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Abstract
With the rapid development of broadband applications,

the capability of networks to provide quality of service
(QoS) has become an important issue. Fair scheduling al-
gorithms are a common approach for switches and routers
to support QoS. All fair scheduling algorithms are run-
ning based on a bandwidth allocation scheme. The scheme
should be feasible in order to be applied in practice, and
should be efficient to fully utilize available bandwidth and
allocate bandwidth in a fair manner. However, since a sin-
gle input port or output port of a switch has only the band-
width information of its local flows (i.e., the flows traversing
itself), it is difficult to obtain a globally feasible and efficient
bandwidth allocation scheme. In this paper, we show how
to fairly allocate bandwidth in packet switches based on the
max-min fairness principle. We first formulate the problem,
and give the definitions of feasibility and max-min fairness
for bandwidth allocation in packet switches. As the first
step to solve the problem, we consider the simpler unicast
scenarios, and present the max-min fair bandwidth alloca-
tion algorithm for unicast traffic. We then extend the anal-
ysis to the more general multicast scenarios, and present
the max-min fair bandwidth allocation algorithm for multi-
cast traffic. We prove that both algorithms achieve max-min
fairness, and analyze their complexity. The proposed al-
gorithms are universally applicable to any type of switches
and scheduling algorithms.

1 Introduction

With the rapid development of broadband networks in
recent years, a variety of novel network based applications
have been developed with different quality of service (QoS)
[1] requirements. Network traffic can be broadly classified
into two categories: guaranteed performance traffic and best
effort traffic. For guaranteed performance traffic, resources
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Figure 1. The general structure of a crossbar switch.

are reserved for an allocated transmission rate, and the per-
formance, such as bandwidth and delay, is bounded within a
pre-specified range. On the contrary, best effort traffic tries
to make the best use of available transmission capacity but
has no guarantee to the quality of service.

The capability to provide QoS support has become an
important issue for the design of modern switches and
routers [2] [3]. Switches and routers control the depar-
ture sequence of the packets stored in their buffers, and the
adopted scheduling algorithms largely determine the quality
of service that can be provided by the networks. Much re-
search effort has been devoted to the design of fair schedul-
ing algorithms for packet switches to provide QoS support,
and many algorithms have been proposed in the literature
for different switch architectures.

We now briefly review the switch architectures and fair
scheduling algorithms, using the most popular crossbar
switches as examples. In a crossbar switch, input ports
and output ports are connected by a non-blocking cross-
bar switching fabric, as shown in Figure 1. The crossbar
may be running faster than the input ports and output ports,
in which case the crossbar is said to have speedup larger
than one. Depending on the exact speedup value, temporar-
ily blocked packets in a crossbar switch can be buffered at
either the output ports, input ports, or crosspoints. Out-



put queued (OQ) switches have buffer space only at output
ports. New incoming packets must be immediately trans-
ferred through the crossbar and stored in the output buffers.
Since there is no buffer at the input side, if multiple input
ports have packets arriving at the same time that are des-
tined to the same output port, all the packets must be trans-
mitted simultaneously. Speedup of M is necessary for an
OQ switch with M input ports to achieve 100% throughput.
Fair scheduling algorithms for OQ switches, such as WFQ
[5], WF2Q [6], DRR [7] and FMCF [8], work at each output
port to determine the transmission sequence of the packets
in its buffer, and emulate the ideal Generalized Processor
Sharing (GPS) fairness model [4]. They can provide differ-
ent levels of service guarantee using different approaches.
It has recently been shown [9] that there is a fundamen-
tal tradeoff between the delay bound that an algorithm can
achieve and its computational complexity.

On the other hand, input queued (IQ) switches have
buffer space only at input ports, and thus eliminate the
speedup requirement. Input buffers are usually organized
as multiple virtual output queues (VOQ) [10], to avoid the
Head of Line (HOL) blocking caused by the traditional sin-
gle FIFO queue, which restricts the maximum throughput of
the switches [11] [12]. Unfortunately, until now IQ switches
are found to be able to achieve 100% throughput only when
they work with maximum matching algorithms or their vari-
ants [11], which have high time complexity [13] [14]. One
type of fair scheduling algorithms for IQ switches try to em-
ulate the corresponding fair scheduling algorithms for OQ
switches with iterative matching. For example, iFS [15] em-
ulates WFQ [5] by using time stamps, and iDRR [16] emu-
lates DRR [7] by using round robin pointers. Another algo-
rithm WPIM [17] improves upon PIM [18] by introducing a
bandwidth enforcement mechanism to provide probabilistic
bandwidth guarantee for input-output connections.

In order to combine the advantages of both output
queued switches and IQ switches, combined input-output
queued (CIOQ) switches make a tradeoff between the cross-
bar speedup and the complexity of the scheduling algo-
rithm. They usually have a small, fixed speedup of two,
and thus need buffer space at both the input side and out-
put side. Buffered crossbar switches, or combined input-
crosspoint-output queued (CICOQ) switches, are a special
type of CIOQ switches, where each crosspoint of the cross-
bar is equipped with a small buffer. Crosspoint buffers elim-
inate output and input scheduling contention, and enable
the switches to work in an asynchronous mode and eas-
ily transmit variable length packets. Both CIOQ switches
and CIOCQ switches are proved to be able to perfectly
emulate OQ switches with a small speedup [19] [20] [21].
Thus, special scheduling algorithms for CIOQ switches or
CIOCQ switches can be designed to duplicate the packet
departure sequence of existing fair scheduling algorithms
for OQ switches, and provide desired service guarantee.

Regardless of the architecture of a switch and the fair
scheduling algorithm the switch uses, it is necessary to pre-
define a feasible and efficient bandwidth allocation scheme
as the basis of the scheduling. The bandwidth allocation
scheme specifies the amount of bandwidth that an input port
or a flow can use at each output port of the switch to trans-
mit packets. On the one hand, the scheme must be feasible
in order to be applied in practice. In other words, the to-
tal bandwidth allocated to all the flows at any input port or
output port cannot exceed its available bandwidth. On the
other hand, the scheme should be efficient, which means to
fully utilize any potential transmission capacity and allocate
bandwidth in a fair manner.

A bandwidth allocation scheme must be carefully de-
signed in order to be feasible and efficient. Before packet
transmission, an input port claims portion of the bandwidth
of each output port for its traffic. (Alternatively, an output
port can allocate its available bandwidth to different input
ports.) However, since each input port or output port has
only local bandwidth information, it does not know how
much bandwidth other input ports claimed at a specific out-
put port (or how much bandwidth other output ports allo-
cated to a specific input port). Thus, this initial bandwidth
allocation scheme may be under-utilized or over-utilized.
For the under-utilized case, clearly, the unused bandwidth
should be allocated to make full use of the transmission
capacity, and it has to be carefully handled to allocate the
leftover bandwidth in a fair manner. For the over-utilized
case, it is also necessary to fairly scale down the claimed
bandwidth of each user to make the scheme feasible.

The bandwidth allocation scheme plays several impor-
tant roles in guaranteeing the high performance of a switch.
First of all, the scheme is used as the scheduling criterion
by fair scheduling algorithms. The scheduling algorithms
make decisions on the departure sequence of packets from
different users, so that the bandwidth that each user actu-
ally receives is equal to the amount that it is allocated in
the scheme. Secondly, the scheme helps to determine the
traffic admission policy and buffer management strategy. In
order to reduce cost, modern switches usually put packets
from different users in shared buffers. Without proper ad-
mission control, excessive traffic from one user may cause
buffer overflow and packet loss for other users. Also, if the
shared buffer is not well managed, and a user has no avail-
able packet in the buffer when it is its turn to transmit, there
is no way to provide bandwidth or delay guarantee. Thus,
it is important to determine how much traffic can be admit-
ted for a user and how the shared buffer should be managed
based on the amount of bandwidth allocated to that user in
the scheme. Thirdly, an efficient scheme makes it possi-
ble for a switch to achieve 100% throughput. Throughput
is an important criterion to measure the performance of a
switch. There has been much work on how to achieve 100%
throughput, and all the proposed approaches require an effi-



cient bandwidth allocation scheme based on which no out-
put port should be under-utilized or over-utilized.

In this paper, we present algorithms to compute fair
bandwidth allocation schemes based on the max-min fair-
ness principle. The presented algorithms can be univer-
sally applied to to any type of switches and scheduling al-
gorithms. Max-min fairness has long been used as a pop-
ular fairness principle in resource allocation [22] [23] [24]
[25]. In particular, [25] discussed how to compute max-min
fair rate allocation for flows in IQ switches. However, it
analyzed only the simple unicast scenarios where there are
only best effort flows, and did not consider guaranteed per-
formance flows or the more complex multicast scenarios.

We first formulate the problem and define some termi-
nologies that will be used. Then, we give the definitions
of feasibility and max-min fairness for bandwidth alloca-
tion in packet switches. As the first step of the analysis, we
consider the simple unicast scenarios, and present the max-
min fair bandwidth allocation algorithm for unicast traffic.
We then prove that the presented algorithm achieves max-
min fairness. Next, we extend the discussion to the more
general multicast scenarios, and present the max-min fair
bandwidth allocation algorithm for multicast traffic, which
is also proved to achieve max-min fairness. For both algo-
rithms, we give examples to illustrate the operation of the
algorithms and analyze their complexity.

2 Max-min Fair Bandwidth Allocation for
Unicast Traffic

In this section, we formulate the max-min fair bandwidth
allocation problem, and present an algorithm for the sim-
pler scenarios where there is only unicast traffic. We will
analyze the more general scenarios with multicast traffic in
Section 3.

In order to make the analytical results more widely ap-
plicable, we consider a general switch with M input ports
and N output ports, without any specific assumption on the
switch architecture. For easy representation, denote the ith

input port by Ini and the jth output port by Outj . Input
bandwidth vector IB defines the transmission capacity of
all input ports, where the ith entry IBi indicates the avail-
able bandwidth of Ini. Similarly, output bandwidth vector
OB gives the transmission capacity of all output ports, and
OBj is the available bandwidth of Outj .

There are guaranteed performance flows as well as best
effort flows in the switch. The former require exclusively
reserved bandwidth, and the latter utilize the leftover band-
width from the former. We solve the max-min fair band-
width allocation problem in two phases. Phase one tries to
satisfy the request for exclusive bandwidth of guaranteed
performance flows, and phase two equally allocates the re-
maining bandwidth to best effort flows. Fortunately, both
phases can be handled in a similar way.

With pure unicast traffic, any flow has one source input
port and one destination output port. Thus, in phase one, all
the guaranteed performance flows of the same input-output
pair (i.e., leaving from the same input port and destined to
the same output port) are subject to the same bandwidth
constraints, and can be viewed as a single logical flow in
the analysis. We denote the logical flow from Ini to Outj
as Fij . In the following description of phase one, if not
specifically noted, a flow means a logical guaranteed per-
formance unicast flow. Similarly, in phase two, all the best
effort flows of the same input-output pair can also be con-
sidered as a single logical flow.

Before the transmission of packets, each flow claims its
desired bandwidth, which we call the requested bandwidth.
We use an M × N matrix R to represent the requested
bandwidth of all flows, where entry Rij is the requested
bandwidth of flow Fij or the desired bandwidth of Ini at
Outj . If Ini does not have guaranteed performance traffic
to Outj , then Rij is set to zero.

We use another M × N matrix A to represent the allo-
cated bandwidth of all flows, where entry Aij is the actual
bandwidth allocated to flow Fij , or the amount of band-
width that Ini can use at Outj .

Furthermore, we define the satisfaction degree of flow
Fij to be the ratio of its allocated bandwidth to the requested
bandwidth, and denote it as Sij , i.e.,

Sij =
Aij

Rij

When Rij = 0, both Aij and Sij are set to zero. Flow
Fij is said to be satisfied or a satisfied flow if its allocated
bandwidth is equal to its requested bandwidth, or Sij = 1,
otherwise, Fij is unsatisfied. We call the matrix S formed
by all Sij the satisfaction matrix.

Now we can define the feasibility of bandwidth alloca-
tion for unicast traffic. We say that an allocation matrix A is
feasible with respect to input bandwidth vector IB, output
bandwidth vector OB and request matrix R, or simply A is
feasible, if no flow is allocated more bandwidth than what
it requests, i.e.,

∀i∀jAij ≤ Rij

and there is no oversubscription at any input port or output
port, i.e.,

∀i
∑

j

Aij ≤ IBi,∀j
∑

i

Aij ≤ OBj

Since the satisfaction matrix and allocation matrix have
one-to-one correspondence, we also say that S is feasible
when its corresponding A is feasible.

Note that feasibility only makes a bandwidth allocation
scheme possible to be applied in practice. However, a fea-
sible scheme may not be an efficient one. Thus, we adopt
max-min fairness to make the best use of available band-
width and allocate bandwidth in a fair manner.



We say that an allocation matrix A for unicast traffic is
max-min fair with respect to input bandwidth vector IB,
output bandwidth vector OB and request matrix R, or sim-
ply A is max-min fair, if it is feasible and it is impossible to
increase the allocated bandwidth of any flow without reduc-
ing the allocated bandwidth of another flow with lower sat-
isfaction degree. Similarly, when A is max-min fair, we also
say that its corresponding satisfaction matrix S is max-min
fair. Formally, a feasible satisfaction matrix S is max-min
fair, if for any feasible satisfaction matrix S′ the following
condition holds

S′
ij > Sij → ∃i′∃j′

(
Si′j′ ≤ Sij ∧ Si′j′ > S′

i′j′
)

Intuitively, the objective of max-min fairness is two
folds: on the one hand, to increase the satisfaction degree
of each flow as much as possible, so as to make the best
use of available bandwidth; on the other hand, to maximize
the minimum satisfaction degree of all the flows to achieve
fairness, which also explains the meaning of the term “max-
min.”

We have the following theorem concerning the max-min
fair satisfaction matrix for unicast traffic.

Theorem 1 The max-min fair satisfaction matrix for uni-
cast traffic is unique.

Proof: We prove it by contradiction. Suppose that both
satisfaction matrices S and S′ are max-min fair, and S �=
S′.

Without loss of generality, assume that Sij is the smallest
entry among all the entries in S that are different from their
corresponding entries in S′, i.e.,

Sij �= S′
ij ∧ ∀i′∀j′

(
Si′j′ �= S′

i′j′ → Si′j′ ≥ Sij

)

There are two possible cases as to the relationship between
Sij and S′

ij : Sij > S′
ij and S′

ij > Sij . In the case that
S′

ij > Sij , since S is max-min fair, according to the def-
inition, there exists i′′ and j′′ such that Si′′j′′ ≤ Sij and
Si′′j′′ > S′

i′′j′′ . Thus, we can always have p and q, such
that Sij ≥ Spq ∧ Spq > S′

pq, where p = i and q = j in
the case Sij > S′

ij and p = i′′ and q = j′′ in the case
S′

ij > Sij .
Since Spq > S′

pq and S′ is max-min fair, by the def-
inition, there must exist p′ and q′ such that S′

p′q′ ≤ S′
pq

and S′
p′q′ > Sp′q′ , and thus S′

pq > Sp′q′ . Noticing that
Sp′q′ �= S′

p′q′ and that Sij is the smallest different entry in
S, we can obtain Sp′q′ ≥ Sij . Combining with the previ-
ous inequality S′

pq > Sp′q′ , we have S′
pq > Sij , which is a

contradiction with the fact that Sij > S′
pq.

Therefore, S and S′ must be equal, and the max-min fair
satisfaction matrix is unique.

Next, we give the definition of bottleneck ports. Given
a satisfaction matrix, a port is the bottleneck port of a flow
if the flow has the highest satisfaction degree among all the
flows traversing the port, and the bandwidth of the port is

fully allocated. Formally, Ini is a bottleneck port of flow
Fij in satisfaction matrix S if

∀j′Sij ≥ Sij′ ∧
∑

q

SiqRiq = IBi

and Outj is a bottleneck port of Fij in S if

∀i′Sij ≥ Si′j ∧
∑

p

SpjRpj = OBj

Theorem 2 A feasible satisfaction matrix for unicast traffic
is max-min fair if and only if each unsatisfied flow has a
bottleneck port.

Proof: First, we prove the “if” part. Assume S is feasible
and each unsatisfied flow has a bottle port in S. We will
prove that S is max-min fair using the definition of max-
min fairness.

Suppose S′ is a feasible satisfaction matrix and S′
ij >

Sij . Then we know that Sij < S′
ij ≤ 1, and Fij is an unsat-

isfied flow in S. Since each unsatisfied flow has a bottleneck
port in S, we first assume that Ini is a bottleneck port of Fij

in S. By the definition of bottleneck ports, we know that
∀j′Sij ≥ Sij′ and

∑
q SiqRiq = IBi. On the other hand,

since S′ is feasible, we have
∑

q S′
iqRiq ≤ IBi, and it fol-

lows that
∑

q S′
iqRiq ≤ ∑

q SiqRiq . Because S′
ij > Sij ,

there must exist j′ such that Sij′ > S′
ij′ , otherwise we

can obtain the contradiction that
∑

q S′
iqRiq >

∑
q SiqRiq.

Noticing that Sij ≥ Sij′ , we have found i′ = i and j′ such
that Si′j′ ≤ Sij and Si′j′ > S′

i′j′ , and thus S is max-min
fair. Similar reasoning can be applied to the case that Outj
is a bottleneck port of Fij in S.

Now we prove the “only if” part by contradiction. As-
sume that S is max-min fair, but an unsatisfied flow Fij

(thus Sij < 1) has no bottleneck port in S.
First, consider two possible cases that Ini is not a bot-

tleneck port of Fij in S.
Case 1: There exists another flow from Ini with higher

satisfaction degree, i.e., ∃j′Sij′ > Sij . Let

D′
xy =




Sij′−Sij

Rij′+Rij
Rij′Rij , if x = i and y = j

− Sij′−Sij

Rij′+Rij
Rij′Rij , if x = i and y = j′

0, otherwise

Case 2: The bandwidth of Ini is not fully allocated, i.e.,
IBi >

∑
q SiqRiq . Let

D′
xy =




min{Rij(1 − Sij), IBi −
∑

q SiqRiq},
if x = i and y = j

0, otherwise

By adding
D′

xy

Rxy
to Sxy , the resulting matrix still main-

tains feasibility, and also satisfies the bandwidth constraint
of Ini. Note that D′

ij > 0 in both cases. It is the amount
of bandwidth that can be added to the allocated bandwidth



of flow Fij without reducing the satisfaction degree of any
flow with lower satisfaction degree than Sij .

Similarly, there are two possible cases when Outj is not
a bottleneck port of Fij in S.

Case 1: There exists another flow to Outj with higher
satisfaction degree, i.e., ∃i′Si′j > Sij . Let

D′′
xy =




Si′j−Sij

Ri′j+Rij
Ri′jRij , if x = i and y = j

− Si′j−Sij

Ri′j+Rij
Ri′jRij , if x = i′ and y = j

0, otherwise

Case 2: The bandwidth of Outj is not fully allocated,
i.e., OBj >

∑
p SpjRpj . Let

D′′
xy =




min{Rij(1 − Sij), OBj −
∑

p SpjRpj},
if x = i and y = j

0, otherwise

The satisfaction matrix formed by Sxy + D′′
xy

Rxy
is feasible

and satisfies the bandwidth constraint of Outj , and D′′
ij (>

0) is the amount of bandwidth that can be added to RijSij

without reducing the satisfaction degree of any flow with
lower satisfaction degree.

Considering the constraints at both Ini and Outj , define
matrix D as follows

Dxy =




min{D′
ij ,D

′′
ij}, if x = i and y = j

−min{D′
ij ,D

′′
ij}, if x = i and y = j′ and D′

ij′ �= 0
−min{D′

ij ,D
′′
ij}, if x = i′ and y = j and D′′

i′j �= 0
0, otherwise

Create a new satisfaction matrix S′ where S′
xy = Sxy +

Dxy

Rxy
. It is easy to verify that S′ is still feasible. Since Dij >

0, S′
ij > Sij . According to the definition of D, we know

that the only other entries in S′ except S′
ij that may be dif-

ferent from the corresponding entries in S are S′
ij′ and S′

i′j .
Because S is max-min fair and S′

ij > Sij , by the definition
of max-min fairness, either S′

ij′ and S′
i′j must be smaller

than its counterpart in S, i.e., S′
ij′ < Sij′ ∨ S′

i′j < Si′j .
If S′

ij′ < Sij′ or Dij′ < 0, by the construction process,
we know that D′

ij′ �= 0, which indicates that Sij′ > Sij .
Similarly, we can obtain that if S′

i′j < Si′j , then Si′j > Sij .
Thus, there do not exist i′ and j′ such that Si′j′ ≤ Sij and
Si′j′ > S′

i′j′ , which contradicts the assumption that S is
max-min fair.

Based on Theorem 2, we now present the max-min fair
bandwidth allocation algorithm for unicast traffic. The ba-
sic idea of the algorithm is to find the bottleneck ports of
unsatisfied flows in an iterative manner. After either each
flow is satisfied or a bottleneck port is identified for it, the
algorithm converges with a max-min fair satisfaction ma-
trix.

The pseudo code description of the algorithm is given in
Table 1. The input parameters of the algorithm are the in-
put bandwidth vector IB, output bandwidth vector OB and

Table 1. Max-min Fair Bandwidth Allocation
Algorithm for Unicast Traffic

Input: IB, OB, R
Output: S (The initial value of each entry in S is 0.)

01) for each Ini, IRi =
∑

j Rij ;
02) for each Outj , ORj =

∑
i Rij ;

03) while (∃iIRi > 0) {
04) select Inp such that ∀i

IBp

IRp
≤ IBi

IRi
;

05) select Outq such that ∀j
OBq

ORq
≤ OBj

ORj
;

06) if ( IBp

IRp
≤ OBq

ORq
) {

07) if ( IBp

IRp
≤ 1) {

08) for each Fpj , if(Rpj �= 0 && Spj = 0) Spj =
IBp

IRp
;

09) IBp = 0;
10) }
11) else {
12) for each Fpj , if(Rpj �= 0 && Spj = 0) Spj = 1;
13) IBp = IBp − IRp;
14) }
15) IRp = 0;
16) for each Outj , if (ORj �= 0) {
17) OBj = OBj − RpjSpj ;
18) ORj = ORj − Rpj ;
19) }
20) }
21) else {
22) if ( OBq

ORq
≤ 1) {

23) for each Fiq , if(Riq �= 0 && Siq = 0) Siq =
OBq

ORq
;

24) OBq = 0;
25) }
26) else {
27) for each Fiq , if(Riq �= 0 && Siq = 0) Siq = 1;
28) OBq = OBq − ORq;
29) }
30) ORq = 0;
31) for each Ini, if (IRi �= 0) {
32) IBi = IBi − RiqSiq;
33) IRi = IRi − Riq;
34) }
35) }
36) }



request matrix R, and it generates a max-min satisfaction
matrix S with respect to IB, OB and R. Before running
the algorithm, each entry in S is initialized to 0. We de-
fine the bandwidth share of a port to be the ratio of its total
available bandwidth to the total requested bandwidth, i.e.,
the amount of bandwidth that can be allocated to each unit
of the requested bandwidth.

In steps 1 and 2 of the algorithm, two vectors IR and OR
are initialized with the total requested bandwidth at each in-
put port and output port, respectively. During the execution
of the algorithm, when all the flows of an input port or out-
put port have been assigned satisfaction degrees, the corre-
sponding entry in IR or OR will be cleared to zero, which
means that there is no more bandwidth request. Step 3 starts
the iteration loop, and the algorithm converges when no in-
put port has any bandwidth request. Since any flow must be
associated with an input port, when there is no bandwidth
request at any input port, all the flows have been assigned
satisfaction degrees. Steps 4 and 5 find the input port and
output port with the smallest bandwidth share respectively.
Steps 6 to 20 handle the case when Inp has the smallest
bandwidth share among all ports. Step 7 checks whether the
bandwidth share of Inp is less than or equal to one. If it is,
step 8 assigns the bandwidth share as the satisfaction degree
for all flows of Inp that have not been assigned satisfaction
degrees yet, and step 9 sets the leftover bandwidth of Inp

to zero. If the bandwidth share of Inp is greater than one,
in order for the resulting satisfaction matrix to be feasible,
step 12 assigns the satisfaction degree of any un-allocated
flow to be the maximum value 1, and step 15 sets the left-
over bandwidth of Inp accordingly. Now all the flows of
Inp have been assigned satisfaction degrees, and therefore
step 15 clears the bandwidth request of Inp to zero. On the
other hand, steps 16 to 19 update the available bandwidth
and requested bandwidth of the remaining output ports by
removing the flows of Inp from consideration. Similarly,
steps 21 to 35 handle the case when Outq has the smallest
bandwidth share.

We give an example to illustrate the operation of the al-
gorithm. Consider a 3 × 3 switch, and each input port and
output port have a unit of available bandwidth. The request
matrix R is given as follows. Before running the algorithm,
vectors IR and OR are initialized. Then the iteration loop
begins. In iteration 1, Out1 has the smallest bandwidth
share and all flows to Out1 are assigned a satisfaction de-
gree OB1

OR1
= 2

3 . Set OB1 and OR1 to zero, and update the
entries in IB and IR accordingly. In iteration 2, In1 has
the smallest bandwidth share and all the remaining flows
from In1 are assigned a satisfaction degree 4

5 . In iteration
3, all the remaining flows from In2 are satisfied, and the
algorithm converges.

Input: Iteration 1:

R =




1
2

1
2

1
3

1
2

1
3

1
3

1
2

0 0


 S =




2
3

0 0
2
3

0 0
2
3

0 0




IB =
{
1 1 1

}
IB =

{
2
3

2
3

2
3

}

OB =
{
1 1 1

}
OB =

{
0 1 1

}

IR =
{

4
3

7
6

1
2

}
IR =

{
5
6

2
3

0
}

OR =
{

3
2

5
6

2
3

}
OR =

{
0 5

6
2
3

}

Iteration 2: Iteration 3:

S =




2
3

4
5

4
5

2
3

0 0
2
3

0 0


 S =




2
3

4
5

4
5

2
3

1 1
2
3

0 0




IB =
{
0 2

3
2
3

}
IB =

{
0 0 2

3

}

OB =
{
0 3

5
11
15

}
OB =

{
0 4

15
7
15

}

IR =
{
0 2

3
0
}

IR =
{
0 0 0

}

OR =
{
0 1

3
1
3

}
OR =

{
0 0 0

}

Theorem 3 The max-min fair bandwidth allocation algo-
rithm for unicast traffic achieves max-min fairness.

Proof: First, it can be observed that the flows that are as-
signed satisfaction degrees in later iterations have larger val-
ues. This is because in each iteration, the port with smallest
bandwidth share is selected, and the bandwidth share is as-
signed as the satisfaction degree to all the flows in this itera-
tion. Thus, for any flow that is assigned a satisfaction degree
in step 8 or step 23, its satisfaction degree is larger than or
equal to the satisfaction degree of any flow that is assigned
a satisfaction degree before the current iteration. Also note
that any unsatisfied flow can only be assigned a satisfaction
degree either in step 8 or step 23, and that the flows that are
assigned satisfaction degrees in step 12 or step 27 are satis-
fied flows. Furthermore, we can see from step 9 or step 24
that the available bandwidth of Inp or Outq is fully allo-
cated. Therefore, Inp or Outq must be the bottleneck port
of any unsatisfied flow that is assigned a satisfaction degree
in step 8 or step 23. Based on Theorem 2, we know that S
is max-min fair.

Due to the one-to-one correspondence relationship, af-
ter S is obtained, its corresponding max-min fair allocation
matrix A can be easily obtained as well, which gives the
allocated bandwidth of the logical guaranteed performance
flow Fij .

By now we have completed phase one of bandwidth al-
location. All guaranteed performance flows have been allo-
cated bandwidth based on the max-min fairness principle.
However, at this time, some input ports and output ports
may still have leftover bandwidth, which can be used to
transmit best effort traffic. Fortunately, the allocation of



leftover bandwidth to best effort flows can be done using the
same algorithm but with different input parameters, which
we denote as IB, OB and R, respectively. IB and OB
should be set as the values of IB and OB when the algo-
rithm for phase one finishes, i.e., the unused bandwidth of
all input ports and output ports. The initialization of R can
be quite flexible. For example, Rij can be set to either IBi

or OBj , which means that the logical best effort flow re-
quests the whole bandwidth of its input port or output port.
With IB, OB and R, the algorithm then generates the max-
min satisfaction matrix for best effort traffic.

Now we analyze the time and space complexities of the
algorithm. Since each iteration of the algorithm assigns sat-
isfaction degrees to the flows of an input port or output port,
it converges with M + N iterations in the worst case. Note
that any “for each . . . ” operation can be done in parallel.
Thus, in each iteration, the most time consuming opera-
tion is to compare the bandwidth share of all ports to find
the smallest one. The comparison can be done in parallel
and has time complexity O(log(M + N)). Thus, the time
complexity of the algorithm is O((M + N) log(M + N)).
Considering that the algorithm needs to be executed only
once each time after the requested bandwidth of the flows
changes, the time complexity is acceptable. As to the space
complexity, except the input parameters, the only extra vari-
ables used in the algorithm are vectors IR and OR. Thus,
the algorithm has space complexity of O(M + N), which
is moderate.

3 Max-min Fair Bandwidth Allocation Algo-
rithms for Multicast Traffic

In Section 2, we studied how to fairly allocate bandwidth
for unicast traffic in packet switches. In this section, we
extend the discussion to the more general scenarios where
multicast traffic exists. The bandwidth allocation problem
for multicast can also be solved in two phases, in which
phase one allocates bandwidth to guaranteed performance
multicast flows and phase two deals with best effort flows.

Multicast is the data transmission from one source to
multiple destinations, and is especially of interest for In-
ternet multimedia applications, such as teleconference, dis-
tance learning and video on demand. The simplest way to
process a multicast packet is to create multiple copies of
the packet and send each copy as an independent unicast
packet to one of the destinations. However, some switches,
such as crossbar switches, have built-in multicast support
to simultaneously send one packet to multiple output ports,
and smartly scheduling multicast traffic on these switches
can greatly save network bandwidth and reduce multicast
latency. In input buffers, a multicast packet is usually saved
as a single copy in order to save space. A pointer based
queueing scheme, similar to that in [26], can be used to ef-
ficiently organize multicast packets in the buffer. The fair
bandwidth allocation problem that we will discuss does not
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Figure 2. An example of multicast flows.

rely on any specific hardware architecture, and is generally
applicable to all packet switches with multicast traffic.

Multicast traffic has some significant differences from
unicast traffic. With unicast traffic, any flow has only one
destination. As analyzed in Section 2, unicast flows of the
same input-output pair can be viewed as a single logical
flow. However, this simplification approach does not work
for multicast traffic. Since a multicast flow may be destined
to several different output ports, its bandwidth allocation is
constrained by the available bandwidth of all these output
ports. Thus, when analyzing multicast traffic, we can com-
bine only the flows of the same input-multicast destination
pair, that is, the flows leaving from the same input port and
destined to the same set of output ports. As a result, with
multicast traffic, there can be as many as 2N − 1 different
logical flows at each input port, comparing to N with uni-
cast traffic.

Thus, the notation representing a flow needs to be re-
vised to reflect the above observation. We assign each log-
ical flow from the same input port a unique number k, and
identify the flow with this number. For example, the kth

flow from input port Ini is now denoted by F k
i∗. We define

a branch of a multicast flow to be the packet transmission
sequence from the source input port to one of the destina-
tion output ports, and represent the branch of F k

i∗ to Outj
as F k

ij . For example, in Figure 2, the multicast flow F 1
1∗ has

two branches: F 1
11 to Out1 and F 1

12 to Out2.
As discussed above, with multicast traffic, there are more

than one logical flows for an input-output pair, and the band-
width request or allocation matrix is no longer a M×N ma-
trix, but can have as many rows as the number of different
flows. Each row of the request or allocation matrix repre-
sents the requested or allocated bandwidth of a specific flow
at all the output ports. If there are Ki different logical flows
at Ini, we can use the (

∑i−1
p=1 Kp + k)th row to represent

flow F k
i∗.

Use Rk
ij to denote the request of F k

ij , or the requested
bandwidth of flow F k

i∗ at Outj , and Ak
ij to denote the al-

location of F k
i∗, or the allocated bandwidth of flow F k

i∗ at
Outj . Define Sk

ij to be the ratio of Ak
ij to Rk

ij , and call it



the satisfaction degree of F k
ij or F k

i∗ at Outj , i.e.,

Sk
ij =

Ak
ij

Rk
ij

The matrix S formed by Sk
ij is called the satisfaction matrix.

When Outj is not a destination of F k
i∗, all Rk

ij , Ak
ij and Sk

ij

are set to zero.
We define the following function to describe the fanout

property of a multicast flow:

f(F k
i∗) = {Outj |Rk

ij > 0}

In other words, f(F k
ij) is the set of output ports that flow

F k
i∗ are destined to. For the example in Figure 2, f(F 1

1∗) =
{Out1, Out2}.

Note that although a multicast flow have multiple
branches destined to different output ports, it does not make
sense for these branches to have different requested or allo-
cated bandwidth. In practice, all the branches of a multicast
flow have packets arriving at the same rate. If a branch has
more bandwidth than this rate, the excessive portion can-
not be utilized. On the other hand, if the bandwidth of a
branch is smaller than this rate, there must be some pack-
ets that cannot be transmitted and are jammed in the buffer.
In the rest of the discussion, we make the assumption that
a multicast flow always requests and is allocated the same
amount of bandwidth at all of its destination outputs. As
a consequence, all the branches of a multicast flow have
the same satisfaction degree as well due to the one-to-one
correspondence between the allocation and the satisfaction.
More formally,

Outj ∈ f(F k
i∗)∧Outj′ ∈ f(F k

i∗) → Rk
ij = Rk

ij′∧Sk
ij = Sk

ij′

The second significant difference between multicast traf-
fic and unicast traffic is that bandwidth allocation for multi-
cast traffic has different feasibility criterion. For a multicast
flow F k

i∗, it is allocated Ak
ij (where Outj ∈ f(F k

i∗)) band-
width at each of its output ports, and the total bandwidth
that flow F k

i∗ needs at the output side for all branches is
|f(F k

i∗)|Ak
ij . On the contrary, at the input side, there is only

a single copy of traffic, and it needs Ak
ij bandwidth. Thus,

the feasibility of bandwidth allocation for multicast traffic
should be adjusted.

IB and OB still denote the input bandwidth vector and
output bandwidth vector, respectively. We say that an al-
location matrix A for multicast traffic or its corresponding
satisfaction matrix S is feasible with respect to IB, OB
and R if no branch is allocated more bandwidth than its re-
quested bandwidth, i.e.,

∀i∀j∀kAk
ij ≤ Rk

ij

and there is no oversubscription at any input, i.e.,

∀i
∑
j,k

Ak
ij

|f(F k
i∗)|

≤ IBi

and there is no oversubscription at any output, i.e.,

∀j
∑
i,k

Ak
ij ≤ OBj

Next, we define max-min fairness of bandwidth alloca-
tion for multicast traffic. A bandwidth allocation matrix A
for multicast traffic is max-min fair with respect to IB, OB
and R, if it is feasible, and it is impossible to increase the
allocated bandwidth of any flow without reducing the allo-
cated bandwidth of a flow with a lower satisfaction degree.
When A is max-min fair, we also say that its corresponding
satisfaction matrix S is max-min fair. Formally, if satisfac-
tion matrix S is max-min fair, for any feasible matrix S′,
the following condition holds

S′k
ij > Sk

ij → ∃i′∃j′∃k′Sk′
i′j′ ≤ Sk

ij ∧ Sk′
i′j′ > S′k′

i′j′

Theorem 4 The max-min fair bandwidth allocation matrix
for multicast traffic is unique.

The proof is similar to that of Theorem 1 and is omitted.
Given a satisfaction matrix for multicast traffic, a port

is a bottleneck port of a multicast flow if the flow has the
highest satisfaction degree among all the flows traversing
the port and the bandwidth of the port is fully allocated.
Formally, Ini is a bottleneck port of flow F k

i∗ if

∃j
(
Rk

ij > 0 ∧ ∀j′∀k′Sk
ij ≥ Sk′

ij′

)
∧

∑
q,r

Rr
iqS

r
iq

|f(F r
i∗)|

= IBi

and Outj is a bottleneck port of flow F k
i∗ if

(
Rk

ij > 0 ∧ ∀i′∀k′Sk
ij ≥ Sk′

i′j

)
∧

∑
p,r

Rr
pjS

r
pj = OBj

It should be noted that a multicast flow may have more than
one bottleneck output ports.

Theorem 5 A feasible satisfaction matrix for multicast
traffic is max-min fair if and only if each unsatisfied flow
has at least one bottleneck port.

The proof of the theorem is similar to that of Theorem 2,
and is omitted.

Based on Theorem 5, we present the max-min fair
bandwidth allocation algorithm for multicast traffic, whose
pseudo code description is given in Table 2.

Similar to the unicast scenarios, the algorithm finds the
port with the smallest bandwidth share in each iteration and
assigns satisfaction degrees to all the flows of the port, and
the algorithm converges when no input port has any band-
width request. However, due to the introduction of multicast
traffic, the requested bandwidth of a branch at its input port
is divided by its fanout size. When the flows of an input port
has been assigned satisfaction degrees, all the branches of
these flows should be removed from the remaining output
ports. Similarly, when the flows of an output port has been



Table 2. Max-min Fair Bandwidth Allocation
Algorithm for Multicast Traffic

Input: IB, OB, R
Output: S (The initial value of each entry in S is 0.)

