexes as a whole and consider the position-

specific features of miRNAs and miRNA*s.

It is well known that the Dicer or DCL1 usually cleaves the

miRNAs according to the characteristics of the miRNAs, the

miRNA*s, and their flanking regions. Thus, considering the

features about the flanking regions is useful for accurate prediction

of the position of miRNAs. The experimental result certificates the

inference. Compared with MaturePred48, MaturePred72 considered

additional features of the 6 nt long flanking regions. 6 nt is the

result of Prediction optimization. The prediction accuracy of

functional strand for MaturePred72 increased by 0.68%. The

average position deviation decreased by 0.395 nt.

MaturePred72 also achieved higher prediction performance than

MaturePred136. It is mainly due to the 64 structure features of

miRNAs and miRNA*s in MaturePred136. Since some of these

features only have no or little information gain, selecting the whole

64 features would only add noise and is unfavorable to the higher

prediction accuracy. It is therefore prudent to select the

informative features from them.

Feature selection result
The evaluation of different feature selections indicates that

MaturePred72 achieved the higher prediction accuracy. 14 infor-

mative structure-related features were selected from the 64

structure-related features (see Feature Selection). They are combined

with the 72 features, in total 86 features. These features and the

corresponding information gain are listed in Table S2. They are

ranked by their normalized information gain.

The energy-related features (MFE1, MFE2, and MFE3) belong

to the top 5 features. It shows the necessity of extracting the new

energy-related features. The features about the 59 ends of miRNAs

and miRNA*s (miRNA_59end and miRNA*_59end) have greater

Figure 10. Average distance distributions over the miR15–17 plant testing dataset. A. Distance distribution of MaturePred86. B. Distance
distribution of MatureBayes.
doi:10.1371/journal.pone.0027422.g010

Figure 11. Average distance distributions over 10-fold cross validation, including 59 arm and 39 arm candidates. A. Average distance
distribution of MaturePred86. B. Average distance distribution of MatureBayes.
doi:10.1371/journal.pone.0027422.g011
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information gain. These results underscore the importance of the 2

features. There are also 19 features about the miRNA*s

(miRNA*_19, …, aft_miRNA*_1) ranked in the top 50 feature

subset. It confirms the effectiveness of the features related to the

miRNA*s. In addition, 6 of 14 triplet structure features of miRNAs

and miRNA*s belong to the top 50 feature subset. It indicates the

importance of these features for prediction of the position of

miRNAs.

For the 21 position-specific features of miRNAs and the 12

features of flanking regions (6 nt), we found that the 1-st, 2-nd, 3-rd,

6-th, and 17–21th position features have greater information gain

than others. In terms of miRNA*s and their flanking regions, the

features of corresponding positions (19-th, 18-th, 17-th, 14-th, 1-st,

2-nd, 3-rd, the 1-st and 2-nd before the miRNA*s) also have greater

information gain. It indicates that these position features are

important for discriminating the real miRNA:miRNA* duplexes

from the pseudo miRNA:miRNA* duplexes.

Table S3a shows the information gain calculated for the 711

pre-miRNAs whose miRNAs locate in their 59 arms. S3b shows

the information gain of the 744 pre-miRNAs whose miRNAs

locate in their 39 arms. S3c shows the combined information gain

calculated over all pre-miRNAs in the training dataset. While the

IG values of the feature dis in S3a and S3b are greater than those

in S3c, the IG values of other features in S3a and S3b are highly

consistent with the ones in S3c.

In order to validate the efficiency of the feature selection

method, we tested the prediction accuracy of 86 features. As

shown in Table 2, the prediction accuracy of functional strand of

MaturePred86 is a little worse than MaturePred136. However,

MaturePred86 achieved the minimum position deviation and the

best distance distribution. It shows the importance of feature

selection during construction of the efficient prediction model.

Training sample selection result
In order to construct MaturePred86, 17803 representative

negative samples with 86 features were selected from the negative

dataset by the two-stage sample selection method. These negative

samples are combined with the 1455 positive samples to form the

selected dataset. The existing methods including MatureBayes

and miRCos, randomly selected the negative training samples.

