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Robust Design 
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ABSTRACT 
 

Solving design optimization problems using evolutionary algorithms has always been 

perceived as finding the optimal solution over the entire search space. However, the global 

optima may not always be the most desirable solution in many real world engineering design 

problems. In practice, if the global optimal solution is very sensitive to uncertainties, for example, 

small changes in design variables or operating conditions, then it may not be appropriate to use 

this highly sensitive solution. In this paper, we focus on combining evolutionary algorithms with 

function approximation techniques for robust design. In particular, we investigate the application 

of robust genetic algorithms to problems with high dimensions. Subsequently, we present a novel 

evolutionary algorithm based on the combination of a max-min optimization strategy with a 

Baldwinian trust-region framework employing local surrogate models for reducing the 

computational cost associated with robust design problems. Empirical results are presented for 

synthetic test functions and aerodynamic shape design problems to demonstrate that the proposed 

algorithm converges to robust optimum designs on a limited computational budget. 

Index Terms: Robust Design Optimization, Evolutionary Algorithm, Function Approximation and 

Surrogate Modeling. 
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I. INTRODUCTION 

Modern stochastic optimization techniques such as Evolutionary Algorithms (EAs) have 

emerged as an influential contender for global optimization in complex engineering 

design. Its popularity lies in the ease of implementation and the ability to arrive close to 

the global optimum design. These optimization methods have been successfully applied 

to mechanical and aerodynamic problems, including multi-disciplinary rotor blade design 

[1], aircraft wing design [2], military airframe preliminary design [3] and large flexible 

space structures design [4].  

Most studies in the literature on the application of EAs to complex engineering design 

have mainly emphasized on locating the global optimal design using deterministic 

computational models. In many real-world design problems, uncertainties are often 

present and practically impossible to avoid. If a solution is very sensitive to small 

variations either in the design variables or the operating conditions, it may not be 

desirable to use this design in certain situations. Hence optimization without taking 

uncertainty into consideration generally leads to designs that should not be labeled as 

optimal but rather potentially high risk designs that are likely to violate design 

requirements or, in the worst case, fail when a physical prototype is built and tested. 

Faced with high sensitivities to uncertainties, traditional EAs tend to display sign of over-

searching since they naturally favor designs with higher fitness values. However, in 

practice, the preferable design solution is probably one that may not be the globally 

optimum solution, but one that has a high tolerance or robustness to uncertainties. 

Solutions whose performances do not change much in the presence of uncertainties are 

often referred to as robust designs.  
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A motivating example for us is aerodynamic design optimization, where an optimal 

solution is often sought for a particular configuration of flight speed given by the Mach 

number M , and the angle of attack (AoA). However, such stringent conditions cannot 

always be maintained in real flight due to changes in atmospheric conditions and gusts. 

Hence, it may happen that the performance of an aerodynamic surface designed for a 

given Mach number and angle of attack may deteriorate significantly due to slight 

variations in these quantities. Further, it is also desirable to have aerodynamic designs 

that can tolerate geometric uncertainties which may arise from manufacturing processes 

and/or in-service degradation due to erosion processes and foreign object damage. This 

motivates the development of alternative optimization methods that result in more robust 

designs. 

∞

In recent years, a number of approaches have been proposed in the literature to attain 

robust designs. These include the One-at-a-Time Experiments, Taguchi Orthogonal 

Arrays, bounds-based, fuzzy and probabilistic methods [5], [6]. The present paper 

addresses recent avenues of research for achieving robust designs using EAs. In 

particular, our objective is to develop evolutionary optimization methods for robust 

engineering design with a particular emphasis on producing aerodynamic shapes that are 

insensitive to uncertainties. Further, the proposed methods must also be capable of 

locating robust design solutions using a moderate number of high-fidelity analyses.  

EAs that search for robust solutions have surfaced in recent years [7]-[18]. A 

comprehensive survey on evolutionary optimization in uncertain environments can be 

found in [19]. Prominent among them is the Genetic Algorithm/Robust Scheme proposed 

by Tsutsui et al. [10]. We present a detailed study on the performance of this approach to 
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high-dimensional problems. In particular, we compare the single-evaluation model 

(SEM) with the multiple-evaluation model (MEM). Motivated by the superior 

performance of the MEM approach, we propose a novel max-min EA for robust design 

problems. The basic idea is to search for solutions that have the best worst-case 

performance in the presence of uncertainty. Further, in order to improve the 

computational efficiency, we employ a trust-region approach which interleaves the true 

fitness prediction model with computational cheap surrogates. Detailed numerical studies 

are presented for a number of synthetic test functions to investigate the performance of 

the proposed algorithm. We also present results for a real world engineering design 

problem involving the design of airfoil geometries that are robust to uncertainties in the 

design variables and the operating conditions.  

The remainder of this paper is organized as follows. We begin with a brief overview of 

engineering design optimization in the presence of uncertainty in Section II. An empirical 

study of EA/RS using both SEM and MEM is presented in Section III using synthetic 

functions. A max-min surrogate-assisted EA which aims to improve the computational 

efficiency of the search process is proposed in Section IV. Numerical results are 

presented to illustrate the application of the max-min EA to test functions and 

aerodynamic airfoil design problems in Sections IV and V, respectively. Finally, section 

VI summarizes our main conclusions. 

II. DESIGN OPTIMIZATION UNDER UNCERTAINTY 

 In this section, we present a brief overview of uncertainties which typically arise in the 

context of engineering design. To illustrate how uncertainties affect design optimization 
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formulations, consider a general bound constrained nonlinear programming problem of 

the form: 

     Maximize:          ( )f x

                        Subject to:                       (1) l ≤ ≤x x x u

where is a scalar-valued objective (fitness) function, is the vector of design 

variables, while  and 

( )f x d∈x

lx ux are vectors of lower and upper bounds on the design 

variables.  

In general, it is possible to classify uncertainties encountered in design optimization 

problems into three main categories. In the first category (Category I), uncertainty is a 

result of intrinsic noise in the fitness function. This class of uncertainties can arise from 

many different sources such as measurement noise, approximation errors due to 

discretization, and nonparametric errors in the fitness prediction model. For instance, 

uncertainties may arise in the structure of the mathematical model used to compute the 

objective function. In the context of aerodynamic design, the flow field can be predicted 

using a variety of techniques such as panel methods, Euler and Navier-Stokes solvers, 

with each method modeling the flow physics with a varying degree of accuracy. For such 

cases, it is desirable to quantify the uncertainty or error in the fitness function computed 

using a given mathematical model.  

In the context of optimization, Category I uncertainty is commonly modeled as a bias to 

the original fitness function. Hence, given a design vector  and the original fitness 

function , a general bound constrained nonlinear programming problem under 

Category I uncertainty has the form: 

x

( )f x

Maximize:    ( ) ( )F f δ= +x x  
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Subject to:                             (2) l ≤ ≤x x xu

whereδ is a scalar noise parameter added to indicate the intrinsic noise in the original 

fitness function and  is the resultant fitness function. