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Abstract

We present Max-Margin Boltzmann Machines (MMBMs)

for object segmentation. MMBMs are essentially a class of

Conditional Boltzmann Machines that model the joint dis-

tribution of hidden variables and output labels conditioned

on input observations. In addition to image-to-label con-

nections, we build direct image-to-hidden connections to fa-

cilitate global shape prediction, and thus derive a simple It-

erated Conditional Modes algorithm for efficient maximum

a posteriori inference. We formulate a max-margin objec-

tive function for discriminative training, and analyze the ef-

fects of different margin functions on learning. We evaluate

MMBMs using three datasets against state-of-the-art meth-

ods to demonstrate the strength of the proposed algorithms.

1. Introduction

Object segmentation can be formulated as a structured

output problem that involves making predictions collec-

tively over correlated output labels y ∈ Y from input ob-

servations x ∈ X . One of the core issues in structured out-

put prediction problems is how to represent complex output

variable interrelations effectively while carrying out infer-

ence and learning efficiently.

In Markov Random Fields (MRFs), output structures are

represented by pairwise and high-order potential functions

p(y) =
∏

yi⊂y φ(yi)/Z where Z is the partition func-

tion. The prediction from the observations x to the la-

bels y is usually realized in the conditional models p(y|x),
i.e., Conditional Random Fields (CRFs) [15], which allow

flexible use of various long-range features from observa-

tions x. Pairwise potentials [22], although admitting ef-

ficient inference, can only capture limited local structure,

such as smoothness and edges. High-order potentials are

able to capture long-range interactions between pixel la-

bels through bottom-up segmentation [13], pattern-based

priors [19, 21]. Beyond the generic high-order priors, the

ObjCut algorithm [14] introduces category-specific object

models into MRFs and has shown good segmentation per-

formance on articulated objects. In ObjCut, the hidden vari-

ables of pictorial structures encode the positions of object

parts, but their interactions with pixel labels are manually

designed.

Alternatively, Restricted Boltzmann Machines (RBMs)

render more flexible models for structured output represen-

tation that learn high-order interrelations through a joint dis-

tribution of labels and a set of hidden (latent) variables h in

p(y,h). By omitting lateral connections in a single layer,

RBMs admit efficient inference and sampling from condi-

tional probabilities. When operating with a small number

of training samples, layered architectures [20] have been

shown more effective in terms of model expressiveness and

learning efficiency. Eslami et al. [8] propose a two-layer

Boltzmann Machine p(y,h1,h2) (where h1 and h2 denote

hidden variables in two layers) for modeling object shapes

(ShapeBMs), and apply it onto object segmentation in a

generative model p(y,h1,h2,x) [9].

In this paper, we present a general class of Conditional

Boltzmann Machines (CBMs) for object segmentation in

the form of p(y,h|x) and p(y,h1,h2|x). In addition to

the connections from image to labels, our models also in-

clude the connections from the image to hidden variables,

which allows direct shape inference from image features.

Based on layer-wise conditional independence of BMs, we

derive a simple but efficient Iterated Conditional Modes [3]

algorithm for maximum a posteriori (MAP) inference.

Learning with CRFs and CBMs is challenging as it re-

quires handling exponentially large numbers of output com-

binations in data-dependent partition functions. Approxi-

mate learning algorithms are easily trapped in local optima,

thereby limiting their generalization performance. Another

line of research for structured output prediction is devel-

oped on max-margin formulations [23, 24, 11], that fa-

cilitates model generalizability to unseen test data. This

technique has been applied to CRFs for object segmenta-

tion [22, 2]. In a similar spirit, we propose a max-margin

formulation of CBMs, referred as MMBMs, and develop

an online Concave-Convex Procedure (CCCP) [28] algo-

rithm for learning efficiently with hidden variables. Note

that large margin BMs have been proposed in [17] with a
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focus on theoretical analysis while our max-margin method

is proposed for training a particular class of CBMs with ap-

plications to object segmentation. We investigate the ef-

fects of four kinds of margin functions on discriminative

training, and demonstrate the importance of combined hid-

den and visible margin functions. We study two variants

of MMBMs with a single hidden layer p(y,h|x) as well as

two hidden layers p(y,h1,h2|x), and compare them with

two state-of-the-art models: superpixel based CRFs [1] and

Compositional High Order Pattern Potentials [16]. We carry

out experiments on the Weizmann horse [5], Penn-Fudan

pedestrian [4] and Caltech-UCSD birds 200 [27] datasets.

