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Abstract— An ad hoc network may be logically represented as a set of
clusters. The clusterheads form ai-hop dominating set. Each node is at
mostd hops from a clusterhead. Clusterheads form a virtual backbone and
may be used to route packets for nodes in their cluster. Previous heuristics
restricted themselves tol-hop clusters. We show that the minimumd-hop
dominating set problem is NP-complete. Then we present a heuristic to

form d-clusters in a wireless ad hoc network. Nodes are assumed to have

non-deterministic mobility pattern. Clusters are formed by diffusing node
identities along the wireless links. When the heuristic terminates, a node
either becomes a clusterhead, or is at most wireless hops away from its
clusterhead. The value ofd is a parameter of the heuristic. The heuristic
can be run either at regular intervals, or whenever the network configura-
tion changes. One of the features of the heuristic is that it tends to re-elec

set in an ad hoc network is NP-complete. Then, we propose
a new distributed leader election heuristic for an ad hoc net-
work, guaranteeing that no node is more than d hops away from
aleader, where d is avalue selected for the heuristic. Thus, this
heuristic extends the notion of cluster formation. Existing 1-hop
clusters are an instance of the generic d-hop clusters. The pro-
posed heuristic provides load balancing among clusterheads to
insure afair distribution of load among clusterheads. Addition-
aly, the heuristic elects clusterheads in such a manner as to fa-

. vor their re-electionin future rounds, thereby reducing transition

existing clusterheads even when the network configuration changes. This Overheadswhen old clusterheads give way to new clusterheads.

helps to reduce the communication overheads during transition from old

clusterheads to new clusterheads. Also, there is a tendency to evenly dis-t

tribute the mobile nodes among the clusterheads, and evently distribute the

However, it isaso fair as alarge number of nodes equally share
he responsibility for acting as clusterheads. Furthermore, this

responsibility of acting as clusterheads among all nodes. Thus, the heuristic heuristic has time complexity of O(d) rounds which compares

is fair and stable. Simulation experiments demonstrate that the proposed
heuristic is better than the two earlier heuristics, namely the LCA [1] and
Degree based [11] solutions.

|. INTRODUCTION

Ad hoc networks (also referred to as packet radio networks)
consist of nodes that move freely and communicate with other
nodes viawireless links. One way to support efficient commu-
nication between nodesis to develop awireless backbone archi-
tecture[1], [2], [4], [8]. While all nodesareidentical in their ca-
pabilities, certain nodes are el ected to form the backbone. These
nodes are called clusterheads and gateways. Clusterheads are
nodesthat are vested with the responsibility of routing messages
for al the nodes within their cluster. Gateway nodes are nodes
at the fringe of a cluster and typically communicate with gate-
way nodes of other clusters. The wireless backbone can be used
either to route packets, or to disseminate routing information, or
both.

Due to the mobility of nodesin an ad hoc network, the back-
bone must be continuously reconstructed in atimely fashion, as
the nodes move away from their associated clusterheads. The
election of clusterheads has been a topic of many papers as de-
scribed in [1], [2], [8]. In all of these papers the leader election
guarantees that no node will be more than one hop away from
a leader. Furthermore, their time complexity is O(n), wheren
is the number of nodes in the network. Our work started with
the aim of generalizing the clustering heuristics so that anodeis
either aclusterhead or at most d hops away from a clusterhead.

We prove that constructing the minimum d-hop dominating

favorably to O(n) for earlier heuristics [1], [4] for large mo-
bile networks. This reduction in time complexity is obtained by
increasing the concurrency in communication. Simulation ex-
periments support these claims. Thus, it is an improvement over
other known heuristics.

Il. SYSTEM MODEL

In an ad hoc network all nodes are alike and all are mobile.
There are no base stations to coordinate the activities of sub-
sets of nodes. Therefore, al the nodes have to collectively make
decisions. All communication is over wireless links. A wire-
less link can be established between a pair of nodes only if they
are within wireless range of each other. The Max-Min heuris-
tic only considers bidirectional links. It is assumed the MAC
layer will mask unidirectional links and pass bidirectional links
to Max-Min. Beacons could be used to determine the presence
of neighboring nodes. After the absence of some number of
successive beacons from a neighboring node, it is concluded
that the node is no longer a neighbor. Two nodes that have a
wireless link will, henceforth, be said to be 1 wireless hop away
from each other. They are also said to be immediate neighbors.
Communication between nodes is over a single shared channel.
The Multiple Access with Collision Avoidance (MACA) pro-
tocol [14] may be used to alow asynchronous communication
while avoiding collisionsand retransmissionsover asinglewire-
less channel. MACA utilizes a Request To Send/Clear To Send
(RTYCTS) handshaking to avoid collision between nodes.

A modified MACA protocol, MACA-BI (By Invitation) [6],
suppressesall RTSand reliessolely on CTS, invitationsto trans-



mit data. Simulation experiments show MACA-BI to be supe-
rior to MACA and CSMA in multi-hop networks. Other proto-
cols such as spatial TDMA [10] may be used to provide MAC
layer communication. Spatial TDMA provides deterministic
performance that is good if the number of nodes is kept rela-
tively small. However, spatial TDMA requires that all nodes be
known and in afixed location to operate. In ad hoc networksthe
nodes within each neighborhood are not known a priori. There-
fore, spatial TDMA isnot aviable solution initially. We suggest
that MACA-BI be used initialy for this heuristic to establish
clusterheads and their associated neighborhoods. Then the indi-
vidual cluster may transition to spatial TDMA for inter-cluster
and intra-cluster communication.

