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Abstract
The ability for a smart speaker to localize a user based on

his/her voice opens the door to many new applications. In this

paper, we present a novel system, MAVL, to localize human

voice. It consists of three major components: (i) We first

develop a novel multi-resolution analysis to estimate the AoA

of time-varying low-frequency coherent voice signals coming

from multiple propagation paths; (ii) We then automatically

estimate the room structure by emitting acoustic signals and

developing an improved 3D MUSIC algorithm; (iii) We finally

re-trace the paths using the estimated AoA and room structure

to localize the voice. We implement a prototype system using

a single speaker and a uniform circular microphone array.

Our results show that it achieves median errors of 1.49o and

3.33o for the top two AoAs estimation and achieves median

localization errors of 0.31m in line-of-sight (LoS) cases and

0.47m in non-line-of-sight (NLoS) cases.

1 Introduction

Motivation: The popularity of smart speakers has grown ex-

ponentially over the past few years due to the increasing

penetration of IoT devices, voice commerce, and improved

Internet connectivity. The global smart speaker market is esti-

mated to grow at a rate of 21.12% annually and reach 19.91

billion US dollars in 2024.

The ability to localize human voice benefits smart speakers

in many ways. First, knowing the user’s location allows the

smart speaker to beamform its transmission to the user so that

it can both hear from and transmit to a faraway user. Second,

the user location gives context information, which can help us

better interpret the user’s intent. For example, as shown in Fig-

ure 1, when the user issues the command to turn on the light,

the smart speaker can resolve the ambiguity and tell which

light to turn on depending on the user’s location. In addition,

knowing the location also enables location based services. For
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Figure 1: Illustration of application for MAVL under multiple

coherent incoming paths in LoS and NLoS scenarios.

instance, a smart speaker can automatically adjust the temper-

ature and lighting condition near the user. Moreover, location

information can also help with speech recognition and natural

language processing by providing important context informa-

tion. For example, when a user says "orange" in the kitchen, it

knows that refers to a fruit; when the same user says "orange"

elsewhere, it may interpret that as a color.

There have been a number of interesting works on motion

tracking and localization using audio [23, 25, 29, 32, 41, 44,

50, 52], RF [43, 45, 48] and vision-based schemes [8, 53], etc.

Cameras cannot be deployed everywhere at home for privacy

concerns. Device-based tracking requires carrying a device,

which is not convenient for people at home. Device-free RF

is interesting, but requires large bandwidth, many antennas,

or mmWave chips to achieve high accuracy, which is not easy

to deploy at home. Meanwhile, acoustic-based tracking has

also been shown to achieve high accuracy. In the past few

years, acoustic tracking accuracy has improved from centime-

ter level [50] to millimeter level [23, 29, 41, 44]. These works

focus on tracking users by emitting specially designed acous-

tic signals. These signals are mostly in inaudible frequency

range 16kHz-22kHz.

Challenges: Despite significant acoustic based tracking

works, localizing human voice poses new challenges:

• Many of the existing systems require transmission of

known signals (e.g., chirps, OFDM symbols, sine waves).



Figure 2: MAVL system involves a three-step process. (1) estimate AoA from multiple paths, (2) recover room structure by

actively emitting wideband chirps, (3) localize the voice by retracing back the estimated AoA based on room structure.

In comparison, we can neither control nor predict users’

voice signals, including their timing, frequency, and con-

tent. This makes it challenging to apply traditional channel

estimation and distance estimation based methods.

• In order to localize a user, we need to estimate angle of

arrival (AoA) of multiple propagation paths so that we

can trace back these paths to localize the user. The signals

traversing via multipath are coherent, which significantly

degrades the accuracy of AoA estimation methods (e.g.,

MUSIC requires all signals be independent).

• To enable retracing the location using multiple AoAs, we

also need to estimate the indoor environment first. However,

depth sensors are not widely deployed at home and vision-

based approaches raise privacy concerns.

• The user may not be in line of sight (LoS) from the smart

speaker (e.g., the user is behind a wall or in a different

room). Localizing the user in NLoS using acoustic signals

remains an open problem due to low SNR and detoured

propagation paths.

Our approach: In this paper, we build a novel indoor voice

localization system, MAVL, by retracing multiple propagation

paths that the user’s sound traverses, as shown in Figure 2.

First, we estimate AoAs of the multiple paths traversed by

the voice signals from the user to the microphone array on

the smart speaker. The multipath may include the direct path

(if available) and the reflected paths. Second, we estimate

the indoor space structure (e.g., walls, ceilings) by emitting

wideband chirps to estimate the AoA and distance to the

reflectors in the room (e.g., walls). Third, we re-trace the

propagation paths based on the estimated AoA of the voice

signals and the room structure to localize the voice.

We choose AoA since it eliminates the need of distance es-

timation, which is challenging when we do not know the

transmission signals. We use a microphone array widely avail-

able on a smart speaker to collect the received signals. While

there have been many AoA algorithms proposed, the low fre-

quency of voice signals and the presence of coherent paths

pose significant new challenges. To reduce coherence and

separate paths, we capture the voice signal that finishes fast

so that the signal traversing via the shortest path has small

or no overlap with those traversing via the longer paths. We

cannot control how many words a user speaks. Instead, we

could select the voice signals that occupy some frequencies

for a short time period. This requires good time and good

frequency resolution. Since there is no single method that

can simultaneously achieve good time and good frequency

resolutions, we perform wavelet and STFT analyses over dif-

ferent time windows to benefit from both transient signals

with low coherence and long signals with high cumulative

energy. We further use differencing to cancel the signals in

the time-frequency domain to reduce coherence, thereby im-

proving the AoA accuracy.