Experimental results show that the proposed MMBMs per-

form better than existing methods both quantitatively and

qualitatively.

2. Related Work

Recent work [12, 16] on object segmentation realizes the

power of Boltzmann Machines to represent high-order in-

teractions in combining RBMs with CRFs. Li et al. [16]

combine pairwise, data-dependent potentials with a one-

layer RBM prior in CRFs (referred as Compositional High

Order Pattern Potentials (CHOPPs) in Figure 1(b)), and

show the relationship between the marginalized RBM free

energy and high-order potentials [19]. Kae et al. [12] aug-

ment CRFs with an RBM shape prior in a two-layer model

for image labeling. Their lower layer has nodes for every

superpixel of the image, with pairwise weights connect-

ing them. The labels for this layer are then pooled into a

raster structure, enabling them to use a RBM to provide

shape priors. Another attempt is to combine Deep Boltz-

mann Machines shape prior with a variational segmenta-

tion model [7], showing the effectiveness of strong shape

priors for simple object segmentation. In all of the above

approaches, the only inference pathway between the image

features x and the hidden variables h representing shapes

leads through the labels assigned to image pixels y while

the shape only works as a prior. To perform inference

and learning, the hidden variables are usually marginalized

through an EM-like procedure. The shape information is

thus not fully explored. In contrast, our MMBM models in-

troduce connections between hidden variables h and image

features x, which enables a more efficient MAP inference

procedure and thus max-margin learning.

3. Models

In this section, we first introduce two variants of Boltz-

mann Machines, RBMs and ShapeBMs, for modeling ob-

ject shapes, and then describe the proposed conditional

models and the maximum a posteriori inference algorithm.

3.1. Boltzmann Machines

Given a labeled image of an object, we represent the

mask as a set of visible variables y ∈ {0, 1}n. RBMs use

one layer of hidden variables h ∈ {0, 1}m to capture global

dependencies between visible variables (See Figure 1(a))

p(y,h) = exp(−E(y,h))/Z, (1)

where Z is the partition function. RBMs do not have lat-

eral connections within visible and hidden layers so that the

energy function takes the form,

E(y,h) = −y⊤Wh− b⊤y − c⊤h, (2)

parametrized by b, c and W. One attractive property of

RBMs is that visible variables are conditionally indepen-

dent given hidden variables and vice versa. The conditional

probability of each variable is essentially the sigmoid func-

tion σ(y) = 1/(1 + exp(−y)),

p(yi = 1|h) = σ(
∑

j

wijhj + bi), (3)

p(hj = 1|y) = σ(
∑

i

wijyi + cj), (4)

which facilitates efficient inference.

Although RBMs have the capacity of modeling complex

distributions, they require a large set of hidden variables and

numerous training examples. For object segmentation, it

is labor intensive to collect a large number of training ex-

amples with ground truth masks, and challenging to train

RBMs with a large set of variables. It is, however, possi-

ble to ameliorate this problem by considering the spatial

structure of images. Eslami et al. [8] propose a partic-

ular form of Boltzmann Machine with two hidden layers

p(y,h1,h2) ( referred as ShapeBM ) for object shape mod-

eling. The first layer of hidden variables h1 is partitioned

into several disjoint subsets {h1
k = h1(Jk)}k∈G of same

size m1
k, where Jk ∈ {0, 1}

m denotes the subset indexing.

Each of them has a restricted receptive field and only con-

nects to a local patch of the object mask. The local patches

{yk = y(Ik)}k∈G have the same size nk and they over-

lap each other along the boundaries, where Ik ∈ {0, 1}
n

denotes the patch index. Therefore, the pairwise poten-

tials between visible variables y and the first layer hid-

den variables h1 can be represented by
∑

k∈G y⊤
k W

1
kh

1
k.

