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Abstract— An ad hoc network may be logically represented as a set of
clusters. The clusterheads form ad-hop dominating set. Each node is at
mostd hops from a clusterhead. Clusterheads form a virtual backbone and
may be used to route packets for nodes in their cluster. Previous heuristics
restricted themselves to1-hop clusters. We show that the minimumd-hop
dominating set problem is NP-complete. Then we present a heuristic to
form d-clusters in a wireless ad hoc network. Nodes are assumed to have
non-deterministic mobility pattern. Clusters are formed by diffusing node
identities along the wireless links. When the heuristic terminates, a node
either becomes a clusterhead, or is at mostd wireless hops away from its
clusterhead. The value ofd is a parameter of the heuristic. The heuristic
can be run either at regular intervals, or whenever the network configura-
tion changes. One of the features of the heuristic is that it tends to re-elect
existing clusterheads even when the network configuration changes. This
helps to reduce the communication overheads during transition from old
clusterheads to new clusterheads. Also, there is a tendency to evenly dis-
tribute the mobile nodes among the clusterheads, and evently distribute the
responsibility of acting as clusterheads among all nodes. Thus, the heuristic
is fair and stable. Simulation experiments demonstrate that the proposed
heuristic is better than the two earlier heuristics, namely the LCA [1] and
Degree based [11] solutions.

I. INTRODUCTION

Ad hoc networks (also referred to as packet radio networks)
consist of nodes that move freely and communicate with other
nodes via wireless links. One way to support efficient commu-
nication between nodes is to develop a wireless backbone archi-
tecture [1], [2], [4], [8]. While all nodes are identical in their ca-
pabilities, certain nodes are elected to form the backbone. These
nodes are called clusterheads and gateways. Clusterheads are
nodes that are vested with the responsibility of routing messages
for all the nodes within their cluster. Gateway nodes are nodes
at the fringe of a cluster and typically communicate with gate-
way nodes of other clusters. The wireless backbone can be used
either to route packets, or to disseminate routing information, or
both.

Due to the mobility of nodes in an ad hoc network, the back-
bone must be continuously reconstructed in a timely fashion, as
the nodes move away from their associated clusterheads. The
election of clusterheads has been a topic of many papers as de-
scribed in [1], [2], [8]. In all of these papers the leader election
guarantees that no node will be more than one hop away from
a leader. Furthermore, their time complexity is O(n), where n
is the number of nodes in the network. Our work started with
the aim of generalizing the clustering heuristics so that a node is
either a clusterhead or at most d hops away from a clusterhead.

We prove that constructing the minimum d-hop dominating

set in an ad hoc network is NP-complete. Then, we propose
a new distributed leader election heuristic for an ad hoc net-
work, guaranteeing that no node is more than d hops away from
a leader, where d is a value selected for the heuristic. Thus, this
heuristic extends the notion of cluster formation. Existing 1-hop
clusters are an instance of the generic d-hop clusters. The pro-
posed heuristic provides load balancing among clusterheads to
insure a fair distribution of load among clusterheads. Addition-
ally, the heuristic elects clusterheads in such a manner as to fa-
vor their re-election in future rounds, thereby reducing transition
overheads when old clusterheads give way to new clusterheads.
However, it is also fair as a large number of nodes equally share
the responsibility for acting as clusterheads. Furthermore, this
heuristic has time complexity of O(d) rounds which compares
favorably to O(n) for earlier heuristics [1], [4] for large mo-
bile networks. This reduction in time complexity is obtained by
increasing the concurrency in communication. Simulation ex-
periments support these claims. Thus, it is an improvement over
other known heuristics.

II. SYSTEM MODEL

In an ad hoc network all nodes are alike and all are mobile.
There are no base stations to coordinate the activities of sub-
sets of nodes. Therefore, all the nodes have to collectively make
decisions. All communication is over wireless links. A wire-
less link can be established between a pair of nodes only if they
are within wireless range of each other. The Max-Min heuris-
tic only considers bidirectional links. It is assumed the MAC
layer will mask unidirectional links and pass bidirectional links
to Max-Min. Beacons could be used to determine the presence
of neighboring nodes. After the absence of some number of
successive beacons from a neighboring node, it is concluded
that the node is no longer a neighbor. Two nodes that have a
wireless link will, henceforth, be said to be 1 wireless hop away
from each other. They are also said to be immediate neighbors.
Communication between nodes is over a single shared channel.
The Multiple Access with Collision Avoidance (MACA) pro-
tocol [14] may be used to allow asynchronous communication
while avoiding collisions and retransmissions over a single wire-
less channel. MACA utilizes a Request To Send/Clear To Send
(RTS/CTS) handshaking to avoid collision between nodes.

A modified MACA protocol, MACA-BI (By Invitation) [6],
suppresses all RTS and relies solely on CTS, invitations to trans-



mit data. Simulation experiments show MACA-BI to be supe-
rior to MACA and CSMA in multi-hop networks. Other proto-
cols such as spatial TDMA [10] may be used to provide MAC
layer communication. Spatial TDMA provides deterministic
performance that is good if the number of nodes is kept rela-
tively small. However, spatial TDMA requires that all nodes be
known and in a fixed location to operate. In ad hoc networks the
nodes within each neighborhood are not known a priori. There-
fore, spatial TDMA is not a viable solution initially. We suggest
that MACA-BI be used initially for this heuristic to establish
clusterheads and their associated neighborhoods. Then the indi-
vidual cluster may transition to spatial TDMA for inter-cluster
and intra-cluster communication.

All nodes broadcast their node identity periodically to main-
tain neighborhood integrity. Due to mobility, a node’s neigh-
borhood changes with time. As the mobility of nodes may not
be predictable, changes in network topology over time are ar-
bitrary. However, nodes may not be aware of changes in their
neighborhood. Therefore, clusters and clusterheads must be up-
dated frequently to maintain accurate network topology.

Definition 1 (d-neighborhood) - The d-neighborhood of a
node is the set of all nodes that are within d hops of the node.
This includes the node itself. Thus, the 0-neighborhood is only
the node itself.

III. PREVIOUS WORK AND DESIGN CHOICES

There are two heuristic design approaches for management
of ad hoc networks. The first choice is to have all nodes main-
tain knowledge of the network and manage themselves [7], [12],
[13]. This circumvents the need to select leaders or develop
clusters. However, it imposes a significant communication re-
sponsibility on individual nodes. Each node must dynamically
maintain routes to the rest of the nodes in the network. With
large networks the number of messages needed to maintain rout-
ing tables may cause congestion in the network. Ultimately this
traffic will generate huge delays in message propagation from
one node to another. This approach will not be considered in the
remainder of this paper.

The second approach is to identify a subset of nodes within
the network and vest them with the extra responsibility of being
a leader (clusterhead) of certain nodes in their proximity. The
clusterheads are responsible for managing communication be-
tween nodes in their own neighborhood as well as routing infor-
mation to other clusterheads in other neighborhoods. Typically,
backbones are constructed to connect neighborhoods in the net-
work. Past solutions of this kind have created a hierarchy where
every node in the network was no more than 1 hop away from a
clusterhead [1], [4], [10]. In large networks this approach may
generate a large number of clusterheads and eventually lead to
the same problem as stated in the first design approach. There-
fore, it is desirable to have control over the clusterhead density
in the network.

Furthermore, some of the previous clustering solutions have
relied on synchronous clocks for exchange of data between
nodes. In the Linked Cluster Algorithm [1], LCA, nodes com-
municate using TDMA frames. Each frame has a slot for each
node in the network to communicate, avoiding collisions. For

every node to have knowledge of all nodes in it neighborhood it
requires 2n TDMA time slots, where n is the number of nodes
in the network. A node x becomes a clusterhead if at least
one of the following conditions is satisfied: (i) x has the high-
est identity among all nodes within 1 wireless hop of it, (ii) x
does not have the highest identity in its 1-hop neighborhood,
but there exists at least one neighboring node y such that x is
the highest identity node in y’s 1-hop neighborhood. Later the
LCA heuristic was revised [5] to decrease the number of clus-
terheads produced in the original LCA. In this revised edition of
LCA (LCA2) a node is said to be covered if it is in the 1-hop
neighborhood of a node that has declared itself to be a cluster-
head. Starting from the lowest id node to the highest id node, a
node declares itself to be a clusterhead if among the non-covered
nodes in its 1-hop neighborhood, it has the lowest id.

The LCA heuristic was developed and intended to be used
with small networks of less than 100 nodes. In this case the
delay between node transmissions is minimal and may be tol-
erated. However, as the number of nodes in the network grows
larger, LCA will impose greater delays between node transmis-
sions in the TDMA communication scheme and may be unac-
ceptable. Additionally, it has been shown [15] that as commu-
nications increase the amount of skew in a synchronous timer
also increases, thereby degrading the performance of the overall
system or introducing additional delay and overhead.

Other solutions base the election of clusterheads on degree of
connectivity [11], not node id. Each node broadcasts the nodes
that it can hear, including itself. A node is elected as a cluster-
head if it is the highest connected node in all of the uncovered
neighboring nodes. In the case of a tie, the lowest or highest id
may be used. As the network topology changes this approach
can result in a high turnover of clusterheads [8]. This is un-
desirable due to the high overhead associated with clusterhead
change over. Data structures have to be maintained for each
node in the cluster. As new clusterheads are elected these data
structures must be passed from the old clusterhead to the newly
elected clusterhead. Re-election of clusterheads could minimize
this network traffic by circumventing the need to send these data
structures.

IV. CONTRIBUTIONS

The main objective was to develop a heuristic that would elect
multiple leaders in large ad hoc networks of thousands of nodes.
Additionally, we wished to generalize the cluster definition to a
collection of nodes that are up to d hops away from a cluster-
head, where d � 1, i:e:, a d-hop dominating set. First, we show
that forming a minimum d-hop dominating set is NP-complete.
Then we propose a heuristic to solve the problem. Some of the
design goals and contributions of this heuristic are:
1. Nodes asynchronously run the heuristic: no need for syn-
chronized clocks,
2. Limit the number of messages sent between nodes to O(d),
3. Minimize the number and size of the data structures required
to implement the heuristic,
4. Minimize the number of clusterheads as a function of d,
5. Formation of backbone using gateways,
6. Re-elect clusterheads when possible: stability.