Next we need to estimate the room contour, i.e., the dis-

tances and direction of the walls. Researchers have used

depth sensors [2, 15, 31], cameras [9, 18, 21] or multiple sen-

sors [7, 12, 49] to estimate the indoor room contour. How-

ever, these systems require extra sensors and some need sig-

nificant computation cost. It also raises significant privacy

concerns. Acoustic has been applied to image the shape of

objects [20, 24, 47]. It is promising to use acoustic signals

to capture the room contour. Our system emits wide-band

Frequency Modulated Continuous Waves (FMCW) chirps

and propose the wide-band 3D MUSIC to estimate multi-

ple propagation paths simultaneously. The wide bandwidth

not only improves distance resolution, but also allows us to

leverage the frequency diversity to estimate AoAs of coherent

signals. We improve the AoA estimation by leveraging the

assumption of a rectangle room (which is common in real

world scenarios), and improve the distance estimation to the

wall by using beamforming.

Finally, we develop a constrained beam retracing algorithm

based on the estimated AoA candidates and room structure.



We localize the user at the intersection between the propaga-

tion paths with only one-time reflection. Our retracing can

effectively identify the plausible user location.

We implement and evaluate our AoA and localization ap-

proaches in an anechoic chamber, conference room, bedroom

and living room. Our results show that our AoA estimation

yields median errors of 1.49o and 3.33o for the top two paths

in LoS, and 2.75o and 6.49o in NLoS. Moreover, our retracing

algorithm can localize the user with a median error of 0.31m

in LoS and 0.47m in NLoS.

The contributions can be described as follows:

1. We develop a multi-resolution analysis to estimate the AoA

of multipath. It combines STFS over different window sizes

and wavelet to reduce coherence between signals.

2. We develop an effective method to estimate room structure

and retrace the user based on the estimated AoA and room

structure.

3. We implement a system to actively map indoor rooms and

localize voice sources using only a smartspeaker without

additional hardware. Our prototype system can localize

voice in both LoS and NLoS. To our knowledge, this is the

first indoor sound source localization system that works for

None-Line-of-Sight (NLoS) scenarios.

2 Primer on AoA Estimation

In this section, we introduce AoA estimation problem, exist-

ing approaches, and challenges.

2.1 Antenna Array Model

We can estimate the AoA using an antenna array. The antenna

array can take different forms, such as uniform circular array

(UCA), uniform linear array (ULA), or even non-uniform

array. This paper uses a uniform circular array consisting of

N microphones as shown in Figure 3. The circle has a radius

of r. The azimuth and elevation angles of signal arrival are θ
and φ, respectively.

Figure 3: UCA Array model and angle notations.

A general model for the received signal of a single source is

x(t) = a(θ,φ)s(t)+n(t), (1)

where a is the array steering vector and n(t) is the noise vector.

The steering vector for UCA is as follows:

a(θ,φ) = [1,e j2π f
c rcos(θ)sin(φ), . . . ,e j2π f

c r(N−1)cos(θ)sin(φ)]T .
(2)

where f is center frequency and c is sound propagation speed.

For M independent source signals S(t) = [s1(t), . . . ,sM(t)]T ,

we can extend the steering vector to a steering matrix,

A(θ,φ) = [a(θ1,φ1), . . . ,a(θM,φM)], where the ith column is

the steering vector associated with the ith signal.

2.2 AoA Estimation Algorithms

There are several AoA estimation algorithms, including

phase [43], MUSIC [35], ESPIRIT [17], and beamforming.

The subspace based MUSIC algorithm is the most accurate.

To apply MUSIC, we calculate the auto-correlation matrix R

for the received signals x as xHx, where xH is conjugate trans-

pose of x and R has the size N ×N. Following that, we apply

eigenvalue decomposition to R, and sort the eigenvectors in a

descending order in terms of the magnitude of corresponding

eigenvalues. The space spanned by the first M eigenvectors

is called signal space, and the space spanned by the other

eigenvectors is called noise space. Let RN denote the noise

space matrix, whose the ith column is the ith eigenvector in

the noise space. It can be shown that

RH
N ·a(θ0,φ0) = 0, (3)

when θ0 and φ0 are the incoming azimuth and elevation an-

gles [35]. Based on this property, we can define a pseudo-

spectrum of the mixed signals as

p(θ,φ) =
1

a(θ,φ)HRNRH
N a(θ,φ)

. (4)

Then we can estimate the AoA by locating peaks in the

pseudo-spectrum.

2.3 Modeling Multipath Propagation

Now we consider signals under multipath propagation. Most

traditional AoA estimation algorithms have the assumption

that the signal sources should be independent. In contrast, our

system requires estimating the AoA of multipath and have to

handle coherent signals. To capture multipath effects, we intro-

duce a channel matrix H(α,d) = [h(α1,d1), . . . ,h(αM,dM)]T ,

where αi, di, and h(αi,di) = αi
d0
di

e j2π f
c di are the attenuation,

propagation delay, and channel of the i− th path, respectively.

The received signal x(t) under multipath is as follows:

x(t) = A(θ,φ)H(α,d)s(t)+n(t), (5)



For the array model under multipath in Equation 5, we define a

transformation matrix T =A∗H to capture the array manifold

matrix A and propagation paths H. The transformation matrix

T is

Ti, j,k = α j

d0

d j

e
j2π

d j
λk e

j2π r
λk

(i−1)cos(θ j)sin(φ j)
(6)

where 1 ≤ i ≤ N denotes the microphone index, 1 ≤ j ≤ M

denotes the jth arrival path, and k denotes the frequency bin

index. The transformation matrix T takes three dimensions:

spatial dimension i, path delay in time dimension j, and fre-

quency dimension k, which allows us to perform cancellation

in the time-frequency domain.

The received signal from all incoming paths to microphone

mi on frequency fk is

x(t)i,k = T̂i,k ∗ s(t)+n(t). (7)

where T̂i,k = ∑1≤ j≤M Ti, j,k. In order to estimate the AoA of

multipath, we need to deconvolve T̂i,k to each propagation

path Ti, j,k.

2.4 Challenges

Coherent signals: A major source of AoA error comes from

the coherence in the incoming signals. In our context, the

received signals come from the same voice source and only

differ in their propagation paths. Such strong correlation can

significantly degrade the AoA estimation accuracy. We quan-

tify the impact of coherent signals on several well-known AoA

estimation schemes in the frequency range of human voice.

We use a UCA with radius of 9.6cm, which is approximately

the half wavelength of 2kHz. The two signals are (70,120)
and (30,60) in the azimuth and elevation angles. Figure 4(a)

and (b) are the azimuth and elevation power profiles of five

AoA algorithms for two non-coherent signals and Figure 4(c)

and (d) are profiles of two coherent multipath signals com-

ing from the same source. MUSIC performs the best in all

scenarios. However, when coherence occurs, the estimation

errors increase in all algorithms. For example, the two peaks

in MUSIC merge into one peak in this case and LP even gives

incorrect results.

Impact of frequency: The low frequency of the voice also ac-

counts for part of the error. Existing acoustic tracking schemes

(e.g., [23,25,44]) use frequency at 16kHz or higher. In compar-

ison, human voice is typically below 6kHz [27, 33] and most

energy is concentrated in 100Hz-3kHz. The corresponding

wavelength ranges between 11cm and 3.4m. The resolution

of angle of arrival is determined by the antenna separation dis-

tance normalized by the wavelength. Therefore, with centime-

ter level separation between the microphones and dm-level

wavelength, the AoA resolution is very coarse.

(a) Non-coherent Azimuth (b) Non-coherent Elevation

(c) Coherent Azimuth (d) Coherent Elevation

Figure 4: Comparison of power profiles for different AoA

algorithms in non-coherent (a,b) and coherent (c,d) scenarios.

Coherence makes peaks merged and introduces error.

Summary: The above evaluation shows that MUSIC is com-

petitive for AoA estimation accuracy. However, the accu-

racy is still insufficient to support coherent low-frequency

voice signals. Motivated by these observations, next we will

design approaches to explicitly address these major chal-

lenges.

3 Multipath Voice Localization

We decompose our approach into the following three steps: (i)

estimate the AoA of coherent low-frequency voice signals, (ii)

estimate the room structure, (iii) retrace the paths to localize

the user. Below we describe each step in turn.

3.1 AoA Estimation of Voice Signals

As shown in Section 2, we should address two major chal-

lenges in AoA estimation of human voices: (i) received sig-

nals are strongly correlated and (ii) limited resolution due to

the low frequency of human voice. Below we describe our

sections in turn.

Limitation of existing work: Recently, Voloc [37] proposed

an iterative-delay-and-cancellation algorithm to align and

cancel the correlated paths to separate multipath signals in

the time domain. Their first step, called ICA, is to estimate

the AoA of the first reflection by using the initial recording

samples before mixing with the second reflection. However,

this method introduces two major problems. First, in order

to cancel in the time domain, we need to use a small enough

time window during which only samples from the direct path

are included, usually only tens of samples. A small number

of samples limits the AoA estimation accuracy. Moreover, hu-



Figure 5: Illustration for multi-resolution analysis algorithm. We perform wavelet and STFT analyses over different time windows

followed by the differencing component for small windows. We synthesize the combined results to select the final AoA results.

man voice ramps up slowly. This means the beginning cleaner

audio samples for AoA estimation have low SNR, which

also limits the accuracy. In addition, the cyclic autocorrela-

tion property of human voice is large, which indicates small

alignment error introduces large cancellation error. Therefore,

Voloc reports over 10 degrees error for the first path AoA

and relies on their second step, which uses joint optimiza-

tion based on wall geometry to refine the estimation result.

This has several limitations: (i) its standalone AoA estimation

has limited accuracy, and (ii) the second step requires explor-

ing a large search space, which is very time consuming (e.g.,

hours to estimate wall parameters and 5 seconds to localize

voice).

Overview: Different from [37], we use time-frequency anal-

ysis to reduce coherence in voice signals since signals that

differ in either time or frequency will be separated out. As

the transformation matrix Ti, j,k shown in Equation 6, the IAC

algorithm in Voloc aligns phases for each microphone i to

cancel path delays d j and get the second reflected path. We

first separate coherence in across different frequency bins,

and then cancel the paths in each frequency bin by taking the

difference between the two consecutive time windows. This

is especially useful for voice signals since different pitches

may occur at different time. An important decision in time-

frequency analysis is to select the sizes of time window and

frequency bin to perform the analysis.

On one hand, aggregating the signals over a larger time win-

dow and larger frequency bin improves SNR and in turn im-

proves the AoA estimation accuracy according to the Cramer-

Rao bound [38]. On the other hand, a larger time window

and larger frequency bin also mean more coherent signals.

Moreover, the frequency of voice signals varies unpredictably

over time, which makes it challenging to determine a fixed

time window and frequency bin.

To separate paths with different delay, we desire good time

resolution. Small time windows have good time resolution,

but poor frequency resolution. To separate paths with differ-

ent frequencies, we desire good frequency resolution. Small

frequency bins have good frequency resolution, but poor time

resolution. Therefore, there is no single time window or fre-

quency bin that works well in all cases.

To address this challenge, we use multi-resolution analysis

as illustrated in Figure 5. Specifically, we use Short Term

Fourier Transform (STFT) with different window sizes and

wavelet as they are complementary to each other. Our first

method performs STFT using a large time window and feeds

the spectrogram to MUSIC. While STFT results with large

window have more coherent signals, which results in more

outliers, their peaks also include points that are close to the

ground truth, likely due to the stronger cumulative energy. Our

second method is to perform frequency analysis using smaller

windows and take difference between adjacent windows to

reduce the coherent signals and improve AoA estimation un-

der coherent multipath. Our third method uses wavelet. It has

higher time resolution for relatively high frequency signals.

This allows us to capture the transient voice signals that has

low or no coherence, thereby reducing outliers in MUSIC

AoA estimation. However, since transient signals have low

cumulative energy and cause non-negligible AoA estimation

errors, we combine Wavelet with STFT with different window

sizes. Below we elaborate these three methods.

STFT using a large window size: We perform STFT us-

ing a larger time window. A larger window yields higher

SNR and hence higher accuracy according to the Cramer-Rao

bound [38]. On the other hand, a larger window tends to have

more coherent multipath, which may degrade the accuracy.

This is shown in Figure 4(c), where we see a merged peak

near the ground truth. So this approach can provide informa-

tion about the AoA of the direct path, but not sufficient on its



own.

STFT using a short window: Using a smaller time window

gives good time resolution and helps separate paths with

different delays. We choose to use a smaller time window and

select the evanescent pitches in the time-frequency domain

to reduce error from coherence. The next step is to further

reduce coherent signals by taking difference between two

consecutive time windows for each antenna. This cancels the

paths with different delay in the time-frequency domain, and

is more effective than cancelling in the time-domain alone.

If the difference between two adjacent windows is greater

than the delay difference of any two paths, this process can

remove the old paths. This cancellation is not perfect since the

amplitude may vary over time and each window may contain

different sets of paths. Nevertheless it reduces coherence in a

short time window.

Wavelet based analysis: Wavelet is a multi-resolution anal-

ysis. We can use both short basis functions to isolate signal

discontinuities and long basis functions to perform detailed

frequency analysis. It has super resolution for relatively high

frequency signals. Transient signals in small time window

have less energy and may yield large errors. To improve the

accuracy, we also take difference of wavelet spectrum in the

two consecutive time windows to further reduce the coher-

ence.

Comparison: We compare the AoA derived from applying

MUSIC to STFT and wavelet. Figure 6 shows the result for

the case where a woman speaks at 2.4m away from the micro-

phone array. The dashed red lines are ground truth AoAs of

different paths. The STFT results without taking difference,

shown in the blue circles, deviate from the right angles due

to coherence even after using different window sizes. The

wavelet results without taking difference are plot as yellow

circles, which also deviates a lot from red dashed lines be-

cause of low energy. The stared orange and purple points are

the AoA estimates derived from MUSIC when we apply dif-

ferencing to STFT and wavelet, called STFT Diff and Wavelet

Diff methods. Compared with the original results (shown in

blue and yellow circles), differencing brings the estimation

closer to the ground truth angles (shown as dashed lines). It is

interesting to observe that there are false peaks in STFT Diff

but the peaks in the Wavelet Diff are all close to the ground

truth though STFT Diff may have peaks closer to the ground

truth than the wavelet. This suggests that it is beneficial to

combine STFT Diff and wavelet Diff results.

Final algorithm: Figure 5 shows our final algorithm. For

each algorithm, we derive the results using different time

windows. Then we compute weighted cluster of these points

where the weight is set according to the magnitude of the MU-

SIC peak. We select the top K clusters from each algorithm.

Our evaluation uses K = 6. To combine the results across

Figure 6: Comparison of AoA derived from STFT, Wavelet

with and without differencing.

different algorithms, we use nearest neighbors. Since STFT

with a large window provides more stable results without

significant outliers, we use them to form the base. For each

point in the base, we search for the nearest neighbor in the

results of the other two methods as they contain both more

accurate real peaks and outlier peaks. Finally, we pick the top

P peaks from the selected nearest neighbors as the final AoA

estimates. Our evaluation uses P = 5.

Algorithm 1 Multi-resolution analysis algorithm.

1: function [AoAs, w] = MultiResolutionAoA(signal)

2: Bandpass filter in voice frequency range

3: spectLong = STFT(signal,LongWindow);

4: spectShortDiff = diff(STFT(signal,ShortWindow));

5: spectWaveletDiff = diff(Wavelet(signal));

6: Select frequency and time ranges based on spectrograms

7: for method in STFTLong,STFTDiff,WaveletDiff do

8: for time in SelectedTimeSlots do

9: for frequency in SelectedFrequencies do

10: forward backward smoothing;

11: compute MUSIC profile;

12: end for

13: accumProfile = SUM(profile)

14: [results,weights] = findPeaks(accumProfile);

15: estimate candidateAoAsm and weightsm;

16: end for

17: end for

18: AoAs = select top P peaks from candidateAoAsm for m=1..3

3.2 Room Structure Estimation

In order to localize the user, we need not only the AoAs of the

propagation paths of the voice signals, but also the room struc-

ture information so as to retrace back the paths. In this section,

we estimate the room contour using wideband 3D MUSIC al-

gorithms. We improve the accuracy by leveraging constraints

of the azimuth AoA and applying beamforming.



3.2.1 3D MUSIC

The smart speaker estimates the room structure once unless

it is moved to a new position. The smart speaker estimates

room structure by sending FMCW chirps. Let fc, B and T

denote the center frequency, bandwith, duration of the chirp.

Upon receiving the reflected signals, it applies the 3D MUSIC

algorithm.

We generalize 2D Range-Azimuth MUSIC algorithm [5,6,22]

to 3D joint estimation of distance, azimuth AoA and eleva-

tion AoA. 3D MUSIC has better resolution than 2D MUSIC

since the peaks that differ in any of the three dimensions are

separated out. Our basic idea is to transform the received

signals into a 3D sinusoid whose frequencies are proportional

to the distance and a function of the two angles. We extend

the steering vector to have three input parameters: distance R,

azimuth angle θ, and elevation angle φ.

â(R,θ,φ) = e j2π r
c fc sinφcos(θ− 2πi

N )+ j4π RB
cT NsMsTs , (8)

where i is the array index, N is the number of microphones, r

is the radius of the microphone array, c is sound speed, Ns is

the subsampling rate, Ms is the temporal smoothing window

and Ts is the time interval.

3.2.2 Our Enhancements

However, there are several challenges in applying the 3D

MUSIC algorithm to indoor environments. First, the number

of microphones and their sizes are both limited, which lim-

its the resolution of 3D MUSIC. Second, there is significant

reverberation in indoor scenarios. Third, large bandwidth is

required to get accurate distance estimation, but MUSIC re-

quires narrowband signals for AoA estimation. Therefore, we

develop three techniques to improve the 3D MUSIC algo-

rithm: (i) leveraging frequency diversity, (ii) incorporating

the fact that rooms are typically rectangular shaped, and (iii)

using beamforming to improve distance estimation.

Multiband 3D MUSIC: We use FMCW signals from 1kHz

to 3kHz for AoA estimation. To satisfy the narrowband re-

quirement in the MUSIC algorithm [35], we divide the 2 KHz

bandwidth into 20 subbands each with 100Hz. Since the fre-

quency of FMCW signal increases linearly over time, we can

divide the FMCW signal into multiple subbands in the time

domain, run 3D MUSIC in each subband, and then sum up

the MUSIC profiles from all subbands.

In order to use the 100Hz subband for 3D MUSIC, we should

properly align the transmission signal with the received sig-

nal so that they span the same subband. The alignment is

determined by the distance. Therefore, we search over the

azimuth and distance for a peak in the 3D MUSIC profile

obtained by mixing the received signal with the transmitted

signal that is sent δT ago, where δT is the propagation delay

and determined based on the distance.

We use the azimuth AoA and distance output from the 3D

MUSIC. Figure 7 shows an example of azimuth-distance

profile. Note that we adjust the elevation angle to the horizon-

tal AoA since the elevation AoA estimation from the UCA

(which has all antennas on the same horizontal plane) is not

very accurate. However, despite a larger error in elevation

AoA, the 3D MUSIC is more effective in separating the paths

than the 2D MUSIC.

Figure 7: An example of azimuth-distance profile from real

trace. Azimuths are accurate and distances requires further

the fine granularity search.

Refine AoA for a regular room: Due to multipath, the MU-

SIC profile can be noisy, which makes it hard to determine

the right peaks to use for distance and AoA estimation of

walls. Since most rooms take rectangular shapes, we lever-

age this information to improve peak selection. Specifically,

we select the peaks such that the difference in the azimuth

AoA of two consecutive peaks are as close to 90o as possi-

ble. That is, we search for the 4 peaks {θ0,θ1,θ2,θ3} from

the 3D MUSIC profile that minimizes the fitting error with a

rectangular room (i.e., min∑i |PhaseDi f f (θi −θi+1)−π/2|,
where PhaseDi f f (.) is the difference between the two an-

gles by taking into account of the phase wraps every 2π.

After finding these peaks, we further adjust the solutions

so that the difference between the adjacent AoA is ex-

actly π/2. This can be done by find θ′1 that minimizes

∑i |PhaseDi f f (θ′1 + π/2(i− 1)− θi)| and the final AoA is

set to (θ′1,θ
′
1 +π/2,θ′1 +π,θ′1 +3/2π).

Improve distance estimation by beamforming: Accurate

distance estimation requires a large bandwidth and high SNR.

Therefore, to improve distance estimation, we send 1kHz-

10kHz FMCW chirps. Among them, we only use 1KHz−
3KHz for AoA estimation to reduce computational cost since

MUSIC requires expensive eigenvalue decomposition, but

use the entire FMCW for distance estimation. We increase

the SNR using beamforming. We use delay-and-sum (DAS)

beamforming algorithm towards the estimated azimuth AoAs.

Then we search a peak in the beamformed FMCW profile. We

find that the peak magnitude increases significantly and get



more accurate distance estimation after beamforming.

3.3 Constrained Beam Retracing

We can localize the user by retracing the paths using the esti-

mated AoA of the voice signals and room structure. As shown

in left figure of Figure 8, we can first find the reflection points

on the walls by the propagation path derived from the esti-

mated AoA. Then we trace back the incoming path of voice

signals before the wall reflection based on the reflection prop-

erty. If we have at least two paths, the user is localized at the

intersection between the incoming paths. However, the above

method is not robust against AoA estimation error. When

simulating the retracing algorithm, we find that even when the

AoA estimation errors of 2 paths are only 0.5 degrees, it can

cause a localization error of more than 60 cm at a distance

of 4 meters. A small AoA error can result in a large local-

ization error at a large distance. Moreover, an AoA error in

the outgoing path can result in an error in the incoming path,

thereby further amplifying this effect. To enhance robustness

(a) Two near parallel paths (b) More paths

Figure 8: Retracing using ray or cone.

against AoA estimation, we employ two strategies. First, in-

stead of treating each propagation path as a ray defined by the

estimated AoA, we treat it as a cone where the cone center is

determined by the estimated AoA and the cone width is deter-

mined by the MUSIC peak width. This allows us to capture

the uncertainty in the AoA estimation.

Second, while theoretically two paths are sufficient to per-

form triangulation, it is challenging to select the right paths

for triangulation. Therefore, instead of prematurely selecting

incorrect paths, we let the AoA estimation procedure return

more paths so that we can incorporate the room structure to

make informed decision on which paths to use for localiza-

tion. Specifically, for each of the K paths returned by our AoA

estimation, we trace back using the cone structure as shown in

Figure 8. We observe that the azimuth AoA is reliable for the

strongest path, which is the direct path in LoS or the path from

the user to the ceiling and then to the microphone in NLoS.

Therefore, within the cone corresponding to the strongest path

we search for a point O such that the circle centered at the

point with radius of 0.5m overlaps with the maximum number

of cones corresponding to the other K −1 paths. We localize

the user at the point O. Our evaluation sets K = 4.

4 Implementation

Setups: We implement our system on a Bela platform [4]. It is

connected with a JBL Clip 3 or an echo dot speaker and a cir-

cular microphone array with 8 microphones. Figure 9 shows

an example setup in a conference room. Each microphone

uses a sampling rate of 22.05kHz. Many commercial smart

speakers have similar numbers of speakers and microphones.

We test our system using two microphone arrays: a larger

array has radius of 9.6cm and a smaller one has radius of

5.0cm. We use the smaller array to compare with VoLoc [37]

since its size is similar to their setup. The Bela board uses a 1

GHz ARM Cortex-A8 single-core processor. The Bela is con-

nected to a laptop with Intel I5 processor and 8GB memory.

We use javaosc protocol to listen and continuously transmit

the audio signals in WAV format encapsulated in OSC packets

to the laptop through USB in real time and run the processing

program in MATLAB on the laptop to derive the AoAs and lo-

calize the user. In MAVL , AoA estimation takes 2.35 seconds,

room estimation takes 87 seconds, and retracing takes 0.16

seconds. In comparison, VoLoc spends hours in estimating

wall parameters and 5 seconds in AoA estimation.

Figure 9: System setups in conference room and mic arrays.

Evaluation environments: We evaluate our system in differ-

ent environments, including an anechoic chamber, conference

room, bedroom and living room. These rooms take differ-

ent sizes: 2.5m×3.5m, 3.5m×4.0m, and 5.1m×7.5m. We use

a wooden board as a blockage in NLoS cases as shown in

Figure 9. We let a person speak at 1− 6 meters away from

the microphone array in the room. We also vary the distance,

users, type of voices (e.g., man, women, child and applause),

smartspeaker positions, clutter and noise levels to assess their

impacts.

Ground truth: We measure the relative locations of the

smartspeaker, user and walls using a measuring tap. We derive

the ground truth AoAs of the direct path and 5 reflected paths

(i.e., the paths from 4 side walls and ceiling) in LoS scenarios.

In NLoS scenarios, we derive the AoAs of the 4 reflected

paths and 1 diffraction path.



Metrics: We quantify the errors using both AoA estimation

error and localization error. The localization error is computed

based on the Euclidean distance between the ground truth and

estimated positions.

5 Evaluation

In this section, we evaluate our AoA estimation, room contour

estimation, and voice localization accuracy.

5.1 Performance of AoA Estimation

Two paths in anechoic chamber. We start from testing our

AoA estimation algorithm in the anechoic chamber, where

there is no reflection in the room. We put our microphone

array on the ground and place an acrylic board to act as a wall

to introduce a reflection path. The ground truth of two angles

are 81.95o and 112.68o. Figure 10 shows the MUSIC power

profile. It has a single merged peak around 90o, which results

in 8o and 22.68o errors for the two paths. In comparison, our

algorithm accurately estimates these two paths within the

error of 1.5o. We can clearly see there are two separate peaks

in our MUSIC profile Figure 10. We also change the acrylic

board reflector to other places, and find that MUSIC can sep-

arate the two paths only when the difference between two

ground truth angles is greater than 90o. This resolution is not

sufficient for voice localization since it is quite likely to have

reflected paths within 90o. In comparison, our approach can

separate the two paths as long as they are 30o apart.

(a) MUSIC with merged peak. (b) MAVL with separated peaks.

Figure 10: Comparison of power profiles in anechoic chamber.

AoA accuracy for LoS and NLoS: Next we conduct exper-

iments in three rooms. Figure 11 shows the CDF of LoS

AoA estimation error of six methods for the top 3 angles

across all experiments. We use a large UCA of radius 9.6cm,

comparable to Amazon Echo Studio, Google Home Max and

Apple HomePod. The median error of our approach for the

top two paths are 1.49o and 3.33o, respectively. This accuracy

is sufficient for retracing. In comparison, the corresponding

numbers for MUSIC are 2.55o and 14.54o , which are signifi-

cantly worse.

Figure 12 shows the CDF of NLoS AoA estimation error for

the top 3 angles across all experiments. The median errors

of the top two paths are 2.75o and 6.49o. We also plot the

CDF for the third angle estimation. In theory, one can retrace

the user’s location using two paths. However, a median error

around 10o for the third path is too large to be used directly

for triangulation. Nevertheless our cone-based retracing algo-

rithm can still leverage the AoA of the paths beyond the top

two paths to improve the localization accuracy despite their

relatively high errors.

We also evaluate MAVL using a smaller UCA with a radius

of 5cm, comparable to the size of Echo Dot, Amazon Echo

and Google home. Figure 13 compares the AoA accuracy

of the first path with MAVL using small UCA, VoLoc using

ICA algorithm only and VoLoc using joint estimation. Us-

ing our approach, the median AoA error of the first path is

1.98o and the second path is 4.08o, both of which are larger

than the errors from the larger UCA, which are 1.49o and

3.33o, respectively. In comparison, Voloc yields median er-

rors of 18.04o and 5.28o before and after joint optimization,

respectively, much larger than the errors of MAVL.

AoA performance to distance: Figure 14 plots the AoA

error versus the distance between the user and smart speaker

in a 7.5m × 5.1m conference room. Overall, the accuracy

degrades slightly as the user moves away from the microphone

array. The SNR of voice is not a serious problem because its

frequency is low and it attenuates slowly in the air.

Interestingly, the AoA error of our approach at 4m is better

than many other distances. This could be due to the specific

room structure and user’s distance to the nearby wall. Mea-

surements at the distance around 4m were collected when

the user is near the middle of the room, which makes the

propagation delay from the reflected path well separated from

the direct path and alleviates the coherence effects. The mea-

surements at a larger distance (e.g., 5m) were collected when

the user was close to the wall and the difference between the

direct path and reflect path is smaller, which makes it more

challenging to separate in the MUSIC profile.

Performance to different voices: We classify our measure-

ments into four groups: i.e.man, woman, child, and applause.

Figure 15 shows the sensitivity to different users’ voices. The

bars are centered at the mean error and their two ends denote

the minimum and maximum values across all traces. Our

system is fairly robust across the users and the voice they

produced. We also evaluate the applause sound, and find the

AoA errors of the two paths are about 1.4o and 3.0o. The

applause sound has smaller AoA error because it is shorter

than the human voice, which reduces coherence and improves

AoA estimation accuracy.

Impact of smartspeaker positions: The relative positions

between the microphone array and walls have direct influence

on multiple propagation paths. VoLoc requires the micro-

phone array to be close to a wall to ensure that the first two



(a) AoA 1 CDF. (b) AoA 2 CDF. (c) AoA 3 CDF.

Figure 11: Comparison of LoS CDF of AoA estimation.

Figure 12: CDF of AoAs error

for NLoS.

Figure 13: Comparison of AoA estimation

for the small UCA.
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Figure 15: AoA accuracy to voices.

paths come much earlier than other paths. We evaluate the

robustness of MAVL against smartspeaker positions. We eval-

uate UCA setup at three positions:

(1) center: 2.35m and 2.92m to the two closest walls;

(2) close to one wall: 0.3m and 2.4m to the two closest walls;

(3) corner: 0.26m and 0.39m to the two closest walls.

The median AoA errors of MAVL are 1.80o, 1.97o, 2.08o for

the direct path, when the smartspeaker is at center, close to

one wall and corner, respectively; the corresponding AoA

errors are 3.07o, 4.51o, 4.37o for the second path AoA, re-

spectively. MAVL performs best at the center and worst near

the corner. The latter is because the second and third paths

have comparable SNR and closer AoAs to the direct path,

which increases coherence. But overall it is fairly robust to

different placement. In comparison, the median AoA error of

VoLoc before its joint optimization is 18.04o for direct path,

when the UCA is placed close to one wall. It does not work

at the center or corner. VoLoc only works when the UCA is

close to one wall and users are not close to any wall.

5.2 Performance of Room Estimation

Next we evaluate our room structure estimation algorithm us-

ing different room sizes and microphone placements.

Overall Room estimation Performance: We use room sizes

of 2.5m×3.5m, 3.5m×4.0m, and 5.1m×7.5m. The median dis-

tance error for all walls is 2.8cm and azimuth error is 1.8o.

We can reduce the azimuth error to 1.4o by leveraging the

knowledge of room shape (i.e., the azimuth angles of walls

differ by 90 degrees for rectangular rooms). VoLoc jointly es-

timates the wall parameters. We follow the VoLoc’s setup that

the UCA is close to one wall. We speak 5 commands to find

the best parameters. The distance error is 2.5cm and azimuth

error is 12o. Its performance is sensitive to the selection of the

beginning samples and window size for cancellation.

Impact of smart speaker positions: We also vary the posi-

tions of the smart speaker in the rooms to evaluate its impact.

We plot the median AoA and distance errors in Figure 16 as

we vary the distance between the smart speaker and the wall

from 5cm to 20cm. We find an interesting trade-off between

the distance error and azimuth error. For the shortest distance

range (< 0.5m), it has a small distance error of 1.5cm and

a larger azimuth error 5.1o. For the longest distance range

(> 2m), it has an azimuth error of 1.1o and a distance error of

5.4cm. The worse distance error for the far away wall has lit-

tle impact on the final localization error, because the reflected

signals from this wall always have a much lower SNR and

these results are rarely used for retracing.

5.3 Overall localization results

Localization accuracy: Figure 17 shows the CDF of

MAVL localization errors in LoS (blue line) and NLoS (or-



Figure 16: Wall estimation performance

over distance.

Figure 17: CDF of Localization error for

LoS and NLoS, small UCA and Voloc.

Figure 18: CDF of MAVL Localization

error in different rooms.

ange line) scenarios. The median error is 0.31m for LoS and

0.47m for NLoS across all ranges and environments in our

evaluation. The accuracy decreases slightly in the NLoS sce-

nario compared to LoS because the diffraction path has lower

SNR. The overall localization error for smaller UCA is 0.56m

in MAVL . VoLoc [37] reports an overall median error of

0.44m in LoS and a median error of 1.7 m at a large dis-

tance (>4m). In our setup, we put the smart speaker close

to one wall, which is the only setup that VoLoc can work,

and find the median error of 1.32 m. This error is larger than

the one reported in [37] likely due to different distances and

environments.

Performance in different rooms: Figure 18 presents the

CDF of localization errors in different rooms. We select three

representative environments: a 7.5m x 5.1m conference room

with a large desk and many chairs, a 4m x 3.5m bedroom with

strong reflectors, such as monitors and wooden furniture, a

3.5m x 2.5m utility room with soft reflectors. We can see that

localization error increases with the increasing room size and

the number of strong reflectors. A larger room size reduces

SNR. For many locations in a large room, the directions of

reflected paths are close to each other, which makes it more

difficult to separate difference paths. Strong reflection from

walls and large furniture may produce merged peaks in the

MUSIC profiles. Nevertheless, MAVL still achieves 0.45m

median error for the complex bedroom .

Impact of UCA size: As discussed earlier, a smaller UCA

size degrades the accuracy of AoAs. The overall localization

error for smaller UCA is 0.56m. The yellow line in Figure

17 shows how small UCA works in our system. Although it

is worse than that of the larger UCA size, the error can still

support many indoor localization applications (e.g., provid-

ing useful context information for speech recognition and

beamforming to strengthen SNR).

Impact of different positions of UCA: Position of the micro-

phone array have impact on both room contour estimation and

source AoA estimation. We place the UCA at three predefined

locations, center, close to one wall and corner and evaluate

our system. The median localization errors are 0.41m, 0.59m,

0.76m at center, close to one wall, and corner, respectively.

Our system works the best when the UCA is placed at the

center. The accuracy degrades significantly if the UCA is

placed at the corner due to increased coherence. VoLoc re-

ports 0.44m overall error and 1.7m error beyond 4m when

UCA is placed close to one wall. But in our settings with a

larger room size and larger distance, VoLoc yields a median

error of 1.32 m. VoLoc relies on direct path and reflection path

from the close wall in the back. When one retrace using these

two paths, a small AoA error may lead to a large localization

error. Note that what matters is not the absolute distance to

the wall but the ratio between the distance to the wall and the

room size. For instance, 0.5m to a wall is considered close

for a 5.1m×7.5m room and large for a 2m×3m room. Our

system works best in the center position, but also works well

for the other setups. Therefore it can support more flexible

placement.

Performance to clutter levels: Nearby objects introduce

multipath, which makes the AoA estimation more challeng-

ing. Figure 20 shows how the clutter level affects the final

localization errors across different types of voice. Increasing

the clutter level increases the localization errors as we would

expect.

(a) Sparse (b) Moderate (c) Dense

Figure 19: Clutter Setups.

Performance to noise level: MAVL is robust to different

background noise. Figure 21 shows the influence of various

background noise and noise levels. White noise just degrades

the accuracy slightly even when SNR is as low as -10dB,



Figure 20: Localization accuracy across clutter levels.

and background music has larger impact than white noise as

there are human voices in songs. Our approach is fairly robust

against background music unless the SNR is too low (e.g.,<

-10dB SNR), in which case the error increases to 1.4m.

Figure 21: Localization accuracy vs noise levels.

6 Related Work

Acoustic Sensing: A number of systems have been proposed

to track a mobile device using acoustic signals [19, 23, 32, 50,

52]. Several recent systems [25, 28, 29, 51] enable device-free

tracking using acoustic signals. Many systems generate in-

audible acoustic sound for motion tracking. Some use Doppler

shift (e.g., AAMouse [50]), time of flight (e.g., BeepBeep [32],

or combination (e.g., CAT [23]). Covertband [30] actively

sends out OFDM based inaudible signals and builds on top of

MUSIC to improve sensing energy. BreathJunior [42] encodes

FMCW into white noise to detect motion and breathing of

infants. These systems require controlling transmitted acous-

tic signals and are not suitable for tracking human voice. The

most relevant work to ours is VoLoc [37]. Our work advances

VoLoc in several important aspects. First, we improve the

AoA accuracy from 10 degrees to 1.5 degrees by leveraging

multi-resolution analysis in the time-frequency domain. Sec-

ond, we develop a novel method to automatically estimate the

room contour. This significantly eases the deployment effort.

Third, we can localize users in both LoS and NLoS whereas

they only support LoS.

RF Based Localization: The accuracy of RF based localiza-

tion approaches are mostly limited by its large wavelength

and fast propagation speed for commodity WiFi infrastruc-

ture. Chronos [40] can achieve decimeter level localization

accuracy by inverting the NDFT. Spotfi [16] incorporates

novel filtering and estimation techniques to identify AoA of

direct path. Arraytrack [48] designs a novel multipath sup-

pression algorithm to remove reflection between clients and

APs. However, they use more than three APs with 16 anten-

nas and require controlling the transmitted signals. Moreover,

their approach is focused on eliminating multipath rather than

separately estimating each multipath.

Sound Source Localization: There has been a few sound

source localization work [26, 34, 46]. [14] builds a real-time

system to detect the AoAs of different sound sources. [2]

requires a Kinect depth sensor to build a 3D mesh model of

an empty room. It estimates multipath AoAs using a cubic

microphone array and perform 3D reverse ray-tracing to lo-

calize the voice. Its localization error is around 1.12m. [1]

considers the diffraction path and applies Uniform Theory of

Diffraction for voice localization. Its error is 0.82m. These

works either require multiple specialized sensors to get indoor

environment or only estimate AoAs instead of localization.

They do not address the coherence arising from multipath, so

their AoAs are not reliable. MAVL can localize a user using

a single smart speaker without extra hardware and explicitly

addresses the coherence of multipath.

Audio-Visual Indoor Representation Learning: Recent

work combines sound and vision in multimodal learning

frameworks to better understand the environment so that they

can track audio-visual targets [3, 11, 13], localize pixels rele-

vant to sound in videos [36, 39], and navigate indoor environ-

ments [10]. VisualEchoes [12] emits 3ms chirps to combine

multipaths and images at different location and learn spatial

representation without manual supervision. Soundspaces [7]

applies multi-modal deep reinforcement learning on a stream

of egocentric audio-visual observations. Our work uses a

stand-alone smart speaker, and does not require vision data or

pre-training.

7 Conclusion

In this paper, we develop a system, MAVL, to localize users

based on their voice using a smartspeaker like device. Our

design consists of a novel multi-resolution based AoA estima-

tion algorithm, an easy-to-use acoustic-based room structure

estimation approach and a robust retracing to localize the

user based on the estimated AoA and room structure. We

evaluate MAVL using different sound sources, room sizes,

smart speaker setups, noise and clutter levels to demonstrate

its effectiveness.
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