Furthermore, different patches can share the same weights

W1 = W1
k, k ∈ G. The second layer of hidden variables

h2 connects to all the variables h1 of the first layer. Similar

to RBMs, there are no lateral connections between variables

within any single layer. The energy function can be thus de-

scribed by

E(y,h1,h2) = −
∑

k∈G

y⊤
k W

1h1
k − b⊤y−

c1⊤h1 − h1⊤W2h2 − c2⊤h2.

(5)



y

x
h

y

x

(a) CRF (b) CHOPP

h

y

x
1h

2hx

y

(c) MMBM1 (d) MMBM2

Figure 1. Comparing graphical models of MMBMs ((c) and (d))

with pairwise CRF (a) and CHOPP [16]. The edges mean full

connections between two layers. In (d), the connections between

y and h1 only involve the variables of the same color.

The pairwise term of the first layer can be rewritten in the

same form as RBMs by some matrix manipulation:
∑

k∈G

y⊤
k W

1h1
k = y⊤W̃1h1,

where W̃1(Ik,Jk) = W1.

(6)

Due to its structure, ShapeBM uses much fewer parame-

ters than conventional two-layer RBMs [20], thereby fa-

cilitating efficient learning for smaller datasets. The pair-

wise term y⊤W̃1h1 models the compatibility between pix-

els and parts while the term h1⊤W2h2 defines the possible

configuration of parts. Thus, when an unit of h1 is activated,

a template stored in W1 is selected to enforce the group of

pixels to obey a binary image pattern. Also, when an unit

of h2 is activated, it triggers a particular configuration of

parts (due to varying pose or viewpoint). The ShapeBM

architecture also enjoys the property of conditional inde-

pendence p(y|h1), p(h1|y,h2) and p(h2|h1), although ex-

act inference is not tractable for this model.

3.2. Conditional Boltzmann Machines

While generative RBMs and ShapeBMs are capable of

modeling object shape priors, it is still challenging to ef-

ficiently infer a binary object mask y from an image x.

Intuitively, we can construct a fully generative model for

object images and their binary masks p(y,x) such that ob-

ject shape can be inferred from an image by the conditional

distribution p(y|x), and an image generated from a shape

mask by p(x|y). As an example, Eslami et al. [9] present

a generative multinomial joint model of appearance (object

images) and shape (parts-based segmentation).

Nevertheless, constructing a joint model of object im-

ages and shape masks poses significant difficulties as the

conditional distribution of images given the shape masks are

intrinsically multimodal and full of ambiguities. In order to

estimate the object mask y from an image x, we instead

propose to directly train the conditional models p(y,h|x)
for RBMs (MMBM1, Figure 1(c)) and p(y,h1,h2|x) for

ShapeBMs (MMBM2, Figure 1(d)). In these conditional

models, the activations of variables depend on the observa-

tions or image features, so the energy function of p(y,h|x)
can be represented by

E(y,h,x) = −y⊤Wh−h⊤(V1x1+c)−y⊤(V0x0+b),
(7)

while the energy function of p(y,h1,h2|x) takes the form,

E(y,h1,h2,x) = −y⊤W̃1h1 − h1⊤W2h2

− h1⊤(V1x1 + c1)− h2⊤(V2x2 + c2)− y⊤(V0x0 + b).

(8)

In the above equations, x0 represents low-level image fea-

tures that indicate foreground and background assignments.

The variable x1 represents features of object parts and V1

contains templates of object parts. The variable x2 de-

scribes the holistic object features, and V2 is composed of

object templates of different poses and viewpoints. In these

two models, we connect the observations x to both visible

and hidden layers, which enables the direct inference path-

way from image features to shapes.

3.3. MAP Inference

Given a set of image features x, the most likely configu-

ration of y is computed from

ŷ = argmax
y∈Y

p(y|x). (9)

In the proposed MMBM with single hidden layer, the

marginal distribution p(y|x) =
∑

h p(y,h|x) can be rep-

resented by its free energy form exp(−F (y,x))/Z), and

−F (y,x) =y⊤(V0x0 + b)+
∑

j

log(1 + exp(cj + y⊤W.j +V1
j.x

1)).

