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Abstract—Safe navigation through corridors plays a major
role in the autonomous use of Micro Aerial Vehicles (MAVs)
in indoor environments. In this paper, we present an approach
for wall collision avoidance using a depth map based on optical
flow from on board camera images. An omnidirectional fisheye
camera is used as a primary sensor, while IMU data is needed
for compensating rotational effects of the optical flow. The
here presented approach is designed for safely maneuvering a
helicopter through an indoor corridor. Results based on real
images taken in a corridor with textured walls are shown at the
end of this paper.

I. INTRODUCTION

THE past years showed an increasing interest in MAV

applications in different environments. Surveillance and

reconnaissance for military as well as for civil purposes are

main tasks of Unmanned Aerial Vehicles (UAV). Currently,

UAVs are used mainly in open sky, away from ground obsta-

cles penetrating their flight-paths. Based on GPS data, geo-

logical obstacles such as hills or mountains can be bypassed.

However, growing interests in smaller airborne vehicles flying

autonomously in near-earth or even indoor environments call

for other methods for obstacle avoidance. In urban applications

or indoor use, collision avoidance cannot be achieved based on

GPS-data alone. Too many unforeseen obstacles may cross the

way path of the MAV. Especially in autonomous use, reliable

obstacle avoidance is indispensable for ensuring the MAV’s

survivability.

In order to ensure collision avoidance, new approaches are

used, mainly relying on onboard sensors that are able to scan

the instant environment and to provide the controller with

reliable data to safely maneuver the MAV in an unknown

environment.

Different sensors have been used for detecting obstacles.

Kumar and Ghose[1] and Kwag and Kang [2] implemented

radar based navigation and obstacle avoidance. Saunders et

al. [3] used a forward looking laser range finder for path plan-

ning. However, this two approaches lack in heavy weight or

high power consumption. For a flying platform it is important
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to keep weight light and to save energy wherever possible.

Therefore, having a lightweight sensor with a small power-

consumption is of great interest. Both targets are reached using

a camera. Since it is a passive sensor, power requirements are

low while having a light weight. These arguments declare the

camera to one of the most suitable sensors for obstacle avoid-

ance. Based on the optical flow achieved by camera images,

it is possible to estimate the distance to surrounding objects.

Computing this distance is highly expensive in computation,

though, which is the major disadvantage of using camera

images for obstacle avoidance.

The here presented approach uses camera images as pri-

mary sensor data for estimating the distance of surrounding

obstacles. The camera is a 190° Field-Of-View (FOV) fisheye

camera pointing downwards. This allows us to get distance

information from all around the MAV. The flying platform is

a quadrotor helicopter having a diameter of 53cm, equipped

with an Inertial Measurement Unit (IMU). Computations are

done on an external computer. This algorithm is optimized for

navigating a MAV through an indoor corridor.

Using image feature tracking, the optical flow of two

images, taken with a short time interval, is calculated. This

optical flow is caused by translation and rotation of the

helicopter. Depth estimation can be achieved only from op-

tical flow caused by translation. Using data provided by the

onboard IMU, optical flow effects caused by rotation can be

compensated.

Based on this optical flow a depth map is created, con-

taining depth information from the current environment of the

helicopter. Since the MAV is placed in a corridor, it detects a

wall on either side of the helicopter, while the median lateral

distances to the walls on both sides are measured. Using this

information, the error towards the center of the corridor can be

calculated. Normalized with the overall measured width of the

corridor, this error can then be used as input of a PD controller

steering the helicopter through the corridor.

The normalized error allows us the use of this algorithm

without having information about the amount of speed or the

corridor width, which is very useful since no speed information

of the helicopter are available and applications in different

environments are possible. However translational movement

of the MAV is needed to detect surrounding obstacles.

The paper is organized as follows: in Section II, we review

the work in this area; in Section III, we present our equipment

and in Section IV we describe our approach. Finally, in

Sections V and VI we present the experimental results and
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draw the conclusions.

II. RELATED WORK

The use of optical flow for obstacle avoidance is a

widespread approach. Many different obstacle avoidance

strategies rely on this phenomenon, which is often presented

as biologically inspired. Tammero et al. [4] showed that fruit

flies avoid obstacles when turning away from regions with

high optical flow, while Srinivasan et al. [5] found out that

honeybees flying through a tunnel try to balance the amount

of optical flow on both sides in order to maintain equidistance

to the flanking walls. Adapting these behaviors, Serres et al.

[6] developed an autopilot for lateral obstacle avoidance of

a hovercraft. Two linear cameras pointing ± 90° to the side

provided optical flow. By balancing the optical flow on both

sides, they made the hovercraft navigate in the middle of a

corridor.

Hrabar [7] used a similar method for lateral obstacle avoid-

ance of a rotorcraft flying in an urban environment. For depth

estimation, stereo cameras were used. However, stereo cameras

require heavier payload to the MAV, which actually should be

prevented. Nevertheless, single camera collision avoidance for

frontal obstacle is possible. Zufferey et al. [8], [9] implemented

such a system on a 10g microflyer. Using two linear cameras

for measuring optical flow, he computed the divergence of the

optical flow on the left and right side of the direction of travel.

Increasing divergence indicates a frontal obstacle which can

be safely avoided with proportional rudder deflection. This

system was successfully tested in an indoor environment that

was properly modified by adding bare-code-like texture on the

walls.

Similarly, Muratet et al. [10] used the optical flow field of

a perspective camera facing the direction of travel. In case of

a divergence of the field from one point, a frontal obstacle

could be detected. The point of divergence is called focus of

expansion. This situation allows us to compute the time to

impact onto the obstacle. If the time to impact falls below a

threshold, the controlled helicopter stops and executes a 180°

turn.

Besides lateral and frontal obstacle avoidance, altitude

control is another application of optical flow for controlling

MAVs. Ruffier and Franceschini [11] regulated the altitude of

a helicopter using two downward optical flow sensors. Similar

implementations have been done by Zufferey [9] and Green et

al. [12] who additionally implemented an autonomous landing

strategy. While keeping optical flow constant, speed is reduced

successively, causing the MAV to approach the ground and

finally touch down.

All the above mentioned approaches use optical flow as a

primary input. However, it is possible to use optical flow for

computing a depth map containing obstacles surrounding the

MAV. Based on this map, the desired waypath of the MAV

can be planned taking the detected obstacles into account.

Call et al. [13], [14] presented a method to detect obstacles

using a forward looking onboard camera. Distances were

measured based on optical flow amplitude and GPS data. A

three dimensional map provided a rough estimation of the

Fig. 1. The Hummingbird quadrotor helicopter provided by Ascending
Technologies.

Fig. 2. The µEye camera with a 190° lens recording monochrome pictures
from the surrounding of the helicopter. It is pointing downwards onto the
ground.

obstacle locations. The fixed wing MAV then used a sliding

mode control law to avoid obstacles.

From this brief literature review we can see that many

different techniques for obstacle avoidance based on optical

flow have been realized so far. The focus is laid on approaches

using optical flow as control input. Such systems can be

applied in special environments only. Whereas, depth map

based navigation would allow to navigate flying robots in a

more complex indoor environment.

III. EQUIPMENT

A. Flying Platform

Our MAV is the Ascending Technologies Humming-

bird1(see Fig. 1), a quadrotor helicopter having an overall di-

ameter of 53 cm and a payload of 200 grams. The operational

flying time varies between 23 minutes without payload and 12

minutes with full payload. Additionally, the MAV is equipped

with a fully working Inertial and Measurement Unit (IMU)

providing information about the pitch, roll, and yaw angle

of the helicopter. Furthermore, its built-in controller allows

us to regulate the overall thrust, angular positions of pitch

and roll angles, and the angular speed of the yaw angle. For

communication purposes, a ZigB communication board allows

us to send control inputs to the helicopter and to grab IMU

data.

B. Camera

As for the camera, we used the µEye camera (see Fig. 2)

from IDS2. The resolution of this monochrome camera is

1http://www.asctec.de
2http://www.ids-imaging.com/
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752× 480 pixels, while the maximal possible frame rate lays

at 87 frames per second. The mounted fisheye lens provides a

field of view of up to 190°. The camera is attached to the center

of the helicopter pointing downwards. In this orientation, the

recorded images contain information from the surrounding of

the MAV.

C. Computer

The overall computation was done off-board on a 2GHz

Dual Core laptop. Connection to the helicopter IMU and

controller was ensured via the ZigB wireless communication

board while images of the on-board camera were streamed via

WiFi. The overall algorithm ran at 20 Hz.

IV. APPROACH

A. Optical Flow

Optical flow is an often used method for non stereo-vision

based collision avoidance. It is a visual phenomenon experi-

enced daily when observing an object moving at a different

speed than the observer. The motion of the observed obstacle

depends on the distance between observer and obstacle and

their relative speed. Optical flow can therefore be used for

estimating relative distances. It is measured in units of angular

velocity such as radians per second or degrees per second. If

optical flow is extracted from images of a video camera, as

it is done in our approach, optical flow is the motion of a

particular pixel from one video frame to another.

In the here presented method for obstacle avoidance, the

camera is fixed on the helicopter. Since the surroundings of

the robot is assumed to be stationary, optical flow is only

caused by the motion of the MAV. Optical flow caused by

near obstacles is bigger than optical flow caused by obstacles

farther away. This phenomenon can be used for estimating the

relative distance from the camera to the obstacles.

The calculation of optical flow is one of the most de-

manding aspects concerning computational power in this

application. Several different methods have been developed

[15]. Differential methods call upon spatio-temporal intensity

derivatives, correlation approaches rely on feature matching,

while frequency-based methods use velocity-tuned filters in

the Fourier-domain. Lucas and Kanade[16] introduced an

algorithm that allows us calculation of sparse optical flow,

i.e. optical flow is not computed for every pixel but only for

certain previously determined pixels that are selected in the

first frame. For pixel motion larger than the search-window,

a pyramidal approach for the Lucas-Kanade method is used

[17], where the standard algorithm is applied recursively to

resized versions of the image. This allows us to scan a bigger

area and to find optical flow with magnitudes larger than the

ones detected by the standard approach.

The Pyramidal Lucas-Kanade optical flow detector has been

applied in our algorithm. The pixels in the first frame are

selected using the Shi and Tomasi’s corner finder[18].

B. Depth Estimation in Straight Flight

Based on the optical flow magnitude, it is possible to

estimate the distance of the detected object. Assuming linear

Fig. 3. Optical flow during the translational flight of the MAV.

Fig. 4. The quadrotor helicopter navigates in six degrees of freedom and can
therefore perform motion in x,y and z direction as well as rotation around
Θ, Φ and Ψ

motion of the MAV, optical flow is a function of the robot’s

forward velocity v, the distance to the obstacle D and the

angle between the direction of travel and the obstacle α (see

Figure 3).

OF =
v

D
· sinα (1)

Solving this equation for D gives:

D =
v

OF
· sinα (2)

Therefore, when speed and optical flow data are available, it

is relatively easy to compute the distance towards a detected

object, as long as pure translational movement of the robot

can be taken for granted.

The quadrotor helicopter, however, is a system navigating

in six degrees of freedom. Besides translation in x, y, and

z direction, it is able to rotate around pitch Θ, roll Φ and

yaw Ψ angles as shown in Fig. 4. In a general case, pure

translation cannot be assumed. Rotations of the MAV cause

additional optical flow which is not usable for distance-

estimation. Compensating this rotational effects is therefore

indispensable.
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Fig. 5. Pinhole camera model with tracked point p1 and matching point p2

found by the Lucas-Kanade algorithm.

C. Compensation of Rotation-based Effects

Using a pinhole camera model, the compensation for the

rotation is explained. Assuming two frames f1 and f2 are

acquired at times t1 and t2. From t1 to t2 the robot performs

a motion consisting of translation and rotation. The angular

changes from t1 to t2 are ∆Θ, ∆Φ, and ∆Ψ for pitch, roll,

and yaw angles. The corresponding angular changes can be

extracted from IMU data grabbed at times t1 and t2. Optical

flow is now calculated using the above mentioned Shi-Tomasi

corner finder for selecting pixel p1 in frame f1 and the

Pyramidal Lucas-Kanade approach for finding the matching

pixel p2 in frame f2. Relying on the pinhole camera model, it

is possible to find for each pixel p1 and p2 the corresponding

ray ~r1 and ~r2 in real world coordinates. Assuming the pixels p1

and p2 have image coordinates x1, y1 and x2, y2 respectively,

the corresponding rays in camera coordinate system are

~r1 =





0
0
0



 + λ1 ·





x1

y1

f



 (3)

and

~r2 =





0
0
0



 + λ2 ·





x2

y2

f



 (4)

while f is the focal length and the origin of the image

coordinate system is placed in the center of the image as shown

in Fig. 5.

Since the camera is mounted close to the helicopter’s center

of gravity, it can be assumed that the coordinate systems of

the camera and the helicopter match under the condition that

the axis of both coordinate systems are collinear. This implies

that rotations around the x, y, and z axis of the helicopter

can be adopted as rotations around the x, y, and z axis of the

camera coordinate system.

Because for depth estimation only translational movement

of the helicopter can be taken into account, pixel p2 has to

be placed at the position it would be if there was no rotation.

To achieve this, the ray ~r2 is transformed into the ray ~r′
2

that

is placed in the coordinate system x′, y′, and z′ having no

rotation, see Figure 6. Using the well-known Euler angles

Fig. 6. Motion consisting of translation and rotation

the following transformation is achieved:

~r′
2

=





1 0 0
0 cos ∆Φ − sin ∆Φ
0 sin(∆Φ) cos(∆Φ)



 ·





cos(∆Θ) 0 sin(∆Θ)
0 1 0

− sin(∆Θ) 0 cos(∆Θ)





·





cos(∆Ψ) − sin(∆Ψ) 0
sin∆Ψ cos(∆Ψ) 0

0 0 1



 · ~r2

(5)
~r′
2

now points into the direction the feature would have at

time t2 if the helicopter would not have performed rotation.

Using ~r′
2

allows us to calculate reliable optical flow for depth

estimation either by calculating the corresponding pixel p′
2

or

by applying the scalar product:

~r1 · ~r′
2

= |r1| · |r′
2
| · cos γ (6)

where γ is the angle between r1 and r′
2
. Since optical flow is

measured in rad/s, optical flow can be described as follows:

OF =
γ

∆t
=

arccos(
~r1 · ~r′

2

|r1| · |r′

2
| )

∆t
(7)

with ∆t = t2 − t1.

Applying a pinhole model, however is not appropriate

when using a 190° fisheye camera. Therefore, calculating

the rays r1 and r2 from image coordinates of the pixels p1

and p2 is not as intuitive as described above. Nevertheless,

it is not impossible. A toolbox calibrating omnidirectional

cameras has been developed by Scaramuzza [19] and can be

downloaded from [20]. It allows us an easy calculation of

rays corresponding to image pixel coordinates. The resulting

ray ~rfinal is assumed to have the following structure:

~rfinal =





0
0
0



 + λ ·





xfinal

yfinal

g(ρ)



 (8)

where xfinal and yfinal are the x and y coordinates of the

pixel in the image frame and ρ =
√

x2

final + y2

final. g(ρ) has

the form of a polynomial and is computed during a calibration

procedure based on images taken by the used camera. ρ is

the distance between the observed image point and the image

center.

After computing ~r1 and ~r2 using the calibration toolbox, the

application of the Euler-angles and optical flow calculation is

the same as described above.

D. Depth Map from Optical Flow

The ability of calculating accurate optical flow depending

only on the linear motion of the robot allows us to calculate
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Fig. 7. The regions of interest in which optical flow is calculated. The central
arrow indicates the direction of travel.

a map containing the depth of the MAV’s surroundings. For

each optical flow element in the image, the distance to the

real-world feature causing the optical flow can be estimated as

mentioned above. Using this depth information, a temporary

map can be built containing the distances towards obstacles

in all directions from which optical flow is measured. This

depth map is the heart-piece for the helicopter navigation with

obstacle avoidance.

In the here presented case, the test environment is an indoor

corridor. Using the depth map, both walls of the corridor on

either side of the helicopter are detected. Ensuring that the

main portion of optical flow is caused by the wall, optical flow

is calculated in certain regions of interest within the image

only. This region is shaped similar to the wall appearance in

the image. This sections contain two segments of 80°, one on

each side of the MAV as shown in Figure 7. A frontal section

of 50° is not taken into account, since depth estimations close

to the direction of travel causes numerical problems.

In average, approximately 500 optical flow elements are

detected, about 250 on each side. Since wrong matches in

the Lucas-Kanade algorithm giving wrong distance estimations

cannot be avoided, the calculated optical flow is inspected with

a filter for removing outliers.

A simple threshold filter removes too large optical flow

amplitudes. In a further step, an angular criterion is checked.

Optical flow has to be tangential to a circle with its center at

the center of the image with a deviation of up to 50°. This

threshold seems to be large, it has been chosen experimentally

and proved to work though. It is necessary, since the optical

flow has not an exact circular shape. If the threshold is chosen

smaller, optical flow close to the direction of travel might be

filtered out, even if it was not wrongly matched. A remarkable

amount of wrong matches could be extracted using these two

criteria.

E. Error Estimation

For safe navigation through the corridor, the position error

of the MAV towards the center of the corridor is of significant

importance. Error calculation can be done based on the previ-

ously computed depth map. Each depth estimation based on

an optical flow element can be written in the form of a vector

pointing from the camera towards the detected feature on the

wall as seen in Fig. 8:

~D =





x

y

z



 (9)

Where the magnitude of ~D is the absolute distance to this

particular feature. Since we focus on the error towards the

center of the corridor, it is useful to project the map onto a

two dimensional plane which is defined by the x and y axis of

the helicopter coordinate system. Therefore, the z component

of the distance vector ~D is neglected. On this two-dimensional

map, the walls can be detected easily. The median sideways

distance of the MAV towards the right wall is corresponding

to the median of all yR values of the distance vectors ~DR

pointing to the right, whereas the left-hand distance is the

median of the absolute value of all yL values of the distance

vectors ~DL pointing left. The error e towards the corridor’s

center can now be calculated as the difference between the

distance to the right and the distance to the left divided by

two:

e =
|ỹR| − |ỹL|

2
(10)

where ỹR and ỹL indicates the median values of all yR and yL

components, respectively. Using the median distance on both

sides is useful to detect upcoming obstacles that may narrow

or widen the corridor. However, because we only consider the

absolute angles yielded by the on-board IMU (neither velocity

nor its direction), the distance toward the detected walls can

only be estimated relatively to the MAV’s speed. Facing this

fact, a way had to be found to eliminate the unknown speed

from the error to convert it into an appropriate value for the

later use as control input. The wished effect can be achieved

when normalizing the above found error e with half of the

overall width of the corridor, which is the sum of |ỹL| and

|ỹR|. The normalized error en then has the following form:

en =
|ỹR| − |ỹL|

|ỹR| + |ỹL|
(11)

The normalized error varies from −1, if the MAV is located

at the right wall, to +1, if the MAV is located at the left

wall. This error en can be used as input signal for a controller

navigating the helicopter through the corridor.

F. Implementation

The flow chard of the control system is shown in Fig. 10.

In a first step, two camera images are acquired with corre-

sponding IMU data. The time between two consecutive image

acquisitions is 100 ms. The most time-consuming elements

are the image and IMU data acquisition as well as optical

flow calculation. The built-in IMU of the helicopter has to be

polled each time for data acquisition. Furthermore, it sends by

default a larger data set than needed for angular informations

only. Those properties induce a high time consumption of up

to 0.1s for a single data transmission from the IMU.
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Fig. 8. The MAV within the corridor. Depth estimation is done on both sides. Based on this, the error towards the corridor’s center is calculated. On each

side approximately 250 distances are estimated. ~DR indicates all distance vectors pointing right, while ~DL indicates all distance vectors pointing left.

Fig. 9. Comparing the error of the MAV towards the center of the corridor (marked with a thin black line), computed by the depth map based algorithm
and using ground truth measurements.The walls of the corridor are marked with thick black lines.
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Fig. 10. Flow chard of the algorithm.

V. EXPERIMENTS

To check the functionality of the introduced error estima-

tion, tests have been performed using real data.

A. Test Setup

Since the algorithm is optimized for use in a corridor, the

chosen test-area is an indoor corridor having a width of 2.5m
and a height of 3m. The walls were already heavily textured.

No additional features or special illumination were used to

improve the performance of feature tracking and optical flow

calculation.

The helicopter was flown manually by remote control,

while the proposed algorithm was used for successive error

estimation. The estimated error, computed by our algorithm,

was then compared with the real ground truth error.

B. Test Results

C. Controller Simulation

The error based on ground truth measurements and cal-

culated by our algorithm can be seen in Fig. 9. At a first

glance, we can notice a correlation between the ground truth

error and the error based on depth map calculation. However,

the computed error seems to be very noisy and can have a

deviation of up to a quarter of the corridor width.

Having a closer look, the following parameters can be

observed:

• average deviation: 0.146 ≈ 7.3%
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Fig. 11. Way-path of the simulated helicopter in a 4m wide corridor using a PD controller and exact input signal.

Fig. 12. Way-path of the simulated helicopter in a 4m wide corridor using a PD controller. The input signal has deviations similar to the error computed
by the depth map algorithm.

• median deviation: 0.188 ≈ 9.4%
• maximum deviation: 0.54 ≈ 27%

This deviations can be explained in this way. If the IMU data

are noisy, and therefore not precise enough, the compensation

for rotational effects cannot work properly and produces wrong

results. Especially, inaccurate information of the yaw angle Ψ
can cause wrong sideways depth estimations, since its effect

is a decrease of the optical flow magnitude on one side of the

MAV and an increase of the optical flow on the other side.

Nevertheless, it will be shown that the computed error

is sufficiently accurate to be used as input argument for a

controller.

Since the helicopter is an unstable platform, all three angles

(pitch, roll, and yaw) have to be controlled. The helicopter’s

on-board controller regulate the angular position of pitch and

roll and the angular speed of the yaw angle.

Using the computed error, lateral changes in the position

of the MAV should be achieved. To reach this, the controller-

outputs change the angular position of the roll angle and the

angular speed of the yaw angle. The pitch angle is held at a

constant value of 0.5° to reach a forward speed parallel to the

x-direction.

Since height control cannot be achieved using the error-

input, the thrust is kept constant, what causes an approximated

constant height.

For controlling the roll and yaw angles, a PD controller is

chosen. Using a MATLAB Simulink based point mass model

of the quadrotor helicopter, a discrete time controller C(z)

working with a sampling time of T = 0.5s has been designed:

C(z) =
(kp + kD) · z − kp

z
(12)

The tuning parameters kp and kD are chosen as follows:

kp = 0.2 (13)

and

kD = 0.009 (14)

The resulting way-path of the helicopter in a corridor with a

width of 4m is shown in Fig. 11 with exact input argument.

As initial conditions, the MAV is positioned 1.5m to the left of

the center of the corridor and the instant yaw angle is chosen

such that the x-axis is parallel to the walls of the corridor.

In Fig. 12 the input signal is provided with noise, similar to

the noise achieved by the error estimation from the depth map

algorithm. As can be observed, the MAV stabilizes around the

center of the corridor. Therefore, it can be assumed that the

input computed by the above presented algorithm is sufficient

for ensuring save navigation of the MAV.

VI. CONCLUSION

In this study, we addressed the problem of obstacle avoid-

ance using vision based methods, where the navigation of a

miniature quadrotor helicopter within an indoor corridor was

the main task. Relying on an optical flow based depth map, the

walls of the corridor could be detected and the error toward
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the center of the corridor computed. The depth map is built on

optical flow measurements caused by translational movement

of the helicopter. The rotational effects in the optical flow

were compensated using IMU data. Test results based on real

images showed that very accurate IMU data are required for

reliable depth informations. A simulated PD controller showed

a centering behavior of the helicopter with input arguments as

provided by the algorithm.

We believe that depth-map based collision avoidance may

evolve as a very powerful tool, since it might be applied in

unknown environments with a high density of objects, and

therefore be ideal for use in indoor environments.
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