Therefore, the equal number of negative samples to the positive

samples was randomly selected from the negative dataset, which

are combined with the 1455 positive samples to form random

dataset. The whole dataset is composed of all the positive/

negative samples. MaturePred86 was compared with the prediction

models, MaturePredrand and MaturePredwhole, all of which are trained

by the random dataset and the whole dataset respectively. As

shown in Table 3, the miR15–17 plant testing dataset is used to

evaluate the 3 prediction models.

Although the prediction accuracy of the functional strand of

MaturePredwhole is a little higher than others, it obtained the worst

position deviation and distance distribution. This is mainly due to

the over-fitting and poor generalization of the usage of all the

positive/negative samples. MaturePred86 achieved higher prediction

Table 7. Prediction results over both arms of the pre-miRNAs.

Testing dataset Size Distance from actual miRNA 0 nt ±1 nt ±2 nt ±4 nt ±6 nt ±8 nt E (nt)

10-fold cross validation 1323 MaturePred86 (%) 42.41 53.06 60.39 70.69 77.61 83.01 5.893

MatureBayes (%) 34.09 41.49 47.92 57.22 64.54 71.04 8.835

miR15–17 plant testing
dataset

1035 MaturePred86 (%) 30.43 42.90 51.40 63.38 72.08 77.49 6.419

MatureBayes (%) 21.74 29.95 36.62 46.86 56.72 61.84 10.439

doi:10.1371/journal.pone.0027422.t007

Figure 12. Average distance distributions over miR15–17 plant testing dataset, including 59 arm and 39 arm candidates. A. Distance
distribution of MaturePred86. B. Distance distribution of MatureBayes.
doi:10.1371/journal.pone.0027422.g012
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accuracy than MaturePredrand, which demonstrates that the two-

stage sample selection is effective for improving the prediction

accuracy. In addition, MaturePredrand achieved excellent prediction

accuracy. It further confirms that the selected 86 features are

sufficient to ensure the prediction performance.

Comparison with MiRPara over plant testing data
MiRPara is designed for prediction of the most probable mature

miRNA candidates not only for animal but also for plant. MiRPara

is more similar to our approach as it constructed a model based on

SVM. MiRPara and MaturePred86 are evaluated by the miR15–17

plant testing dataset. The testing dataset is independent with the

training dataset of MiRPara and that of MaturePred. The latest code

of MiRPara (version of 2011-6-2) is downloaded from its website

(http://159.226.126.177/mirpara/download.htm).

The SVM probability cutoff (c) from MiRPara is a threshold.

When the SVM probability of a miRNA candidate is more than c,

MiRPara would output the probable miRNA candidates. Here, c is

set to 0.5. The 553 of 1035 pre-miRNAs have the probable

miRNA candidates. Comparison with our method is performed on

the 553 pre-miRNAs which are found to contain at least a miRNA

candidate by MiRPara. The top 10 miRNA candidates with higher

probabilities for each pre-miRNA are as the prediction result.

Also, the top 10 candidates are obtained from MaturePred86. For a

pre-miRNA, the distance between each one of the top 10

candidates and the actual miRNA is calculated. The minimum

distance is as the prediction position deviation.

The prediction result is shown in Figure 7 and detailed in

Table 4. 59.31% starting position predicted by MaturePred86
coincided with the respective actual miRNAs. 82.27% and

96.20% of the predicted starting position are within 62 and

68 nt from the actual miRNAs. The corresponding values for

MiRPara are 25.85%, 56.05% and 76.67%. Additionally, the

average position deviation (E) decreased by 9.139 nt. The result

indicates that MaturePred86 can give more accurate predicted

miRNA candidates which are more likely to cover the actual

miRNA.

Since both the training dataset of MaturePred86 and that of

MiRPara contain the miRNAs from the miRBase 13, these two

methods are tested with these known pre-miRNAs. The parameter

c of MiRPara is also set to 0.5. The 656 of 1054 pre-miRNAs have

the probable miRNA candidates. The top ten prediction results of

MaturePred86 and MiRPara are compared. The detailed prediction

result is shown in Table 5. The distributions of prediction distance

are shown in Figure 8. 75.15% starting position predicted by

MaturePred86 coincided with the respective actual miRNAs. 88.41%

and 96.19% of the predicted starting position are within 62 and

68 nt from the actual miRNAs. The corresponding values for

MiRPara are 23.48%, 53.35% and 73.02%. Additionally, the

average position deviation (E) decreased by 10.479 nt. This

indicates that our method is more accurate to predict the miRNAs

from the known pre-miRNAs.

Comparison with MatureBayes over plant testing data
MatureBayes incorporates a Naı̈ve Bayes classifier to predict the

starting position of miRNAs on human and mouse pre-miRNAs.

Thus, MatureBayes has to be modified to be applicable the plant

datasets since it was originally developed for human and mouse.

MatureBayes considered totally 40 features including the 21

position-specific features of miRNAs, 18 features about the

miRNA 9 nt long flanking regions, and the feature dis.

MatureBayes offers only one the start position of the most

probable miRNA candidate in any given pre-miRNA candidate.

Thus, the only one is obtained from MaturePred86 to compare with

MatureBayes. MaturePred86 and MatureBayes are evaluated by

performing 10-fold cross validation. Correct identification of the

functional strand(s) was successful for 987/1323 pre-miRNAs

by MaturePred86 versus 940/1323 pre-miRNAs by MatureBayes.

Distance distributions between the predicted and actual miRNA

starting position were calculated for each model, using the 987 and

Figure 13. Average distance distributions of MaturePred88 and MiRPara over the miR15–17 animal testing dataset. A. Average
distance distribution of MaturePred88. B. Average distance distribution of MiRPara.
doi:10.1371/journal.pone.0027422.g013

Table 8. Prediction results of MaturePred88 and MiRPara over
the miR15–17 animal testing dataset.

Distance from

actual miRNA 0 nt ±1 nt ±2 nt ±4 nt ±6 nt ±8 nt E (nt)

MaturePred88 (%) 71.07 86.25 92.73 97.09 98.63 99.21 0.651

MiRPara (%) 49.68 69.65 78.46 86.34 89.46 91.43 3.262

doi:10.1371/journal.pone.0027422.t008
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940 pre-miRNAs, respectively. As shown in Figure 9 and detailed

in Table 6, 51.09% starting position predicted by MaturePred86
coincided with the respective actual miRNAs. 67.54% and

90.62% of the predicted starting position are within 62 and

68 nt from the actual miRNAs. The corresponding values for

MatureBayes are 40.81%, 53.06% and 77.68%. Additionally, the

prediction accuracy of functional strand (P) of MaturePred86
increased by 3.55% and the average position deviation (E)

decreased by 3.259 nt.

MaturePred86 and MatureBayes are further evaluated by the

miR15–17 plant testing dataset. This allows an unbiased analysis

since the miR15–17 testing dataset was not used to build the

prediction model. The functional strands of 705 pre-miRNAs were

correctly identified by MaturePred86 versus 694 pre-miRNAs by

MatureBayes. As shown in Figure 10 and detailed in Table 6, the

prediction accuracy of the functional strand increased in

MaturePred86 by 1.07% over MatureBayes and the average position

deviation decreased by 4.44 nt. Taking together, we conclude that

MaturePred86 outperforms MatureBayes. The better prediction

performance of MaturePred86 can be attributed to the extraction

of new features, the selection of the informative features, and the

selection of representative negative training samples.

Prediction of the miRNA:miRNA* duplexes
It is difficult to accurately determine the functional strands

where the miRNAs locate. The experiments indicate that

MatureBayes and MaturePred86 have a similar, poor performance

in terms of predicting the functional strands (around 60–70%).

In terms of the position prediction of human and mouse

miRNAs, MatureBayes offers two alternatives over the 39 arm and

59 arm respectively to make up the inaccurate function strand

prediction. We also provide the plant miRNA candidate with the

highest score over the 59 arm and the one over the 39 arm as the

more probable miRNAs. The distance between the actual

miRNA(s) and the predicted candidates (locating on the same

arm) were calculated. The result of 10-fold cross validation is

shown in Figure 11 and detailed in Table 7. The average position

deviation of MaturePred86 was 2.942 nt less than that of MatureBayes.

In terms of the miR15–17 plant testing dataset, the average

position deviation of MaturePred86 decreased by 4.02 nt, as shown

in Figure 12 and detailed in Table 7. Thus, MaturePred86

outperforms MatureBayes in terms of giving the more probable

miRNA candidates from both 59 arms and 39 arms.