(10)

where W.j and Wj. denote j-th column and row of W,

respectively. As the partition function Z is constant given x,

the MAP inference in (9) is exactly equivalent to optimizing

the free energy function

ŷ = argmax
y∈Y
−F (y,x). (11)

Note that the free energy F (y,x) is not a linear function

of y, and we need to take gradients to find the optimal ŷ.

However, the analytic free energy is not available in the

MMBM with two hidden layers. We instead optimize the

variational upper bound of log-likelihood log p(y|x) using

the EM algorithm in spirit similar to techniques that have

been effectively applied to training generative BMs. How-

ever, in MMBMs, both visible y and hidden variables are

conditioned on input variables x. The conditional distribu-

tions p(y|h1,x), p(h1|y,h2,x) and p(h2|h1,x) are likely



Algorithm 1 MAP inference by the ICM algorithm.

1: Initialize h1

2: while do not converge do

3: h2 ← max p(h2|h1,x)
4: y← max p(y|h1,x)
5: h1 ← max p(h1|y,h2,x)
6: end while

highly peaked, if not unimodal, and thus they can be ap-

proximated by optimizing

{ŷ, ĥ1, ĥ2} = argmax p(y,h1,h2|x). (12)

Similar to the block Gibbs sampling method, the indepen-

dent property of conditional distributions induces an effi-

cient Iterated Conditional Modes (ICM) algorithm (See Al-

gorithm 1). The ICM algorithm also provides a good ap-

proximate solution to the free energy optimization problem

in (11) and (10) for single layer MMBMs. Essentially, the

second term in (10) can be approximated by

∑

j

log(1 + exp(cj + y⊤W.j +V1
j.x

1)) ≈

max
h

(c⊤h+ y⊤Wh+ h⊤V1x1),

(13)

which can be solved by the ICM algorithm.

4. Learning

Given a training set of object image-mask pairs

{(x1,y1), ..., (xn,yn)}, we learn MMBMs for object seg-

mentation. As the proposed learning algorithm can be ap-

plied to both MMBMs with single (p(y,h|x;ω)) or two

hidden layers (p(y,h1,h2|x;ω)), we denote the MMBM

by a general form p(y,H|x;ω) where H = h for one sin-

gle hidden layer or H = {h1,h2} for two hidden layers,

and ω = {W1,2,V0,1,2, c1,2,b} are the model parameters.

The MMBMs consist of image-independent and image-

dependent parts. We first initialize the image-independent

part by generative pre-training, and then reformulate the

joint learning problem into a max-margin optimization task

which is solved effectively by a CCCP algorithm.

4.1. Pretraining

Generative pre-training p(y,H) is of crucial importance

for the MMBM models. It provides the MMBM mod-

els with proper regularization between output and hidden

variables, and feed sensible hidden variables to discrimina-

tive learning in the following stage. By omitting image-

dependent components, the MMBM with one single hid-

den layer reduces to the RBM while the one with two hid-

den layers reduces to the ShapeBM. We thus can utilize the

generative training algorithms of these methods. Indeed,

Algorithm 2 Stochastic Gradient Descent algorithm for

max-margin learning MMBMs.

1: Set t = 0, initialize ω0, α0 and define γ
2: while t < T do

3: Randomly select a training instance (xi,yi)
4: Solve (16): H∗

i ← max
H

[−E(yi,H,xi;ωt)]

5: Solve (17): ŷi, Ĥi ← max
y,H

[−E(y,H,xi;ωt) +

∆(y,yi,H,H∗
i )]

6: Update ωt+1 ← (1− αtγ)ωt + αt(
∂E(ŷi,Ĥi,xi;ω)

∂ω
−

∂E(yi,H
∗

i
,xi;ω)

∂ω
)

7: Decrease αt

8: end while

the general training procedure of BMs requires minimiz-

ing the differences between the data-dependent and model-

dependent expectations. We train the RBM by minimizing

contrastive divergence [10]. For the ShapeBM, each layer

is greedily trained.

4.2. MaxMargin Learning

To generate accurate prediction on test images, we seek

for the parameters ω that assign training labels yi a greater

than or equal log-likelihood of any other labeling y for in-

stance i,

log p(yi,H|xi;ω) ≥ log p(y,H|xi;ω), ∀H, ∀y, ∀i. (14)

We can cancel the partition function Z for both sides of (14),

and express the constraints by energies,

− E(yi,H,xi;ω) ≥ −E(y,H,xi;ω), ∀H, ∀y, ∀i. (15)

We refer the left term of (15) as data-dependent energy and

the right term as model-dependent energy. Since the num-

ber of constraints in (15) is exponentially large, we look for

the hidden variables H∗
i that best explain the training in-

stance (xi,yi) in the data-dependent energy

H∗
i = argmax

H
− E(yi,H,xi;ω). (16)

For the model dependent energy, we compute the best

prediction from xi by augmenting an energy margin

∆(y,yi,H,H∗
i ),

{ŷi, Ĥi} = argmax
y,H
−E(y,H,xi;ω) +∆(y,yi,H,H∗

i ).

(17)
These two decoding problems (16) and (17) can be solved

efficiently by the ICM algorithm in Algorithm 1 where the

only difference is to initialize with random H.

To deal with noisy training image data, we relax the

margin constraints by introducing slack variables ξi. Thus,

we formulate the MMBM learning with the following max-

margin objective function,
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Figure 2. Comparing margin functions. Cases 1-4 illustrate learn-

ing single-layer MMBMs with four kinds of margin functions. The

particular margin functions induce the red connections between

any two layers dominate the energy loss during learning while

leaving the green connections unoptimized. Best viewed in color.

min
ω

γ

2
‖ω‖2 +

∑

i

ξi, s.t.

−E(yi,H
∗
i ,xi;ω) ≥max

y,H
[∆(yi,y,H

∗
i ,H)−E(y,H,xi;ω)]

− ξi, ξi ≥ 0, ∀i,

where H∗
i =argmax

H
− E(yi,H,xi;ω).

(18)

This formulation is equivalent to minimizing the loss func-

tion,

min
ω

γ

2
‖ω‖2 +

∑

i

max
y,H

[∆(yi,y,H
∗
i ,H)−E(y,H,xi;ω)+

E(yi,H
∗
i ,xi;ω)].

(19)

To optimize the loss function (19), we initialize the param-

eters ω0 with pre-trained W1,2, c1,2,b and random matri-

ces V1,2. We develop a stochastic gradient descent algo-

rithm (See Algorithm 2) for optimizing (19) by applying

the Concave-Convex Procedure [28]. Note that it is easy to

compute the gradients of energy functions with respect to

ω as both data energy E(ŷi, Ĥi,xi;ω) and model energy

E(yi,H
∗
i ,xi;ω) are linear functions of parameters ω given

fixed hidden and output variables.

Comparing Margin Functions. Choosing a proper margin

penalty function ∆(·) is crucial to effective learning. Taking

the single layer MMBM as an example, we find its energy

function consists of three components: hidden-visible in-

teraction (H-V), hidden-image interaction (H-I) and visible-

image interaction (V-I), which correspond to the three kinds

of edges in the graphical model of MMBMs,

E(y,h,x) = −y⊤Wh
︸ ︷︷ ︸

H-V

−h⊤(V1x1 + c)
︸ ︷︷ ︸

H-I

−y⊤(V0x0 + b)
︸ ︷︷ ︸

V-I

,

(20)
We analyze four cases of ∆(·) (See Figure 2) and evaluate

their performance in the experiments.

Case 1: ∆(·) = 0. If we set ∆(·) = 0, then the loss function

in (19) reduces to the perceptron loss used in [18]. As the

data-dependent and model-dependent energies remain the

same form, there exist several possibilities that can explain

the perceptron loss, considering the potential combinations

of three components. For example, learning with ∆ = 0
may end up with a strong H-V component but weak H-I

and V-I components, as the H-V component is pre-trained.

This result is clearly deficient for prediction.

Case 2: ∆(·) = ∆(y,yi). If we set ∆(·) = ∆(y,yi), then

the loss function in (19) is closely related to the one used in

latent Structured SVM [28]. The energy margin ∆(y,yi)
only depends on y so that the V-I component will be better

constrained to dominate the energy loss between the data

energy and the augmented model energy. Considering the

pre-trained H-V component, we may obtain strong H-V and

V-I components but a weak H-I component. However, the

H-I and V-I components take different input features and

should be complementary to each other. The unoptimized

H-I component very likely constrains the model generaliz-

ability to unseen data.

Case 3: ∆(·) = ∆(H,H∗
i ). If we set ∆(·) = ∆(H,H∗

i ),
then the loss function in (19) indirectly corresponds to the

output through hidden variables. That is, the H-V compo-

nent functions as clustering. The margin on hidden vari-

ables essentially encourages the H-I component to correctly

predict the cluster labels H∗
i , i.e., the hidden variables that

best explain the training instance (xi,yi). Thus, the energy

difference is likely dominated by the H-I and H-V compo-

nents, which leaves the V-I component unoptimized. This

approach has the same generalizability problem as Case 2.

Case 4: ∆(·) = ∆(y,yi)+∆(H,H∗
i ). Based on the above

analysis, we use ∆(·) = ∆(y,yi) +∆(H,H∗
i ) as the mar-

gin penalty function. Since ∆(y,yi) and ∆(H,H∗
i ) are ab-

sorbed into the V-I component and H-I component, respec-

tively, all three components are optimized during learning.

5. Experiments

5.1. Datasets

Penn-Fudan Pedestrians This dataset [26] consists of 170

images with bounding box annotations and ground truth

foreground-background segmentation masks. The images

all include one or more pedestrians. For our experiments

we extracted 423 patches, each adjusted to include one per-

son only. We resize the patches to an uniform size of 32×64
pixels, cropping the original image so that we can keep the

original aspect ratio while resizing them.

In order to increase the number of training and test sam-

ples, we subsequently mirror all patches, resulting in 846

samples, some of which with severe occlusions. We then

select 400 samples for training and use the rest for tests.

The training-test split is done randomly except for keeping

original images in the same set as their mirrored pairs.

Weizmann Horses. This dataset [5] contains 328 horse im-

ages, with a high variability of poses and scales. Before

processing, we resize every image to 128x128, padding im-



ages with different aspect ratios with mirrored versions of

the image itself. To get comparable results to [16], we cal-

culate 32x32 foreground-background segmentation masks

with all of our models. Also, we use their training-test split

(into 200 training and 128 test images).

Caltech-UCSD Birds 200. The dataset [27] includes 6033

images of 200 bird species, each image usually including

one dominant bird in the scene. The images are annotated

with a bounding box and a coarse-grained segmentation

mask. As the accuracy of this isn’t sufficient to evaluate our

segmentation methods, we manually annotate these images

with accurate masks (available on the website https://

eng.ucmerced.edu/people/jyang44). We crop

6033 bird patches and the corresponding segmentation

masks from bounding boxes, and resize the image patches

to 128× 128 pixels. We use the same training/test partition

as in [27], i.e., 3000 samples for training and the rest for

tests.

5.2. Implementations

Architectures. For the MMBM with a single hidden

layer (MMBM1) and RBM, we use 500 hidden units

h ∈ {0, 1}500. For the MMBM with two hidden lay-

ers (MMBM2), we use 500 hidden units in the first layer

h1 ∈ {0, 1}500, and 200 hidden units in the second layer

h2 ∈ {0, 1}200. For the birds and the horses, each mask

is partitioned into 2 × 2 four patches {y = ∨yk, k =
1, . . . , 4,yk ∈ {0, 1}

36×36} with 8 pixels overlapping be-

tween adjacent patches, such that each part is connected to

125 hidden units in the first layer h1. For the pedestrians,

we also use four patches {y = ∨yk, k = 1, . . . , 4,yk ∈
{0, 1}22×32} but in a 4x1, vertical organization with 14

pixel overlaps between neighbors.

Features. One of the advantages of the proposed method is

that it can handle a diverse set of features: local descriptors

can be connected to the visible layer while features covering

larger image areas are better suited as conditionals for one

of the hidden layers.

For MMBM1, we use two sets of features: x0 for the

visible and x1 for the hidden layer. For x0, we first segment

the image into superpixels using the gPb algorithm [1].

For each superpixel, we compute dense SIFT, color and

contour histograms. The histograms of densely sampled

SIFT words are computed by using a codebook of size

512 and the locality-constrained linear coding method [25].

The color histograms of RGB values are computed from a

codebook of size 128, and finally, the contour histograms

are computed from the oriented gPb edge detector re-

sponses [1]. For per-pixel visible features we simply use

those of the superpixel containing the pixel in question.

For the hidden layers of MMBM1, we use the HOG de-

scriptors for the entire input image as x1. For MMBM2,

the features x2 for the top layer is calculated the same way,

while for the middle layer feature vector x1 we use the HOG

descriptors for the four patches.

Training. For the MMBM1, we run 2000 epochs with

100-sample mini-batches in the generative training phase

(RBM training). For the MMBM2, we run 2000 epochs for

the first layer pre-training in the generative training phase

(ShapeBM training) and 1000 epochs for the second layer

pre-training. In addition, we run 5 cycles in the max-

margin training phase in both cases. We set the learning rate

α0 = 0.001 and the constant γ = 0.01 for all the experi-

ments. The MATLAB source code and the labeled datasets

will be made available for research purposes.

Baseline. We study two discriminative models for com-

parison: a superpixel based CRF model using bottom-

level features x0 and Compositional High Order Potentials

(CHOPPs) [16]. For the CRF model p(y|x0), we use the

implementation in [16].

For CHOPPs, we used the code provided by the authors

for the inference but we didn’t get the same results, likely

due to differences in our unary / pairwise potential genera-

tion code. To make the comparison fair, in the experiments

we used the same unary features as in our MMBM imple-

mentation instead. As Table 2 shows, this improved their

results compared to the original published in [16].

Since, unlike the combined RBM-CRF models of [16]

and [12], our model doesn’t have pairwise weights in the

visible layer. For a better comparison with these models,

we also ran Graph Cut on the output mask, using the prob-

abilities given by the model as unary potentials and a pair-

wise term taken from [6], based on the magnitude of the

gradients of color channels. We report results for both the

original and refined masks.

5.3. Results

We use two metrics for performance evaluation: the av-

erage pixel accuracy (AP) of foreground and background

classification and the foreground intersection-over-union

score (IoU) of entire test set 1. We first present segmen-

tation results on the Penn-Fudan Pedestrians in Table 1.

Overall, the MMBM1 (76.92% IoU, Case 4) and MMBM2

(77.30% IoU, Case 4) outperform the CRF (68.35% IoU)

and CHOPPs (71.33% IoU) algorithms. The results show

that the MMBMs are effective models for object segmenta-

tion by integrating image features and a strong shape prior.

Also, as the last two rows of the table indicate, introducing

pairwise constraints further improves results.

Our results for Weizmann horses are shown in Table 2.

Again, both the advantage of augmenting the loss func-

tion with multiple margins and the benefits of using a

two-layered architecture are demonstrated. Also, compar-

1The IoU score is defined as
|Y

⋂
Ŷ|

|Y
⋃

Ŷ|
, where Y and Ŷ are the sets of

ground truth and predicted foreground pixels.

https://eng.ucmerced.edu/people/jyang44
https://eng.ucmerced.edu/people/jyang44


Table 1. Results on the Penn-Fudan Pedestrians dataset.
AP IoU

CRF 84.87 68.35

CHOPPs [16] 86.55 71.33

MMBM1

Case 1 82.66 64.80

Case 2 85.27 69.20

Case 3 83.35 65.78

Case 4 89.91 76.92

MMBM2 89.74 77.30

MMBM1 Case 4 w/ GC 90.42 77.97

MMBM2 Case 4 w/ GC 90.77 79.42

Table 2. Results on the Weizmann Horses dataset.
AP IoU

CRF 87.46 67.44

Bo and Fowlkes [4] 77.2 N/A

CHOPPs [16] 88.67 71.60 (69.90 in [16])