All nodes broadcast their node identity periodically to main-
tain neighborhood integrity. Due to mobility, a node's neigh-
borhood changes with time. As the mobility of nodes may not
be predictable, changes in network topology over time are ar-
bitrary. However, nodes may not be aware of changesin their
neighborhood. Therefore, clusters and clusterheads must be up-
dated frequently to maintain accurate network topol ogy.

Definition 1 (d-neighborhood) - The d-neighborhood of a
node is the set of all nodes that are within d hops of the node.
This includes the node itself. Thus, the 0-neighborhood is only
the node itself.

I11. PREVIOUS WORK AND DESIGN CHOICES

There are two heuristic design approaches for management
of ad hoc networks. The first choice is to have all nodes main-
tain knowledge of the network and managethemselves[7],[12],
[13]. This circumvents the need to select leaders or develop
clusters. However, it imposes a significant communication re-
sponsibility on individual nodes. Each node must dynamically
maintain routes to the rest of the nodes in the network. With
large networks the number of messages needed to maintain rout-
ing tables may cause congestion in the network. Ultimately this
traffic will generate huge delays in message propagation from
one node to another. Thisapproach will not be considered in the
remainder of this paper.

The second approach is to identify a subset of nodes within
the network and vest them with the extraresponsibility of being
a leader (clusterhead) of certain nodes in their proximity. The
clusterheads are responsible for managing communication be-
tween nodesin their own neighborhood as well as routing infor-
mation to other clusterheadsin other neighborhoods. Typically,
backbones are constructed to connect neighborhoodsin the net-
work. Past solutions of this kind have created a hierarchy where
every node in the network was no more than 1 hop away from a
clusterhead [1], [4], [10]. In large networks this approach may
generate a large number of clusterheads and eventually lead to
the same problem as stated in the first design approach. There-
fore, it is desirable to have control over the clusterhead density
in the network.

Furthermore, some of the previous clustering solutions have
relied on synchronous clocks for exchange of data between
nodes. In the Linked Cluster Algorithm [1], LCA, nodes com-
municate using TDMA frames. Each frame has a slot for each
node in the network to communicate, avoiding collisions. For

every node to have knowledge of all nodesin it neighborhood it
requires 2n TDMA time dlots, where n is the number of nodes
in the network. A node x becomes a clusterhead if at least
one of the following conditionsis satisfied: (i) z has the high-
est identity among all nodes within 1 wireless hop of it, (ii) =
does not have the highest identity in its 1-hop neighborhood,
but there exists at least one neighboring node y such that z is
the highest identity node in y’s 1-hop neighborhood. Later the
LCA heuristic was revised [5] to decrease the number of clus-
terheads producedin the original LCA. In thisrevised edition of
LCA (LCA2) anode is said to be covered if it isin the 1-hop
neighborhood of a node that has declared itself to be a cluster-
head. Starting from the lowest id node to the highest id node, a
nodedeclaresitself to beaclusterhead if among the non-covered
nodesin its 1-hop neighborhood, it has the lowest id.

The LCA heuristic was developed and intended to be used
with small networks of less than 100 nodes. In this case the
delay between node transmissions is minimal and may be tol-
erated. However, as the number of nodes in the network grows
larger, LCA will impose greater delays between node transmis-
sions in the TDMA communication scheme and may be unac-
ceptable. Additionaly, it has been shown [15] that as commu-
nications increase the amount of skew in a synchronous timer
also increases, thereby degrading the performance of the overall
system or introducing additional delay and overhead.

Other solutions base the el ection of clusterheads on degree of
connectivity [11], not node id. Each node broadcasts the nodes
that it can hear, including itself. A node is elected as a cluster-
head if it is the highest connected node in all of the uncovered
neighboring nodes. In the case of atie, the lowest or highest id
may be used. As the network topology changes this approach
can result in a high turnover of clusterheads [8]. This is un-
desirable due to the high overhead associated with clusterhead
change over. Data structures have to be maintained for each
node in the cluster. As new clusterheads are elected these data
structures must be passed from the old clusterhead to the newly
elected clusterhead. Re-election of clusterheads could minimize
this network traffic by circumventing the need to send these data
structures.

IV. CONTRIBUTIONS

Themain objective was to devel op aheuristic that would el ect
multiple leadersin large ad hoc networks of thousands of nodes.
Additionally, we wished to generalize the cluster definition to a
collection of nodes that are up to d hops away from a cluster-
head, whered > 1, i.e., ad-hop dominating set. First, we show
that forming a minimum d-hop dominating set is NP-complete.
Then we propose a heuristic to solve the problem. Some of the
design goals and contributions of this heuristic are:

1. Nodes asynchronously run the heuristic: no need for syn-
chronized clocks,

2. Limit the number of messages sent between nodesto O(d),
3. Minimizethe number and size of the data structuresrequired
to implement the heuristic,

4. Minimize the number of clusterheads as a function of d,

5. Formation of backbone using gateways,

6. Re-elect clusterheads when possible: stability.



7. Distribute responsibility of managing clustersis equally dis-
tributed among all nodes: fairness.

Due to the large number of nodes involved, it is desirable to
let the nodes operate asynchronously. The clock synchroniza-
tion overhead is avoided, providing additional processing sav-
ings. Furthermore, the number of messages sent from each node
islimited to amultiple of d, the maximum number of hops away
from the nearest clusterhead, rather than n, the number of nodes
inthe network. Thisguarantees agood controlled message com-
plexity for the heuristic. Additionally, because d is an input
value to the heuristic, there is control over the number of clus-
terheads elected or the density of clusterheads in the network.
The amount of resources needed at each node is minimal, con-
sisting of four simple rules and two data structuresthat maintain
node information over 2d rounds of communication. Nodes are
candidates to be clusterheads based on their node id rather than
their degree of connectivity. As the network topology changes
dightly the node’s degree of connectivity is much more likely
to change than the node's id relative to its neighboring nodes.
As will be described below, if anode A is the largest in the d-
neighborhood of another node B, then node A will be elected a
clusterhead, even though node A may not be the largest in its d-
neighborhood. This provides a smooth and deliberate transition
of clusterheads rather than an erratic exchange of leadership.
Thislast design goal isintended to help minimize the amount of
data that must be passed from an outgoing clusterhead to a new
one when thereis a change over.

V. NP COMPLETENESS OF D-HOPS DOMINATING SET

An ad hoc network can be modeled as a graph G = (V, E),
where two nodes are connected by an edge if they can commu-
nicate with each other. If all nodes are located in the plane and
have the same transmission radius d, then G is called aunit disk
graph. Clearly, unit disk graphs are the simplest model of ad
hoc networks.

A set S of nodesin G = (V, E) iscalled ad-hopsdominating
set if every nodein V isa most d (d > 1) hops away from
avertex in S. Minimum d-hops dominating set is the problem
of determining for a graph G and an integer & > 0 whether G
has a dominating set of size < k. In this section we show that
the minimum d-hops dominating set problem is NP-complete.
In fact, we will prove that minimum d-hops dominating set is
NP-complete even for unit disk graphs.

Theorem: Minimum d-hops dominating set is NP-complete
for unit disk graphs.

Proof: Sinceit is obviousthat the minimum d-hops dominat-
ing set problemisin NP, it remains to show that it is NP-hard.
We will construct a reduction from the (1-hop) dominating set
problem for planar graphs with maximum degree 3 which was
shown to be NP-complete in [9]. To this end, we make use of
the following result which shows how planar graphs can be effi-
ciently embedded into the Euclidian plane [16]:

A planar graph with maximum degree 4 can be embedded
in the plane using O(|V'|) area in such a way that its vertices
are at integer coordinates and its edges are drawn so that they
are made up of line segments of form x=i or y=j, for integersi

andj.

Moreover, according to [3] such embeddings can be con-
structed in linear time.

Thus, in constructing our reduction we may assume that we
are given agraph G = (V, E) that is embedded in the plane
according to [16]. We construct in polynomial time a unit disk
graph G’ = (V', E") with radius § such that G' hasadominating
set S of size < k if and only if G’ has a d-hops dominating set
S' of size < k', where k' is determined from G and k.

Construction of the unit disk graph G':

Defined = 1/(2d+ 1) unit astheradiusof the unit disk graph
G'. For each unitlength in G we add (2d + 1) new intermediate
verticesin equal distance. Thus, for each original edge (u, v) in
G of length ,, ,, we add (2d + 1) x I,,,, intermediate vertices.
Moreover, we add (d — 1) auxiliary vertices uy, ..., ug—1 Se-
guencially from original vertex v at each distance d asshownin
Figure 1. Obviously the resulting graph G’ = (V', E') isaunit
disk graph with radius ¢, and G’ can be constructed from G in
polynomial time.

o Ugd—1 e Ud—1
IEO—O—k .—O—O—I )
u 1 2 3 @dHD)ly,v

Fig. 1. Construction of intermediate and auxiliary vertices

Claim. G hasadominating set S of size
S| < k
if and only if G' has d-hops dominating set S’ of size

|Sl| < k' =k+ Z lum
{u,v}eFE

wherel,, , isthelength of the edge (u, v) inG.

Proof of Claim: For theonly if direction supposethat G hasa
dominating set S of sizem. We construct the d-hopsdominating
set S’ in G' asfollows. S’ containsal verticesin S. Moreover,
for each original edge (u, v) weadd certainintermediate vertices
to S’ according to the following rules:

Rulel: if w (or v) isin S, we add atotal of /,, , intermediate
vertices such that consecutive vertices are (2d + 1) hops apart
starting from w(v).

Rule 2: if both v and v arein S, we add a total of /,, ,, interme-
diate vertices such that consecutive vertices are (2d + 1) hops
apart starting from .

Rule 3: if both v and v are not in .S, we add a total of [,, , in-
termediate vertices such that consecutive vertices are (2d + 1)
hops apart starting from position d.

An example of these rules is shown in Figure 2. Clearly, we
have

ISI<k+ > luw

(u,v)€EE

We now provethat the set S’ isad-hopsdominating set. First
observe that there is one intermediate vertex in S’ for every
(2d + 1) consecutive intermediate vertices on any original edge,
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Fig. 2. Vertices in d-hops dominating set

so the intermediate vertices are either in S’ or at most d hops
fromavertexin S’. If an origina vertex v isin S, thenit isalso
in S’ by Rule 1. Therefore its auxiliary vertices vy, ...,v4_1
is d hops away from v, a vertex in S’. Otherwise, if v is not
in S, then there is a neighboring vertex v which isin S due to
the fact that S is a dominating set. Consider the original edge
(u,v). According to Rule 1, the intermediate vertex at position
(2d +1) x1,,isin S". Thus, vertex v and its auxiliary vertices
vy, ..., Vq—1 area most d hopsaway fromthe vertex at position
(2d + 1) x lu,v, whichisin S’.

We have shown that any (original, auxiliary, or intermediate)
vertex in G’ iseither in S’ or at most d hops away from a vertex
inS’. Hence S’ isad-hops dominating set in G'.