Construction of MaturePred with animal data
Besides constructing the prediction model for plant pre-miRNA

candidates, we construct the model based on animal data for

prediction of the position of miRNA in the animal pre-miRNA

candidates. There are 8823 animal pre-miRNAs in the miRBase

14, including 4419 experimentally verified pre-miRNAs. 5553 real

miRNA:miRNA* duplexes from the 4419 experimentally verified

pre-miRNAs are collected as positive training dataset. 61866

representative pseudo miRNA:miRNA* duplexes are selected by

the two stage negative sample selection algorithm as negative

training dataset. The miRNAs of length 22 nt account for nearly

50% of all animal miRNAs. Thus, the length of the sliding window

is set to 22 nt.

88 features are selected according to feature information gain

against the animal data. These features and the corresponding

information gain are listed in Table S4. Table S5 illustrates the

information gain of 138 features based on animal data. As shown

in Table S5, the energy-related features (MFE1, MFE2, and

MFE3), the stability related features (miRNA_59end, miR-

NA*_59end), the partial miRNA* related features and the

secondary structure related features have greater information

gain. It confirms the necessity of extracting these new features

again.

Figure 14. Average distance distributions of MaturePred88 and MiRPara over the miR13 animal testing dataset. A. Average distance
distribution of MaturePred88. B. Average distance distribution of MiRPara.
doi:10.1371/journal.pone.0027422.g014

Table 9. Prediction results of MaturePred88 and MiRPara over
the miR13 animal testing dataset.

Distance from

actual miRNA 0 nt ±1 nt ±2 nt ±4 nt ±6 nt ±8 nt E (nt)

MaturePred88 (%) 86.08 92.80 96.05 98.53 99.19 99.46 0.335

MiRPara (%) 54.66 77.06 86.95 92.23 94.44 95.28 2.163

doi:10.1371/journal.pone.0027422.t009

Plant miRNA Prediction

PLoS ONE | www.plosone.org 14 November 2011 | Volume 6 | Issue 11 | e27422



Comparison with MiRPara over animal testing data
The 4314 experimentally verified animal pre-miRNAs have

recently been reported in miRBase 15–17. 5727 animal miRNAs

from these pre-miRNAs are used to evaluate the performance of

animal prediction model MaturePred88 and MiRPara. For the

miRPara, the 3301 of 4314 animal pre-miRNAs have the probable

miRNA candidates. The top 10 probable miRNA candidates of

MaturePred88 and that of MiRPara are compared. The prediction

result for the 3301 pre-miRNAs is shown in Figure 13 and Table 8.

71.07% starting position predicted by MaturePred88 coincided with

the respective actual miRNAs. 92.73% and 99.21% of the

predicted starting position are within 62 and 68 nt from the

actual miRNAs. The corresponding values for MiRPara are

49.68%, 78.46% and 91.43%. Additionally, the average position

deviation (E) decreased by 2.611 nt.

In addition, both the training dataset of MaturePred88 and that

of MiRPara contain the miRNAs from the miRBase 13. Thus,

4985 miRNAs from 3915 experimentally verified animal pre-

miRNAs are used to evaluate the performance of MaturePred88
and MiRPara for prediction of the known miRNAs. For the

miRPara, the 3348 of 3915 animal pre-miRNAs have the

probable miRNA candidates. Figure 14 and Table 9 show the

prediction results of MaturePred88 and miRPara. 86.08% starting

position predicted by MaturePred88 coincided with the respective

actual miRNAs. 96.05% and 99.46% of the predicted starting

position are within 62 and 68 nt from the actual miRNAs. The

corresponding values for MiRPara are 54.66%, 86.95% and

95.28%. The average position deviation (E) decreased by

1.828 nt. The result indicates that MaturePred and MiRPara

achieve greater prediction accuracy for animal pre-miRNAs

than that for plant pre-miRNAs. It is mainly due to the plant pre-

miRNAs usually have more complex secondary structures than

the animal pre-miRNAs.