01) for each Ini, IRi =
∑

j,k

Rk
ij

|f(F k
i∗)| ;

02) for each Outj , ORj =
∑

i,k Rk
ij ;

03) while (∃iIR[i] > 0) {
04) select Inp such that ∀i

IBp

IRp
≤ IBi

IRi
;

05) select Outq such that ∀j
OBq

ORq
≤ OBj

ORj
;

06) if ( IBp

IRp
≤ OBq

ORq
) {

07) if ( IBp

IRp
≤ 1) {

08) for each F k
pj , if (Rk

pj �= 0 && Sk
pj = 0) Sk

pj =
IBp

IRp
;

09) IBp = 0;
10) }
11) else {
12) for each F k

pj , if (Rk
pj �= 0 && Sk

pj = 0) Sk
pj = 1;

13) IBp = IBp − IRp;
14) }
15) IRp = 0;
16) for each Outj , if (ORj �= 0) {
17) OBj = OBj − ∑

k Rk
pjS

k
pj ;

18) ORj = ORj − ∑
k Rk

pj ;
19) }
20) }
21) else {
22) if ( OBq

ORq
≤ 1) {

23) for each F k
iq , if (Rk

iq �= 0 && Sk
iq = 0) Sk

iq =
OBq

ORq
;

24) OBq = 0;
25) }
26) else {
27) for each F k

iq , if (Rk
iq �= 0 && Sk

iq = 0) Sk
iq = 1;

28) OBq = OBq − ORq;
29) }
30) ORq = 0;
31) for each Ini, if (IRj �= 0) {
32) IBi = IBi − ∑

k Rk
iqS

k
iq;

33) IRj = IRj − ∑
k Rk

iq;
34) }
35) for all F k

iq and each Outj ,
36) if ( j �= q && Outj ∈ f(F k

i∗) && ORj �= 0) {
37) OBj = OBj − Rk

iqS
k
iq;

38) ORj = ORj − Rk
iq;

39) }
40) }
41) }

assigned satisfaction degrees, it is necessary to remove all
other branches of the flows from consideration, as well as
to update the available bandwidth and requested bandwidth
of the remaining input ports.

To help understand the operation of the algorithm, we
give an example in the following. We still consider a 3 × 3
switch. Each input port and output port have a unit of avail-
able bandwidth. There are five logical guaranteed perfor-
mance flows as illustrated in Figure 2. R gives the band-
width request of each flow. First, the bandwidth request
at each input port and output port is summed up to initial-
ized IR and OR. It should be noted that although OR is
still the same as that in the unicast example, no entry in
IR is larger than 1 due to the existence of multicast flows.
In iteration 1, Out1 has the smallest bandwidth share, and
all the branches to Out1 are assigned a satisfaction degree
2
3 . Note that because F 1

11 has been assigned a satisfaction
degree, all of the branches of F 1

1∗ should be assigned the
same satisfaction degree. Thus, F 1

12 is assigned the satis-
faction degree 2

3 . Vectors IB, OB, IR and OR are then
updated accordingly. In iteration 2, Out3 has the smallest
bandwidth share, which is larger than 1. Therefore, all the
flows to Out3 are assigned a satisfaction degree 1. Again,
since F 2

2∗ has a branch to Out3, all its branches should be
assigned a satisfaction degree 1, and thus S2

22 = 1. After
two iterations, all the flows have been assigned satisfaction
degrees, and the algorithm converges.

Input: Iteration 1: Iteration 2:

R =




1
2

1
2

0
0 0 1

3
1
2

0 0
0 1

3
1
3

1
2

0 0




S =




2
3

2
3

0
0 0 0
2
3

0 0
0 0 0
2
3

0 0




S =




2
3

2
3

0
0 0 1
2
3

0 0
0 1 1
2
3

0 0




IB =
{
1 1 1

}
IB =

{
2
3

2
3

2
3

}
IB =

{
1
3

1
3

1
2

}

OB =
{
1 1 1

}
OB =

{
0 2

3
1
}

OB =
{
0 1

3
1
3

}

IR =
{

5
6

5
6

1
2

}
IR =

{
1
3

1
3

0
}

IR =
{
0 0 0

}

OR =
{

3
2

5
6

2
3

}
OR =

{
0 1

3
2
3

}
OR =

{
0 0 0

}

Theorem 6 The max-min fair bandwidth allocation algo-
rithm for multicast traffic achieves max-min fairness.

The proof is based on Theorem 5 and is similar to that of
Theorem 3. The basic idea is as follows. Any unsatisfied
flow can only be assigned a satisfaction degree either in step
8 or step 23, and accordingly either Inp or Outq is a bottle-
neck port of the flow. Since all unsatisfied flows have bot-
tleneck ports, the resulting satisfaction matrix is max-min
fair. The detailed proof is omitted.

As we have seen, due to the introduction of multicast
flows, the max-min fair bandwidth allocation algorithm for
multicast traffic is much more complex than the algorithm
for unicast traffic. Suppose that the maximum number of
logical flows at any input port is K. The algorithm still con-
verges in O(M + N) iterations, and the complexity of each
iteration is max{O(log(M + N)), O(K)}. Thus, the time



complexity of the algorithm is max{O((M + N) log(M +
N)), O((M + N)K)}. As to the space complexity, the al-
gorithms stills needs the vectors IR and OR to store the to-
tal requested bandwidth of all input ports and output ports.
Thus, the space complexity remains to be O(M + N).

4 Conclusions

The capability to support QoS has become an important
consideration for the design of modern switches, and is usu-
ally provided by various fair scheduling algorithms. All fair
scheduling algorithms require a feasible and efficient band-
width allocation scheme as the scheduling basis. However,
each input port or output port usually has only the band-
width information of the flows traversing itself. Thus, it is
essential to carefully design a globally efficient bandwidth
allocation scheme. In this paper, we have considered how to
fairly allocate bandwidth in packet switches. We formulated
the bandwidth allocation problem, and gave the definitions
of feasibility and max-min fairness. As the first step, we an-
alyzed the simpler unicast scenarios, and presented the fair
bandwidth allocation algorithm for unicast traffic, which is
proved to achieve max-min fairness. We then extended the
discussion to the more general multicast scenarios and pre-
sented the fair bandwidth allocation algorithm for multicast
traffic. We proved that the algorithm for multicast traffic
also achieves max-min fairness. In addition, we analyzed
the complexity of the algorithms and presented examples to
illustrate the operation of the algorithms.
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