We now show theif direction. To thisend, supposethat S’ isa
d-hopsdominating set of size k' in G'. An extended edge(u/, v')
is an extension of an original edge (u,v) that includes all inter-
mediate vertices as well as the auxiliary vertices uy, ..., uq_1
and vq,...,vq_1. For the sake of convenience, the set of ver-
ticesin S’ that are on an extended edge is denoted by S;, ,. We
construct the dominating set S for the graph GG as as follows.
For each extended edge (u', v") we remove verticesfrom S’ ac-
cording to the following rules:

Rule 1: If only u (v) isin S’ (See Figure 1):

Removeall verticesin S,, , except u (v).

Rule 2: If bothu and v arein S’ (See Figure 2):
Removeall verticesin S, , except u and v.
Rule 3: Noneof v andvisin S’

If |S%.0] > lus + 1, then add vertex u to S’ and remove all
verticesin S, . Otherwise removeall S,, .

Observe that the number of intermediate verticesin S’ from
each original edge (u,v) is at least I,, ,, because we have a total
of (2d + 1) x [,,, intermediate vertices on the edge. Moreover,
when applying the above rules, the total humber of vertices re-
moved is at least /,, , for each extended edge (v, v'). Therefore
the size of theresulting set S is

SI<IST= Y =

{u,w}eE

To verify that the set S is a dominating set in the original
graph G, wejust need to provethat every original vertex iseither
in S or adjacent with a vertex in .S. To this end, consider any
original vertex u whichisnotin S we have following cases:
Case 1. wisadegree 1 vertex with aneighbor v (See Figure 3).
If visin S’, thenv isasoin S by Rule 1. Otherwise, on the
extended edge (u’, v'), thereare (2d+1) xI,, , +1 verticeswhich
are at most d hops from a vertex in S;, ,. Therefore |S,, ,| >
luy+1andvisin S by Rule3.

Case 2: uisaneighbor of degree 1 vertex v

Samereasoning asin Case 1.

Case 3: wu isaneighbor of at least two degree 2 vertices z and
y (SeeFigure 4).

If either z (or y) isin S’, then z (or y)isaso in S by Rule 1.
Otherwise, on the extended edges (z',v') and (v',y'), there are
(2d + 1) x Iy + (2d + 1) x 1, ,, verticeswhich are at most d
hops away from avertex in S, , U S, . Due to the auxiliary
verticesuy, ..., uq—1 wehave|S; , US, | > lou+ lyu+ 1.
That leadsto either S}, | > Iy +10r|S; | > 1y, + 1. From
Rule 3, we can see that either original vertex = or y isin S.
Thus S is a dominating set in G. This completes the proof of
the theorem.
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Fig. 3. w is degree 1 vertex with a neighbor vertexs
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Fig. 4. wis degree 2 vertex with 2 neighbor degree 2 vertices and y

VI. HEURISTIC
A. Data Structures

The heuristic runs for 2d rounds of information exchange.
Each node maintainstwo arrays, WINNER and SENDER, each
of size 2d nodeids: oneid per round of information exchange.

The WINNER is the winning node id of a particular round
and used to determine the clusterhead for a node, as described
below inthe Basic Idea.

The SENDER isthe node that sent the winning node id for a
particular round and is used to determine the shortest path back
to the clusterhead, once the clusterhead is selected.

B. Basic ldea

Initially, each node sets its WINNER to be egual to its own
nodeid. Thisisfollowed by the Floodmax phase.

Definition 2 (Floodmax) - Each node locally broadcasts its
WINNER value to al of its 1-hop neighbors. After all neigh-
boring nodes have been heard from, for asingle round, the node



choosesthelargest value among its own WINNER value and the
values received in the round as its new WINNER. This process
continuesfor d rounds.

Definition 3 (Floodmin) - This follows Floodmax and also
lasts d rounds. It isthe same as Floodmax except a node chooses
the smallest rather than the largest value as its new WINNER.

Definition 4 (Overtake) - As flooding occurs in the network,
WINNER values are propagated to neighboring nodes. At the
end of each flooding round a node decides to maintain its cur-
rent WINNER value or change to a value that was received in
the previous flood round. Overtaking is the act of a new value,
different from the node's own id, being selected based on the
outcome of the information exchange.

Definition 5 (Node Pairs) - A node pair is any node id that
occurs at least once as a WINNER in both the 1°¢ (Floodmax)
and 2" (Floodmin) d rounds of flooding for an individual node.

We simulate rounds of the flooding algorithm by having every
node send and receive the equiva ent of a synchronous round of
messages. Thisis accomplished by requiring each node to send
around r message tagged with r as the round number. After a
node hasreceived round r messagesfrom all itsneighborsit may
proceed with round r transition and ultimately to round r + 1.

The heuristic has four logical stages: first the propagation of
larger node ids via floodmax, second the propagation of smaller
node ids via floodmin, third the determination of clusterheads,
and fourth the linking of clusters.

The first stage uses d rounds of floodmax to propagate the
largest node id in each node’s d-neighborhood. At the conclu-
sion of the floodmax the surviving node ids are the el ected clus-
terheads in the network. Nodes record their winning node for
each round. Floodmax is a greedy algorithm and may result in
an unbalanced loading for the clusterheads. In fact, there may
be cases where clusterhead B is digoint from its cluster as a
result of being overtaken by clusterhead A. Therefore, a node
must realize not only if it isthelargest in its d-neighborhood but
asoif itisthelargest in any other node’s d-neighborhood. This
is similar to the strategy employed in [1]. The second stage
uses d rounds of floodmin to propagate the smaller node ids
that have not been overtaken. This alows the relatively smaller
clusterheads the opportunity to (i) alow them to regain nodes
within their d-neighborhood and, (ii) realize that they are the
largest node in another node's d-neighborhood. Again each
node records the winning node for each round.

At the conclusion of the floodmin, each node evaluates the
round’s WINNERSs to best determine their clusterhead. In or-
der to accommodate cases where a node's id is overtaken by
another node id, the smallest node id appearing in both of the
flooding stages is chosen as the clusterhead. The smaller clus-
terhead is chosen to provide load balancing. However, in the
worst case where clusterhead A and clusterhead B are one hop
away from one another; clusterhead B will record its own node
id as a WINNER only in the final round of flooding. There-
fore, if a node receives its own node id in the floodmin stage
it knows that other nodes have elected it their clusterhead so it
declaresitself a clusterhead. Additionally, there may be scenar-
ios where a node is overtaken in the floodmax stage by a set of
nodes and then overtaken by a completely different set of nodes

in the floodmin stage, none of which isits own nodeid. In this
case the node has no other option but to select a clusterhead that
iswithin d hops. The only known clusterhead that is within d
hopsisthe WINNER of the final round of floodmax.

Finally, the gateway nodes (nodes at the periphery of a clus-
ter) begin a convergecast message to link all nodes of the clus-
ter to the clusterhead and, link the clusterhead to other clusters.
Each gateway node will include its id and al other gateway
nodes of other neighboring clusters in the message. This will
establish the backbone of the network. During the convergecast
it may be determined that a clusterhead resides on the path be-
tween a node and its selected clusterhead, as shown in Figure 5
with nodes 3, 16, 28, and 48 electing clusterhead 100. In this
case the clusterhead closest to the node adoptsit as a child. Fig-
ure 5 shows the clusters formed when the heuristic terminates.

The proposed heuristic provides an optimal solution when the
largest node ids are spaced d distance apart. However, even
when the largest node ids are located in close proximity the
heuristic provides a good solution at low cost in time and mes-

sages.

C. Clusterhead Selection Criteria

The mechanics of the heuristic are quite smple. At some
common epoch each node initiates 2d rounds of flooding. Each
node maintains a logged entry of the results of each flooding
round. The rounds are segmented into the 1%¢ d rounds and the
274 { rounds. The 1% d rounds are a floodmax to propagate the
largest node ids. After completion of the 15 d rounds of flood-
ing the 2¢ d rounds of flooding begin, using the values that
exist at each node after the 1% d rounds. The 2"¢ d rounds of
flooding are afloodmin to allow the smaller nodeids to reclaim
some of their territory. After completion of the 2"¢ d rounds
each node looks at its logged entries for the 2d rounds of flood-
ing. Thefollowing rulesexplain thelogical steps of the heuristic
that each node runs on the logged entries.

Rule 1: First, each node checks to see if it has received its
own original node id in the 2"¢ d rounds of flooding. If it has
then it can declare itself a clusterhead and skip the rest of this
phase of the heuristic. Otherwise proceed to Rule 2.

Rule 2: Each node looks for node pairs. Once a node has
identified all node pairs, it selects the minimum node pair to be
the clusterhead. If a node pair does not exist for a node then
proceed to Rule 3.

Rule 3: Elect the maximum node id in the 1% d rounds of
flooding as the clusterhead for this node.

D. Gateway Selection and Convergecast

After a node has determined its clusterhead based on Rules
1, 2, or 3, it communicates that it is a member of the cluster to
the clusterhead. In order to minimize messages thisinformation
is communicated from the fringes of the cluster, gateway nodes,
inward to the clusterhead. Furthermore, a node has no way to
know if it is a gateway node. Therefore, after clusterhead se-
lection each node broadcasts its elected clusterhead to all of its
neighbors. Only after hearing from all neighbors can anode de-
termine if it is a gateway node. If al neighbors of a node have
the same clusterhead selection then this node is not a gateway
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Fig. 5. 3-cluster formation in a network of 25 nodes.

node. However, if there are neighboring nodes with clusterhead
selectionsthat are different, then these nodes are gateway nodes.

Once a node has identified itself as a gateway node it then
begins a convergecast to the clusterhead node sending its node
id, all neighboring gateway nodes and their associated cluster-
heads. The SENDER data structure is used to determine who
next to send the convergecast message. The process contin-
ues with each node adding its own node id such that when the
clusterhead has heard from each of its immediate neighbors it
has a database of every node in its cluster. It is not the intent
of this heuristic to minimize the number of gateways.> Rather
this heuristic maximizes the number of gateways resulting in
a backbone with multiple paths between neighboring cluster-
heads. This provides fault tolerance, and eases congestion in
the backbone network.

Rule4: There are certain scenarios, as shown in Figure 5,
where this heuristic will generate a clusterhead that is on the
path between a node and its elected clusterhead. In this case,
during the convergecast the first clusterhead to receive the con-
vergecast will adopt the node as one of its children. The cluster-
head will immediately send a message to the node identifying
itself asthe new clusterhead.

E. Correctness of Heuristic

The correctness of the heuristic is solely dependant on nodes
electing clusterheads that actually become clusterheads. The
following assumptions are used to first show that every node
that survivesthe floodmax stage of the heuristic becomesa clus-
terhead. Then we will show that every node that is elected as a
clusterhead does in fact become a clusterhead.

I Restricting the number of gateways minimizes the number of paths between
clusterheads [12], [8].

Assumption 1: During the floodmin and floodmax algo-
rithms no node’s id will propagate farther than d-hops from the
originating node itself (definition of flooding).

Assumption 2: All nodes that survive the floodmax elect
themselves clusterheads.

Proof of Assumption 2: The floodmax will propagate the
individual node ids outward creating a dominating set of node
ids. This dominating set of node idswill consist of two classes.
Classl nodeswill bethose nodeidsthat arethelargestin their d-
neighborhood. Class2 nodes will be those that are the largest in
at least one of their d-hop neighbors' d-neighborhood. A Class2
node can not be a Classl node.

Consider a Classl node id, say node A. Node A will over-
take each node that is d-hops away from it during the floodmax.
Therefore, all nodes that are within the d-hop coverage area of
node A will possess node A’s id value in the WINNER data
structure.

At the conclusion of the floodmin a Classl node will elect it-
self aclusterhead, based on Assumption 1 and Rule 1. Consider
a Class2 nodeid, say node B. Although node B is overtaken by
larger node ids, its node id continues to propagate out and con-
sume all smaller nodeidswithin d-hops of node B. Therefore, at
the completion of the floodmax node B’s id and larger node ids
(Classl or Class2) will cover the d-hop coverage area of node B.
Therefore, the Class2 id is the smallest surviving id in the d-hop
neighborhood of the originating Class2 node.

Based on Assumption 1 we can conclude that the floodmin
process will successfully propagate the Class2 node id back to
the originating Class2 node. A Class2 node will elect itself a
clusterhead, based on Rule 1.

Therefore, any nodethat survivesthe floodmax stage will elect
itself a clusterhead.

Lemma l: If node A elects nhode B as its clusterhead, then



node B becomes a clusterhead.

Proof: The proof of the Lemma will consider all possible
ways that a node may elect its clusterhead, and then prove that
this node doesin fact become a clusterhead.

Case 1:Node A electsitself asaclusterhead based on Rule 1.
If node A receivesits ownid in the floodmin stage, it knowsthat
other nodes have elected it a clusterhead based on Assumption
2. Therefore, it electsitself a clusterhead.

Case 2:Node A elects node B its clusterhead based on Rule
2. Node A receivesan entry for B in the floodmin portion of the
heuristic. Therefore, based on Assumption 2 we conclude that
B does become a clusterhead. We choose the smaller node id
pair to promote fairness and distribute the load among elected
clusterheads.

Case 3:Node A elects node B it clusterhead based on Rule
3. Node A receives no node pairs and must select the only node
known to be a clusterhead. The only node that is guaranteed to
beaclusterhead isthelast WINNER of the floodmax. Thisnode
survives the floodmax and again based on Assumption 2 it will
become a clusterhead.

VII.

Figure 5 shows an exampl e of the network topology generated
by the heuristic with 25 nodes. Here we see four clusterheads
elected in close proximity with one another, namely nodes 65,
73, 85, and 100. This figure shows how cluster division has the
effect of drawing a line between clusterheads and splitting the
nodes among themselves. Additionally, Figure 5 demonstrates
the need for Rule 4, asnodes 3, 16, 28, and 48 have elected node
100 as their clusterhead but must pass through other clusters
on their convergecast to node 100. On application of Rule 4,
clusterhead 85 instructs nodes 3, 16, and 48 to join its cluster.
While clusterhead 73 instructs node 28 to joinsits cluster.

Figure 6 shows the resulting network topology after slightly
perturbing the network in Figure 5. Here we see that three of
the previous four clusterheads are re-elected. The fourth clus-
terhead, node 65 from Figure 5, is overtaken by clusterhead 85.

ILLUSTRATIVE EXAMPLES

Fig. 6. 3-cluster formation after topology change.

A. Pathological Case

There is a known configuration where the proposed heuris-
tic fails to provide a good solution. This configuration is when
nodeids are monotonically increasing or decreasing in astraight

line. Inthiscase, thed + 1 smallest nodeids belong to the same
cluster as shown in Figure 7. All other nodes become cluster-
heads of themselvesonly. Again, whilethisisnot optimal it still
guarantees that no node is more than d hops away from a clus-
terhead. Furthermore, this configuration is highly unlikely in a
real world application. However, this is a topic of future work
to be performed with this heuristic.

101 200 220

221

Fig. 7. Worst case performance scenario for the proposed heuristic, d=3.

B. Time, Message and Sorage Complexity

Each node propagates node ids for 2d rounds to elect clus-
terheads. A convergecast is then initiated to inform the cluster-
head of its children. Since no node is morethan d hops from its
clusterhead the convergecast will be O(d) rounds of messages.
Therefore, the time complexity of the heuristic is O(2d + d)
rounds = O(d) rounds.

The time complexity and the number of transmissions re-
quired to achieve alocal broadcast (to all neighbors) for asingle
round is dependent on the success of the datalink layer protocol.
While the MACA-BI has been shown to be superior to MACA
and CSMA [6] it still suffersfrom the hidden terminal problem
and may require re-transmissions to complete a round. A data
link protocol similar to MACA-BI that resolves completely the
hidden terminal problem is an area of additional research and
not the intent of this paper.

Each node has to maintain 2d node ids in its WINNER data
structure, and the same number of nodeidsin its SENDER data
structure. Thus, the storage complexity is O(d). This com-
pares favorably with heuristics like [1], [2] where identities of
all neighboring nodes is maintained and the storage complexity
isO(n).

VIII. SIMULATION EXPERIMENTS AND RESULTS

We conducted simulation experiments to evaluate the per-
formance of the proposed heuristic and compare these finding
against three heuristics, the original Linked Cluster Algorithm
(LCA) [1], the revised Linked Cluster Algorithm (LCAZ2) [5],
and the Highest-Connectivity (Degree) [11], [8] heuristic. We
assumed a variety of systems running with 100, 200, 400, and
600 nodes to simulate ad hoc networks with varying levels of
nodedensity. Two nodesare said to have awirelesslink between
them if they are within communication range of each other. The
performance was simulated with the communication range of
the nodes set to 20, 25 and 30 length units. Additionally, the
span of a clugter, i.e., the maximum number of wireless hops
between a node and its clusterhead (d) was set to 2 and then 3
for each of the simulation combinations above. The entire sim-
ulation was conducted in a200 x 200 unit region. Initially, each



node was assigned a unique hode id and z, y coordinates within
the region. The nodes were then allowed to move at random in
any direction at aspeed of not greater than 1/2 thewirelessrange
of anode per second. The simulation ran for 2000 seconds, and
the network was sampled every 2 seconds. At each sampletime
the proposed Max-Min heuristic was run to determine cluster-
heads and their associated clusters. For every simulation run
a number of statistics were measured for the entire 2000 sec-
onds of simulation. Some of the more noteworthy simulation
statistics measured were: Number of Clusterheads, Clusterhead
Duration, Cluster Szes, and Cluster Member Duration. These
statistics provided a basis for evaluating the performance of the
proposed heuristic.

Definition 6 (Number of Clusterheads) - The mean number
of clusterheads in a network for a sample. We do not want too
few clusterheads, asthey will be overloaded with too many clus-
ter members. Nor isit good to have alarge number of cluster-
heads, each managing avery small cluster.

Definition 7 (Clusterhead Duration) - The mean time for
which once anodeis elected as a clusterhead, it stays as a clus-
terhead. This statistic is a measure of stahility, the longer the
duration the more stabl e the system.

Definition 8 (Cluster Sizes) - Themean size of acluster. This
value is inversely proportional to the Number of Clusterheads.
We do not want clusters so large that they will overload their
clusterheads, or so small that the clusterheads are idle a good
part of thetime.

Definition 9 (Cluster Member Duration) - The mean con-
tiguoustime anode stays amember of acluster beforemovingto
another cluster,? clusterheads are considered cluster members,
aso. This statistic is a measure of stability like the Clusterhead
Duration, but from the point of view of nodesthat are not clus-
terheads.

LCA, LCA2, and Degree based heuristics generate 1-hop
clusters. Therefore, to properly compare these heuristics with
the proposed Max-Min heuristic it was necessary to perform a
d-closure on the connectivity topology before running each of
these heuristics. The d-closureyields amodified graph in which
nodes A and B are 1-hop neighborsif they were at most d-hops
away intheactual topology graph. Here, d iseither 2 or 3. When
the LCA, LCA2, and Degree based heuristics are run on this
modified graph, they form clusters where each node is at most
d wireless hops away from its clusterhead. The LCA heuris-
tic elects clusterheads that may be adjacent to one another while
the LCA2 and Degree based heuristics do not allow clusterheads
to be adjacent to one another. Therefore, the selection of these
three heuristics should provide good coveragefor benchmarking
the performance of the proposed Max-Min heuristic.

Observing the simulation results of Figure 8 shows that Max-
Min, LCA2, and Degree based heuristics never produce more
than 33 clusterheads, when 2-hop clusters are formed and the
wireless rangeis equal to 20 length units. Furthermore, as more
nodes are added the number of clusterheads produced by these
heuristics remains almost unchanged. The LCA heuristic pro-
duces amaximum of 130 clusterheads. Observing the LCA plot
shows that the slope, approximately 0.17 for high density net-

2A cluster is represented by the identity of its clusterhead.

works, will generate a clusterhead for every 5.8 newly added
nodes. This is an unnecessarily large number of clusterheads.
Similar trends are exhibited for other combinations of hop count
and wireless range.

Figure 9 shows Max-Min with the highest clusterhead dura-
tion followed by LCA2, LCA and then finally the Degree based
heuristic. Max-Min shows an increase in clusterhead duration
asthe network becomes more dense, whilefor LCA, LCA2, and
Degreethe duration asthe system sizeincreases. Thisisnot sur-
prising for Degree as it is based on degree of connectivity, not
nodeid. Asthe network topology changes this approach can re-
sult in high turnover of clusterheads[8]. Similarly, in LCA and
LCAZ2 a single link make or break may move a lower id node
within or out of d-hops of a node z, forcing it to transition be-
tween clusterhead and normal node states. Such transitions may
aso have aripple effect throughout the network. This adversely
impacts the stability of clusters.
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Fig. 8. Impact of network density on number of clusterheads.

Figure 10 shows the Degree based and LCA2 heuristics pro-
duce the largest cluster sizes followed by the Max-Min, and fi-
nally the LCA heuristics. The Degree, LCA2, and Max-Min
heuristics produce clusters whose sizes increase by 3.1, 3.1 and
2.3 nodes per 100 nodes respectively. While the LCA heuristic
cluster sizes are very flat and only increase dightly as the net-
work density increases. Combining the number of clusterheads
and number of cluster sizes results we can see that the LCA
heuristic is producing a large number of small clusters as the
system size gets larger. This indicates that the LCA heuristic
very often suffers from a pathological case where a node be-
comes a clusterhead under somewhat false pretences. This can
happen when a node becomes a clusterhead because it is the
largest node in one of its neighbor’s neighborhoods.

Figure 11 shows L CA2 and Max-Minwith the highest cluster
member durations followed by LCA and finally Degree. Here
we see that the LCA2 heuristics show adlight increasein cluster
member duration as the network becomes more dense, while the
LCA heuristic shows a dlight decrease. Max-Min has become



Cluster Head Duration in 2 Hop Count, 20 Range System
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Fig. 9. Impact of network density on clusterhead duration.
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Fig. 10. Impact of network density on cluster size.

fairly flat at 3.7 seconds for dense networks, while the Degree
heuristic show a steady decline to about 2 seconds, the sampling
rate of the simulation.

Finally, Figure 12 shows that Max-Min produces the highest
percentage of re-elected clusterheads (consistent with Figure 9).
Asaresult Figure 13 shows that Max-Min elects only afraction
of the total number of nodes as leaders during the entire simula-
tion run of 2000 seconds. This supports the idea that Max-Min
will try to re-elect existing leaders. The LCA and Degree based
heuristics el ected every node or one short of every node as|eader
at least once during each simulation run of 2000 seconds. So,
their plots are superimposed on each other and cannot be distin-
guished. While LCA2 does not elect every node a clusterhead
in each simulation run, it still elects a much higher number of
clusterheads than Max-Min. It is not desirable to change lead-
ership too frequently as this causes the exchange of leadership

Cluster Member Duration in 2 Hop Count, 20 Range System

3.8 F : E

3.6 max ---%--- o

lca2 —-x

wal Y - IRRREEEE R

28 1

26 | 1

Average Cluster Member Duration (seconds)

2.2 oo 1

i =R

2 ! ! ! i L
100 150 200 250 300 350 400 450 500 550 600
Number of Nodes in the System

L )

Fig. 11. Impact of network density on cluster member duration.

databases to the new clusterheads. This may ulimately cause
congestion in the network.
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Fig. 12. Impact of network density on re-elected clusterheads.

The Max-Min heuristic produces fewer clusterheads, much
larger clusters, and longer clusterhead duration on the average,
than the LCA heuristic. While the Degree based heuristic does
have dightly larger cluster sizes than the Max-Min, it suffers
greatly in other categories such as clusterhead duration, and
cluster member duration. The LCA2 heuristic produces clus-
terheads that are comparable in number to that of Max-Min.
However, Max-Min has clusterhead durations that are approxi-
mately 100% larger than that of LCA2 for dense networks. Fur-
thermore, the Max-Min clusterhead duration continues to in-
crease with increased network density, while the LCA2 heuristic
clusterhead duration decreases with increased network density.
Based on these initial simualtion results the Max-Min heuristic
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Fig. 13. Impact of network density on number of nodes elected as cluster-
heads during the entire simulation.

provides the best all around clusterhead leader election charac-
teristics.

Future work is needed to determine the appropriate time
to trigger the Max-Min heurigtic. If periodic triggers are too
closely spaced then the system may run the heuristic even when
there has been no noticeable topology change to warrant run-
ning the heurigtic. If the periodic triggers are too far apart then
the topology may change without running the heuristic, caus-
ing nodes to be stranded without a clusterhead. The triggering
condition should be completely asynchronousand localized to a
node’s cluster and its neighboring clusters to restrict execution
of the heuristic to only affected nodes. Furthermore, the trig-
gering scheme should account for topology changes during the
progress of the heuristic. The Max-Min heuristic has atendency
to re-elect existing clusterheads. This is desireable for stabil-
ity, however it must be tempered with aload-balancing scheme.
Load-balancing alows re-election of existing clusterheads un-
til they have exceeded their clusterhead duration budget. These
clusterheads should then give way to allow other nodes to be-
come clusterheads.

IX. POSSIBLE APPLICATIONS OF THE HEURISTIC

Ad hoc networksare suitablefor tactical missions, emergency
response operations, electronic classroom networks, etc. A pos-
sible application for thisheuristicisto useit in conjunction with
Spatial TDMA.. Spatiad TDMA provides a very efficient com-
munication protocol for clusters with few nodes. However, the
nodes must be known and in a fixed location. Hence, Spatial
TDMA is not easily used in ad hoc networks. The proposed
heuristic may be used to determine the clusters and the cluster-
heads in the network. At this point all of the nodes within a
cluster are known and assume to be fixed. Thisinformation may
be used by Spatial TDMA to construct a TDMA frame for the
individual clusters. Spatial TDMA will continue as the commu-
nication protocol until there is sufficient topology change that
the proposed heuristic is run again to form new clusters.

The proposed heuristic can be used for hierarchical routing
purposes wherein clusterheads can maintain routing informa-
tion. It can also be used for location management purposes
where the clusterheads receive location updates and queries
from other nodesin the system.

X. CONCLUSION

A new heuristic for electing multiple leadersin an ad hoc net-
works has been presented, called Max-Min Leader Election in
Ad Hoc Networks. Max-Min runs asynchronously eliminating
the need and overhead of highly synchronized clocks. The max-
imum distance a node is from its clusterhead has been general-
ized to be d hops, alowing control and flexibility in the deter-
mination of the clusterhead density. Furthermore, the number
of messages is a multiple of d rounds, providing a very good
run time at the network level. Simple data structures have been
used to minimize the local resources at each node. Re-election
of clusterheads is promoted to minimize transferal of databases
and to provide stability. The solution is scalable as it generates
asmall number of clusterheads compared to some other heuris-
tics. Also, alow variance in cluster sizes leads to better load
balancing among the clusterheads. Finally, this heuristic utilizes
clusterheads and multiple gateway nodes to form a redundant
backbone architecture to provide communication between clus-
ters.
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