Comparison with MatureBayes over animal testing data
Most of the existing prediction models are proposed for

predicting the positions of animal miRNAs such as those of

human and mouse, including micros, ProMiR, BayesMiRNAfind and

MatureBayes. MatureBayes achieved significantly higher prediction

accuracy than ProMiR and BayesMiRNAfind. Therefore, we

compared MaturePred88 with MatureBayes. ProMiR, BayesMiRNA-

find, and mirCos can not be compared since their source code and

web services are unavailable. Since MatureBayes mainly predicts

the starting position of miRNAs on human and mouse pre-

miRNAs, 927 new reported experimentally verified human and

mouse pre-miRNAs in miRBase 15–17 are used to evaluate

MaturePred88 and MatureBayes. The prediction result of Mature-

Bayes is obtained from its website (http://mirna.imbb.forth.gr/

MatureBayes.html).

Since the improved MatureBayes offers the most probable

miRNA candidates of 59 arm and 39 arm respectively, the ones

of 59 arm and 39 arm are obtained from MaturePred88 to compare.

As shown in Figure 15 and detailed in Table 10, 30.21% starting

position predicted by MaturePred88 coincided with the respective

actual miRNAs. 68.06% and 95.15% of the predicted starting

position are within 62 and 68 nt from the actual miRNAs. The

Figure 15. Average distance distributions of MaturePred88 and MatureBayes over the miR15–17 human and mouse testing dataset,
including 59 arm and 39 arm candidates. A. Average distance distribution of MaturePred88. B. Average distance distribution of MatureBayes.
doi:10.1371/journal.pone.0027422.g015

Table 10. Prediction results of MaturePred88 and MatureBayes over the miR15_17 human and mouse testing dataset.

Prediction candidates

Distance from actual

miRNA 0 nt ±1 nt ±2 nt ±4 nt ±6 nt ±8 nt E (nt)

Both the 59 arm and 39 arm candidates MaturePred88 (%) 30.21 52.12 68.06 81.89 90.57 95.15 3.214

Top 10 candidates MaturePred88 (%) 60.41 81.34 90.83 96.87 98.38 99.03 0.877

Both the 59 arm and 39 arm candidates MatureBayes (%) 22.65 43.14 59.11 76.15 84.03 87.37 5.875

doi:10.1371/journal.pone.0027422.t010
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corresponding values for MatureBayes are 22.65%, 59.11% and

87.37%. The average position deviation decreased by 2.661 nt.

In addition, we compared the top 10 miRNA candidates of

MaturePred88 with the prediction result of MatureBayes. As shown in

Figure 16 and detailed in Table 10, 60.41% starting position

predicted by MaturePred88 coincided with the respective actual

miRNAs. 90.83% and 99.03% of the predicted starting position

are within 62 and 68 nt from the actual miRNAs. The average

position deviation decreased by 4.998 nt. Specially, for the position
deviations at 0 nucleotides, MaturePred88 correctly identifies more

than double the rate of miRNAs predicted by MatureBayes.

Conclusion
A new prediction model based on SVM was developed for

predicting the starting position of plant miRNAs. We demonstrat-

ed the importance of careful feature extraction, feature selection,

and training sample selection in achieving effective prediction

performance. Particularly, according to the characteristics of plant

miRNAs, 160 features were extracted and 86 informative features

were selected. Each negative sample (pseudo miRNA:miRNA*

duplex) was mapped into the 86-dimensional space. 17803

representative negative samples were selected as the training

samples to combat the class imbalance problem between the

positive and negative samples. The proposed two-stage sample

selection method can also be applied to other class imbalance

problem in bioinformatics, such as identifying the SNP sites in the

EST sequences.

In addition, we trained an animal miRNA prediction model

with animal data. The plant model and animal model have been

compared with the existing prediction methods, MiRPara and

MatureBayes. The comparison results indicate that MaturePred,
MiRPara and MatureBayes achieve higher prediction accuracy for

animal pre-miRNAs than that for plant pre-miRNAs. MaturePred
has higher prediction improvement, especially for plant pre-

miRNAs. Further analysis indicated that the improvement of

prediction accuracy was due to the extracted features, the selected

informative features and the representative training samples.

MaturePred can efficiently predict the positions of the more

probable miRNAs in the new pre-miRNA candidates from the

ab initio method. It can facilitate the application of the ab initio

method in the computational prediction of miRNA genes and

their function.
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