7. Distribute responsibility of managing clusters is equally dis-
tributed among all nodes: fairness.

Due to the large number of nodes involved, it is desirable to
let the nodes operate asynchronously. The clock synchroniza-
tion overhead is avoided, providing additional processing sav-
ings. Furthermore, the number of messages sent from each node
is limited to a multiple of d, the maximum number of hops away
from the nearest clusterhead, rather than n, the number of nodes
in the network. This guarantees a good controlled message com-
plexity for the heuristic. Additionally, because d is an input
value to the heuristic, there is control over the number of clus-
terheads elected or the density of clusterheads in the network.
The amount of resources needed at each node is minimal, con-
sisting of four simple rules and two data structures that maintain
node information over 2d rounds of communication. Nodes are
candidates to be clusterheads based on their node id rather than
their degree of connectivity. As the network topology changes
slightly the node’s degree of connectivity is much more likely
to change than the node’s id relative to its neighboring nodes.
As will be described below, if a node A is the largest in the d-
neighborhood of another node B, then node A will be elected a
clusterhead, even though node A may not be the largest in its d-
neighborhood. This provides a smooth and deliberate transition
of clusterheads rather than an erratic exchange of leadership.
This last design goal is intended to help minimize the amount of
data that must be passed from an outgoing clusterhead to a new
one when there is a change over.

V. NP COMPLETENESS OF D-HOPS DOMINATING SET

An ad hoc network can be modeled as a graph G = (V;E),
where two nodes are connected by an edge if they can commu-
nicate with each other. If all nodes are located in the plane and
have the same transmission radius d, then G is called a unit disk
graph. Clearly, unit disk graphs are the simplest model of ad
hoc networks.

A set S of nodes in G = (V;E) is called a d-hops dominating
set if every node in V is at most d (d > 1) hops away from
a vertex in S. Minimum d-hops dominating set is the problem
of determining for a graph G and an integer k � 0 whether G
has a dominating set of size � k. In this section we show that
the minimum d-hops dominating set problem is NP-complete.
In fact, we will prove that minimum d-hops dominating set is
NP-complete even for unit disk graphs.

Theorem: Minimum d-hops dominating set is NP-complete
for unit disk graphs.

Proof: Since it is obvious that the minimum d-hops dominat-
ing set problem is in NP, it remains to show that it is NP-hard.
We will construct a reduction from the (1-hop) dominating set
problem for planar graphs with maximum degree 3 which was
shown to be NP-complete in [9]. To this end, we make use of
the following result which shows how planar graphs can be effi-
ciently embedded into the Euclidian plane [16]:

A planar graph with maximum degree 4 can be embedded
in the plane using O(jV j) area in such a way that its vertices
are at integer coordinates and its edges are drawn so that they
are made up of line segments of form x=i or y=j, for integers i

and j.
Moreover, according to [3] such embeddings can be con-

structed in linear time.
Thus, in constructing our reduction we may assume that we

are given a graph G = (V;E) that is embedded in the plane
according to [16]. We construct in polynomial time a unit disk
graph G0 = (V 0; E0) with radius Æ such that G has a dominating
set S of size � k if and only if G0 has a d-hops dominating set
S0 of size � k0, where k0 is determined from G and k.

Construction of the unit disk graph G0:
Define Æ = 1=(2d+1) unit as the radius of the unit disk graph

G0. For each unit length in G we add (2d+1) new intermediate
vertices in equal distance. Thus, for each original edge (u; v) in
G of length lu;v, we add (2d + 1) � lu;v intermediate vertices.
Moreover, we add (d � 1) auxiliary vertices u1; : : : ; ud�1 se-
quencially from original vertex u at each distance d as shown in
Figure 1. Obviously the resulting graph G0 = (V 0; E0) is a unit
disk graph with radius Æ, and G0 can be constructed from G in
polynomial time.
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Fig. 1. Construction of intermediate and auxiliary vertices

Claim. G has a dominating set S of size

jSj � k

if and only if G0 has d-hops dominating set S0 of size

jS0j � k0 := k +
X

fu;vg2E

lu;v

where lu;v is the length of the edge (u; v) in G.
Proof of Claim: For the only if direction suppose thatG has a

dominating set S of size m. We construct the d-hops dominating
set S0 in G0 as follows. S0 contains all vertices in S. Moreover,
for each original edge (u; v)we add certain intermediate vertices
to S0 according to the following rules:
Rule 1: if u (or v) is in S, we add a total of lu;v intermediate
vertices such that consecutive vertices are (2d + 1) hops apart
starting from u(v).
Rule 2: if both u and v are in S, we add a total of lu;v interme-
diate vertices such that consecutive vertices are (2d + 1) hops
apart starting from u.
Rule 3: if both u and v are not in S, we add a total of lu;v in-
termediate vertices such that consecutive vertices are (2d + 1)
hops apart starting from position d.
An example of these rules is shown in Figure 2. Clearly, we
have

jS0j � k +
X

(u;v)2E

lu;v

We now prove that the set S0 is a d-hops dominating set. First
observe that there is one intermediate vertex in S0 for every
(2d+1) consecutive intermediate vertices on any original edge,
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Fig. 2. Vertices in d-hops dominating set

so the intermediate vertices are either in S0 or at most d hops
from a vertex in S0. If an original vertex v is in S, then it is also
in S0 by Rule 1. Therefore its auxiliary vertices v1; : : : ; vd�1

is d hops away from v, a vertex in S0. Otherwise, if v is not
in S, then there is a neighboring vertex u which is in S due to
the fact that S is a dominating set. Consider the original edge
(u; v). According to Rule 1, the intermediate vertex at position
(2d+1)� lu;v is in S0. Thus, vertex v and its auxiliary vertices
v1; : : : ; vd�1 are at most d hops away from the vertex at position
(2d+ 1)� lu; v, which is in S0.

We have shown that any (original, auxiliary, or intermediate)
vertex in G0 is either in S0 or at most d hops away from a vertex
in S0. Hence S0 is a d-hops dominating set in G0.

We now show the if direction. To this end, suppose that S0 is a
d-hops dominating set of size k0 in G0. An extended edge(u0; v0)
is an extension of an original edge (u; v) that includes all inter-
mediate vertices as well as the auxiliary vertices u1; : : : ; ud�1

and v1; : : : ; vd�1. For the sake of convenience, the set of ver-
tices in S0 that are on an extended edge is denoted by S0u;v. We
construct the dominating set S for the graph G as as follows.
For each extended edge (u0; v0) we remove vertices from S0 ac-
cording to the following rules:
Rule 1: If only u (v) is in S0 (See Figure 1):
Remove all vertices in S0u;v except u (v).
Rule 2: If both u and v are in S0 (See Figure 2):
Remove all vertices in S0u;v except u and v.
Rule 3: None of u and v is in S0:
If jS0u;vj � lu;v + 1, then add vertex u to S0 and remove all
vertices in S0u;v . Otherwise remove all S0u;v.

Observe that the number of intermediate vertices in S0 from
each original edge (u; v) is at least lu;v because we have a total
of (2d+ 1)� lu;v intermediate vertices on the edge. Moreover,
when applying the above rules, the total number of vertices re-
moved is at least lu;v for each extended edge (u0; v0). Therefore
the size of the resulting set S is

jSj � jS0j �
X

fu;vg2E

lu;v = k

To verify that the set S is a dominating set in the original
graphG, we just need to prove that every original vertex is either
in S or adjacent with a vertex in S. To this end, consider any
original vertex u which is not in S we have following cases:
Case 1: u is a degree 1 vertex with a neighbor v (See Figure 3).
If v is in S0, then v is also in S by Rule 1. Otherwise, on the
extended edge (u0; v0), there are (2d+1)�lu;v+1 vertices which
are at most d hops from a vertex in S0u;v . Therefore jS0u;vj �
lu;v + 1 and v is in S by Rule 3.
Case 2: u is a neighbor of degree 1 vertex v
Same reasoning as in Case 1.
Case 3: u is a neighbor of at least two degree 2 vertices x and
y (See Figure 4).

If either x (or y) is in S0, then x (or y)is also in S by Rule 1.
Otherwise, on the extended edges (x0; u0) and (u0; y0), there are
(2d + 1) � lx;u + (2d + 1) � ly;u vertices which are at most d
hops away from a vertex in S0x;u [ S0y;u. Due to the auxiliary
vertices u1; : : : ; ud�1 we have jS0x;u [ S0y;uj � lx;u + ly;u + 1.
That leads to either jS0x;uj � lx;u+1 or jS0y;uj � ly;u+1. From
Rule 3, we can see that either original vertex x or y is in S.
Thus S is a dominating set in G. This completes the proof of
the theorem.
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Fig. 3. u is degree 1 vertex with a neighbor vertexv
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VI. HEURISTIC

A. Data Structures

The heuristic runs for 2d rounds of information exchange.
Each node maintains two arrays, WINNER and SENDER, each
of size 2d node ids: one id per round of information exchange.

The WINNER is the winning node id of a particular round
and used to determine the clusterhead for a node, as described
below in the Basic Idea.

The SENDER is the node that sent the winning node id for a
particular round and is used to determine the shortest path back
to the clusterhead, once the clusterhead is selected.

B. Basic Idea

Initially, each node sets its WINNER to be equal to its own
node id. This is followed by the Floodmax phase.

Definition 2 (Floodmax) - Each node locally broadcasts its
WINNER value to all of its 1-hop neighbors. After all neigh-
boring nodes have been heard from, for a single round, the node



chooses the largest value among its own WINNER value and the
values received in the round as its new WINNER. This process
continues for d rounds.

Definition 3 (Floodmin) - This follows Floodmax and also
lasts d rounds. It is the same as Floodmax except a node chooses
the smallest rather than the largest value as its new WINNER.

Definition 4 (Overtake) - As flooding occurs in the network,
WINNER values are propagated to neighboring nodes. At the
end of each flooding round a node decides to maintain its cur-
rent WINNER value or change to a value that was received in
the previous flood round. Overtaking is the act of a new value,
different from the node’s own id, being selected based on the
outcome of the information exchange.

Definition 5 (Node Pairs) - A node pair is any node id that
occurs at least once as a WINNER in both the 1st (Floodmax)
and 2nd (Floodmin) d rounds of flooding for an individual node.

We simulate rounds of the flooding algorithm by having every
node send and receive the equivalent of a synchronous round of
messages. This is accomplished by requiring each node to send
a round r message tagged with r as the round number. After a
node has received round r messages from all its neighbors it may
proceed with round r transition and ultimately to round r + 1.

The heuristic has four logical stages: first the propagation of
larger node ids via floodmax, second the propagation of smaller
node ids via floodmin, third the determination of clusterheads,
and fourth the linking of clusters.

The first stage uses d rounds of floodmax to propagate the
largest node id in each node’s d-neighborhood. At the conclu-
sion of the floodmax the surviving node ids are the elected clus-
terheads in the network. Nodes record their winning node for
each round. Floodmax is a greedy algorithm and may result in
an unbalanced loading for the clusterheads. In fact, there may
be cases where clusterhead B is disjoint from its cluster as a
result of being overtaken by clusterhead A. Therefore, a node
must realize not only if it is the largest in its d-neighborhood but
also if it is the largest in any other node’s d-neighborhood. This
is similar to the strategy employed in [1]. The second stage
uses d rounds of floodmin to propagate the smaller node ids
that have not been overtaken. This allows the relatively smaller
clusterheads the opportunity to (i) allow them to regain nodes
within their d-neighborhood and, (ii) realize that they are the
largest node in another node’s d-neighborhood. Again each
node records the winning node for each round.

At the conclusion of the floodmin, each node evaluates the
round’s WINNERs to best determine their clusterhead. In or-
der to accommodate cases where a node’s id is overtaken by
another node id, the smallest node id appearing in both of the
flooding stages is chosen as the clusterhead. The smaller clus-
terhead is chosen to provide load balancing. However, in the
worst case where clusterhead A and clusterhead B are one hop
away from one another; clusterhead B will record its own node
id as a WINNER only in the final round of flooding. There-
fore, if a node receives its own node id in the floodmin stage
it knows that other nodes have elected it their clusterhead so it
declares itself a clusterhead. Additionally, there may be scenar-
ios where a node is overtaken in the floodmax stage by a set of
nodes and then overtaken by a completely different set of nodes

in the floodmin stage, none of which is its own node id. In this
case the node has no other option but to select a clusterhead that
is within d hops. The only known clusterhead that is within d
hops is the WINNER of the final round of floodmax.

Finally, the gateway nodes (nodes at the periphery of a clus-
ter) begin a convergecast message to link all nodes of the clus-
ter to the clusterhead and, link the clusterhead to other clusters.
Each gateway node will include its id and all other gateway
nodes of other neighboring clusters in the message. This will
establish the backbone of the network. During the convergecast
it may be determined that a clusterhead resides on the path be-
tween a node and its selected clusterhead, as shown in Figure 5
with nodes 3, 16, 28, and 48 electing clusterhead 100. In this
case the clusterhead closest to the node adopts it as a child. Fig-
ure 5 shows the clusters formed when the heuristic terminates.

The proposed heuristic provides an optimal solution when the
largest node ids are spaced d distance apart. However, even
when the largest node ids are located in close proximity the
heuristic provides a good solution at low cost in time and mes-
sages.

C. Clusterhead Selection Criteria

The mechanics of the heuristic are quite simple. At some
common epoch each node initiates 2d rounds of flooding. Each
node maintains a logged entry of the results of each flooding
round. The rounds are segmented into the 1st d rounds and the
2nd d rounds. The 1st d rounds are a floodmax to propagate the
largest node ids. After completion of the 1st d rounds of flood-
ing the 2nd d rounds of flooding begin, using the values that
exist at each node after the 1st d rounds. The 2nd d rounds of
flooding are a floodmin to allow the smaller node ids to reclaim
some of their territory. After completion of the 2nd d rounds
each node looks at its logged entries for the 2d rounds of flood-
ing. The following rules explain the logical steps of the heuristic
that each node runs on the logged entries.

Rule 1: First, each node checks to see if it has received its
own original node id in the 2nd d rounds of flooding. If it has
then it can declare itself a clusterhead and skip the rest of this
phase of the heuristic. Otherwise proceed to Rule 2.

Rule 2: Each node looks for node pairs. Once a node has
identified all node pairs, it selects the minimum node pair to be
the clusterhead. If a node pair does not exist for a node then
proceed to Rule 3.

Rule 3: Elect the maximum node id in the 1st d rounds of
flooding as the clusterhead for this node.

D. Gateway Selection and Convergecast

After a node has determined its clusterhead based on Rules
1, 2, or 3, it communicates that it is a member of the cluster to
the clusterhead. In order to minimize messages this information
is communicated from the fringes of the cluster, gateway nodes,
inward to the clusterhead. Furthermore, a node has no way to
know if it is a gateway node. Therefore, after clusterhead se-
lection each node broadcasts its elected clusterhead to all of its
neighbors. Only after hearing from all neighbors can a node de-
termine if it is a gateway node. If all neighbors of a node have
the same clusterhead selection then this node is not a gateway
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Fig. 5. 3-cluster formation in a network of 25 nodes.

node. However, if there are neighboring nodes with clusterhead
selections that are different, then these nodes are gateway nodes.

Once a node has identified itself as a gateway node it then
begins a convergecast to the clusterhead node sending its node
id, all neighboring gateway nodes and their associated cluster-
heads. The SENDER data structure is used to determine who
next to send the convergecast message. The process contin-
ues with each node adding its own node id such that when the
clusterhead has heard from each of its immediate neighbors it
has a database of every node in its cluster. It is not the intent
of this heuristic to minimize the number of gateways.1 Rather
this heuristic maximizes the number of gateways resulting in
a backbone with multiple paths between neighboring cluster-
heads. This provides fault tolerance, and eases congestion in
the backbone network.

Rule 4: There are certain scenarios, as shown in Figure 5,
where this heuristic will generate a clusterhead that is on the
path between a node and its elected clusterhead. In this case,
during the convergecast the first clusterhead to receive the con-
vergecast will adopt the node as one of its children. The cluster-
head will immediately send a message to the node identifying
itself as the new clusterhead.

E. Correctness of Heuristic

The correctness of the heuristic is solely dependant on nodes
electing clusterheads that actually become clusterheads. The
following assumptions are used to first show that every node
that survives the floodmax stage of the heuristic becomes a clus-
terhead. Then we will show that every node that is elected as a
clusterhead does in fact become a clusterhead.

1Restricting the number of gateways minimizes the number of paths between
clusterheads [12], [8].

Assumption 1: During the floodmin and floodmax algo-
rithms no node’s id will propagate farther than d-hops from the
originating node itself (definition of flooding).

Assumption 2: All nodes that survive the floodmax elect
themselves clusterheads.

Proof of Assumption 2: The floodmax will propagate the
individual node ids outward creating a dominating set of node
ids. This dominating set of node ids will consist of two classes.
Class1 nodes will be those node ids that are the largest in their d-
neighborhood. Class2 nodes will be those that are the largest in
at least one of their d-hop neighbors’ d-neighborhood. A Class2
node can not be a Class1 node.

Consider a Class1 node id, say node A. Node A will over-
take each node that is d-hops away from it during the floodmax.
Therefore, all nodes that are within the d-hop coverage area of
node A will possess node A’s id value in the WINNER data
structure.

At the conclusion of the floodmin a Class1 node will elect it-
self a clusterhead, based on Assumption 1 and Rule 1. Consider
a Class2 node id, say node B. Although node B is overtaken by
larger node ids, its node id continues to propagate out and con-
sume all smaller node ids within d-hops of node B. Therefore, at
the completion of the floodmax node B’s id and larger node ids
(Class1 or Class2) will cover the d-hop coverage area of node B.
Therefore, the Class2 id is the smallest surviving id in the d-hop
neighborhood of the originating Class2 node.

Based on Assumption 1 we can conclude that the floodmin
process will successfully propagate the Class2 node id back to
the originating Class2 node. A Class2 node will elect itself a
clusterhead, based on Rule 1.

Therefore, any node that survives the floodmax stage will elect
itself a clusterhead.

Lemma 1: If node A elects node B as its clusterhead, then



node B becomes a clusterhead.
Proof: The proof of the Lemma will consider all possible

ways that a node may elect its clusterhead, and then prove that
this node does in fact become a clusterhead.

Case 1:NodeA elects itself as a clusterhead based on Rule 1.
If node A receives its own id in the floodmin stage, it knows that
other nodes have elected it a clusterhead based on Assumption
2. Therefore, it elects itself a clusterhead.

Case 2:Node A elects node B its clusterhead based on Rule
2. Node A receives an entry for B in the floodmin portion of the
heuristic. Therefore, based on Assumption 2 we conclude that
B does become a clusterhead. We choose the smaller node id
pair to promote fairness and distribute the load among elected
clusterheads.

Case 3:Node A elects node B it clusterhead based on Rule
3. Node A receives no node pairs and must select the only node
known to be a clusterhead. The only node that is guaranteed to
be a clusterhead is the last WINNER of the floodmax. This node
survives the floodmax and again based on Assumption 2 it will
become a clusterhead.

VII. ILLUSTRATIVE EXAMPLES

Figure 5 shows an example of the network topology generated
by the heuristic with 25 nodes. Here we see four clusterheads
elected in close proximity with one another, namely nodes 65,
73, 85, and 100. This figure shows how cluster division has the
effect of drawing a line between clusterheads and splitting the
nodes among themselves. Additionally, Figure 5 demonstrates
the need for Rule 4, as nodes 3, 16, 28, and 48 have elected node
100 as their clusterhead but must pass through other clusters
on their convergecast to node 100. On application of Rule 4,
clusterhead 85 instructs nodes 3, 16, and 48 to join its cluster.
While clusterhead 73 instructs node 28 to joins its cluster.

Figure 6 shows the resulting network topology after slightly
perturbing the network in Figure 5. Here we see that three of
the previous four clusterheads are re-elected. The fourth clus-
terhead, node 65 from Figure 5, is overtaken by clusterhead 85.
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Fig. 6. 3-cluster formation after topology change.

A. Pathological Case

There is a known configuration where the proposed heuris-
tic fails to provide a good solution. This configuration is when
node ids are monotonically increasing or decreasing in a straight

line. In this case, the d+1 smallest node ids belong to the same
cluster as shown in Figure 7. All other nodes become cluster-
heads of themselves only. Again, while this is not optimal it still
guarantees that no node is more than d hops away from a clus-
terhead. Furthermore, this configuration is highly unlikely in a
real world application. However, this is a topic of future work
to be performed with this heuristic.

4 22122020010110015105321

Fig. 7. Worst case performance scenario for the proposed heuristic, d=3.

B. Time, Message and Storage Complexity

Each node propagates node ids for 2d rounds to elect clus-
terheads. A convergecast is then initiated to inform the cluster-
head of its children. Since no node is more than d hops from its
clusterhead the convergecast will be O(d) rounds of messages.
Therefore, the time complexity of the heuristic is O(2d + d)
rounds = O(d) rounds.

The time complexity and the number of transmissions re-
quired to achieve a local broadcast (to all neighbors) for a single
round is dependent on the success of the data link layer protocol.
While the MACA-BI has been shown to be superior to MACA
and CSMA [6] it still suffers from the hidden terminal problem
and may require re-transmissions to complete a round. A data
link protocol similar to MACA-BI that resolves completely the
hidden terminal problem is an area of additional research and
not the intent of this paper.

Each node has to maintain 2d node ids in its WINNER data
structure, and the same number of node ids in its SENDER data
structure. Thus, the storage complexity is O(d). This com-
pares favorably with heuristics like [1], [2] where identities of
all neighboring nodes is maintained and the storage complexity
is O(n).

VIII. SIMULATION EXPERIMENTS AND RESULTS

We conducted simulation experiments to evaluate the per-
formance of the proposed heuristic and compare these finding
against three heuristics, the original Linked Cluster Algorithm
(LCA) [1], the revised Linked Cluster Algorithm (LCA2) [5],
and the Highest-Connectivity (Degree) [11], [8] heuristic. We
assumed a variety of systems running with 100, 200, 400, and
600 nodes to simulate ad hoc networks with varying levels of
node density. Two nodes are said to have a wireless link between
them if they are within communication range of each other. The
performance was simulated with the communication range of
the nodes set to 20, 25 and 30 length units. Additionally, the
span of a cluster, i:e:, the maximum number of wireless hops
between a node and its clusterhead (d) was set to 2 and then 3
for each of the simulation combinations above. The entire sim-
ulation was conducted in a 200� 200 unit region. Initially, each



node was assigned a unique node id and x, y coordinates within
the region. The nodes were then allowed to move at random in
any direction at a speed of not greater than 1/2 the wireless range
of a node per second. The simulation ran for 2000 seconds, and
the network was sampled every 2 seconds. At each sample time
the proposed Max-Min heuristic was run to determine cluster-
heads and their associated clusters. For every simulation run
a number of statistics were measured for the entire 2000 sec-
onds of simulation. Some of the more noteworthy simulation
statistics measured were: Number of Clusterheads, Clusterhead
Duration, Cluster Sizes, and Cluster Member Duration. These
statistics provided a basis for evaluating the performance of the
proposed heuristic.

Definition 6 (Number of Clusterheads) - The mean number
of clusterheads in a network for a sample. We do not want too
few clusterheads, as they will be overloaded with too many clus-
ter members. Nor is it good to have a large number of cluster-
heads, each managing a very small cluster.

Definition 7 (Clusterhead Duration) - The mean time for
which once a node is elected as a clusterhead, it stays as a clus-
terhead. This statistic is a measure of stability, the longer the
duration the more stable the system.

Definition 8 (Cluster Sizes) - The mean size of a cluster. This
value is inversely proportional to the Number of Clusterheads.
We do not want clusters so large that they will overload their
clusterheads, or so small that the clusterheads are idle a good
part of the time.

Definition 9 (Cluster Member Duration) - The mean con-
tiguous time a node stays a member of a cluster before moving to
another cluster,2 clusterheads are considered cluster members,
also. This statistic is a measure of stability like the Clusterhead
Duration, but from the point of view of nodes that are not clus-
terheads.

LCA, LCA2, and Degree based heuristics generate 1-hop
clusters. Therefore, to properly compare these heuristics with
the proposed Max-Min heuristic it was necessary to perform a
d-closure on the connectivity topology before running each of
these heuristics. The d-closure yields a modified graph in which
nodes A and B are 1-hop neighbors if they were at most d-hops
away in the actual topology graph. Here, d is either 2 or 3. When
the LCA, LCA2, and Degree based heuristics are run on this
modified graph, they form clusters where each node is at most
d wireless hops away from its clusterhead. The LCA heuris-
tic elects clusterheads that may be adjacent to one another while
the LCA2 and Degree based heuristics do not allow clusterheads
to be adjacent to one another. Therefore, the selection of these
three heuristics should provide good coverage for benchmarking
the performance of the proposed Max-Min heuristic.

Observing the simulation results of Figure 8 shows that Max-
Min, LCA2, and Degree based heuristics never produce more
than 33 clusterheads, when 2-hop clusters are formed and the
wireless range is equal to 20 length units. Furthermore, as more
nodes are added the number of clusterheads produced by these
heuristics remains almost unchanged. The LCA heuristic pro-
duces a maximum of 130 clusterheads. Observing the LCA plot
shows that the slope, approximately 0:17 for high density net-

2A cluster is represented by the identity of its clusterhead.

works, will generate a clusterhead for every 5.8 newly added
nodes. This is an unnecessarily large number of clusterheads.
Similar trends are exhibited for other combinations of hop count
and wireless range.

Figure 9 shows Max-Min with the highest clusterhead dura-
tion followed by LCA2, LCA and then finally the Degree based
heuristic. Max-Min shows an increase in clusterhead duration
as the network becomes more dense, while for LCA, LCA2, and
Degree the duration as the system size increases. This is not sur-
prising for Degree as it is based on degree of connectivity, not
node id. As the network topology changes this approach can re-
sult in high turnover of clusterheads [8]. Similarly, in LCA and
LCA2 a single link make or break may move a lower id node
within or out of d-hops of a node x, forcing it to transition be-
tween clusterhead and normal node states. Such transitions may
also have a ripple effect throughout the network. This adversely
impacts the stability of clusters.
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Figure 10 shows the Degree based and LCA2 heuristics pro-
duce the largest cluster sizes followed by the Max-Min, and fi-
nally the LCA heuristics. The Degree, LCA2, and Max-Min
heuristics produce clusters whose sizes increase by 3.1, 3.1 and
2.3 nodes per 100 nodes respectively. While the LCA heuristic
cluster sizes are very flat and only increase slightly as the net-
work density increases. Combining the number of clusterheads
and number of cluster sizes results we can see that the LCA
heuristic is producing a large number of small clusters as the
system size gets larger. This indicates that the LCA heuristic
very often suffers from a pathological case where a node be-
comes a clusterhead under somewhat false pretences. This can
happen when a node becomes a clusterhead because it is the
largest node in one of its neighbor’s neighborhoods.

Figure 11 shows LCA2 and Max-Min with the highest cluster
member durations followed by LCA and finally Degree. Here
we see that the LCA2 heuristics show a slight increase in cluster
member duration as the network becomes more dense, while the
LCA heuristic shows a slight decrease. Max-Min has become
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fairly flat at 3.7 seconds for dense networks, while the Degree
heuristic show a steady decline to about 2 seconds, the sampling
rate of the simulation.

Finally, Figure 12 shows that Max-Min produces the highest
percentage of re-elected clusterheads (consistent with Figure 9).
As a result Figure 13 shows that Max-Min elects only a fraction
of the total number of nodes as leaders during the entire simula-
tion run of 2000 seconds. This supports the idea that Max-Min
will try to re-elect existing leaders. The LCA and Degree based
heuristics elected every node or one short of every node as leader
at least once during each simulation run of 2000 seconds. So,
their plots are superimposed on each other and cannot be distin-
guished. While LCA2 does not elect every node a clusterhead
in each simulation run, it still elects a much higher number of
clusterheads than Max-Min. It is not desirable to change lead-
ership too frequently as this causes the exchange of leadership
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Fig. 11. Impact of network density on cluster member duration.

databases to the new clusterheads. This may ulimately cause
congestion in the network.
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The Max-Min heuristic produces fewer clusterheads, much
larger clusters, and longer clusterhead duration on the average,
than the LCA heuristic. While the Degree based heuristic does
have slightly larger cluster sizes than the Max-Min, it suffers
greatly in other categories such as clusterhead duration, and
cluster member duration. The LCA2 heuristic produces clus-
terheads that are comparable in number to that of Max-Min.
However, Max-Min has clusterhead durations that are approxi-
mately 100% larger than that of LCA2 for dense networks. Fur-
thermore, the Max-Min clusterhead duration continues to in-
crease with increased network density, while the LCA2 heuristic
clusterhead duration decreases with increased network density.
Based on these initial simualtion results the Max-Min heuristic
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provides the best all around clusterhead leader election charac-
teristics.

Future work is needed to determine the appropriate time
to trigger the Max-Min heuristic. If periodic triggers are too
closely spaced then the system may run the heuristic even when
there has been no noticeable topology change to warrant run-
ning the heuristic. If the periodic triggers are too far apart then
the topology may change without running the heuristic, caus-
ing nodes to be stranded without a clusterhead. The triggering
condition should be completely asynchronous and localized to a
node’s cluster and its neighboring clusters to restrict execution
of the heuristic to only affected nodes. Furthermore, the trig-
gering scheme should account for topology changes during the
progress of the heuristic. The Max-Min heuristic has a tendency
to re-elect existing clusterheads. This is desireable for stabil-
ity, however it must be tempered with a load-balancing scheme.
Load-balancing allows re-election of existing clusterheads un-
til they have exceeded their clusterhead duration budget. These
clusterheads should then give way to allow other nodes to be-
come clusterheads.

IX. POSSIBLE APPLICATIONS OF THE HEURISTIC

Ad hoc networks are suitable for tactical missions, emergency
response operations, electronic classroom networks, etc. A pos-
sible application for this heuristic is to use it in conjunction with
Spatial TDMA. Spatial TDMA provides a very efficient com-
munication protocol for clusters with few nodes. However, the
nodes must be known and in a fixed location. Hence, Spatial
TDMA is not easily used in ad hoc networks. The proposed
heuristic may be used to determine the clusters and the cluster-
heads in the network. At this point all of the nodes within a
cluster are known and assume to be fixed. This information may
be used by Spatial TDMA to construct a TDMA frame for the
individual clusters. Spatial TDMA will continue as the commu-
nication protocol until there is sufficient topology change that
the proposed heuristic is run again to form new clusters.

The proposed heuristic can be used for hierarchical routing
purposes wherein clusterheads can maintain routing informa-
tion. It can also be used for location management purposes
where the clusterheads receive location updates and queries
from other nodes in the system.

X. CONCLUSION

A new heuristic for electing multiple leaders in an ad hoc net-
works has been presented, called Max-Min Leader Election in
Ad Hoc Networks. Max-Min runs asynchronously eliminating
the need and overhead of highly synchronized clocks. The max-
imum distance a node is from its clusterhead has been general-
ized to be d hops, allowing control and flexibility in the deter-
mination of the clusterhead density. Furthermore, the number
of messages is a multiple of d rounds, providing a very good
run time at the network level. Simple data structures have been
used to minimize the local resources at each node. Re-election
of clusterheads is promoted to minimize transferal of databases
and to provide stability. The solution is scalable as it generates
a small number of clusterheads compared to some other heuris-
tics. Also, a low variance in cluster sizes leads to better load
balancing among the clusterheads. Finally, this heuristic utilizes
clusterheads and multiple gateway nodes to form a redundant
backbone architecture to provide communication between clus-
ters.
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