MMBM1

Case 1 70.59 38.01

Case 2 85.87 62.97

Case 3 85.37 59.35

Case 4 89.43 69.59

MMBM2 89.80 72.09

MMBM1 Case 4 w/ GC 90.62 74.12

MMBM2 Case 4 w/ GC 90.71 75.78

isons using different margin functions (Cases 1-4) for the

MMBM1 model demonstrate the importance of a max-

margin formulation with multiple margins for output pre-

diction. By using margin functions (MMBM1 Cases 2-

4), we obtain 19% AP improvement and more than 30%

IoU improvement over the non-margin (perceptron loss) al-

gorithm in Case 1 of the MMBM1. The best results for

the MMBM1 (89.43% AP, 69.59% IoU) from Case 4 indi-

cate that the combining multiple margin functions ∆(·) =
∆(y,yi) + ∆(H,H∗

i ) alleviates degenerating effects by

providing stronger constraints. Our results on other datasets

also strengthen this observation. The two-layer hierarchical

hidden architecture also helps generating better results than

a single hidden layer, as shown in the Case 4 of MMBM2

(89.80%AP, 72.09% IoU) over MMBM1.

In addition to the comparison to CRF and CHOPPs,

for this dataset we also added the results from [4]. Their

aim was to identify body parts and got the foreground-

background segmentation as a byproduct.

Finally, the segmentation results on the Caltech-UCSD

Birds 200 dataset are presented in Table 3. Different from

pedestrians and horses, this dataset has large shape varia-

tions but more distinct appearances (e.g., color, textures).

Thus, the appearance-based CRF model performs less well.

Similar is the case of CHOPP: as its hidden nodes are not

directly connected to image features, so they can only re-

fine and correct the shape of results that are mostly right

just based on local, visible-layer features, which is hard

to accomplish on this dataset. In contrast, the features-to-

Table 3. Results on the Caltech-UCSD Birds 200 dataset.
AP IoU

CRF 83.50 38.45

CHOPPs [16] 74.52 48.84

MMBM1

Case 1 80.96 60.37

Case 2 87.73 72.45

Case 3 75.73 63.22

Case 4 88.07 72.96

MMBM2 86.38 69.87

MMBM1 Case 4 w/ GC 90.42 75.92

MMBM2 Case 4 w/ GC 90.77 72.40

hidden connections in the MMBM models make it possi-

ble to exploit global shape information even without reli-

able local features. The results, similar to the observations

on the other two datasets for evaluating different margin

functions demonstrate the significance of max-margin for-

mulation and combining margin functions (Case 4). In the

bird data, we observe better performance by using just one

hidden layer compared to using the two-layered MMBM2

model. A possible reason is that while the weight repli-

cation for the four windows in MMBM2 is beneficial when

given a small number of training samples (such as for horses

and pedestrians), but for larger datasets we can learn a better

prior using simple architectures (RBMs) with more param-

eters from the data.

We present some qualitative results in Figure 3, from

which we can see more directly the importance of features-

to-hidden connections for shape prediction. For example,

CRF finds the most colorful parts of birds, which is cor-

rected by CHOPP to be shaped more birdlike, but it’s only

MMBMs that discover the entire bird well.

6. Conclusions

In this paper, we propose MMBMs for structured out-

put prediction problems and investigate two variants of

MMBMs with single and two hidden layers for object seg-

mentation. Instead of using BMs as shape priors, we build

connections between input observations with hidden vari-

ables that opens an inference pathway from image features

to object shapes. We derive a simple yet efficient ICM al-

gorithm for MAP inference. We formulate MMBMs with a

max-margin objective function for discriminative training,

and discuss four margin functions as well as their effects on

learning performance. The results on horses, pedestrians,

birds datasets show that our algorithms perform favorably

against the state-of-the-art methods.

In experiments, we have found that the pairwise edge po-

tentials can after all improve the segmentation quality, given

the predicted shapes from our models. In the future, we plan

to extend MMBM models by adding pairwise potentials to

the visible layer. Considering the alternating procedure of

the MAP inference algorithm, this extension will not sig-



(a) GT (b) CRF (c) CHOPP (d) MMBM1 (e) MMBM2 (f) GT (g) CRF (h) CHOPP (i) MMBM1 (j) MMBM2

Figure 3. Qualitative results on the Penn-Fudan Pedestrians, Caltech-UCSD Birds and Weizmann horses where segmentation results (shown

with white contours) are overlaid with the input images.

nificantly increase the complexity of inference and learning

because we only need to replace Line 4 in Algorithm 1 with

Graph Cut. We are also interested in integrating object de-

tection with segmentation in MMBM models.
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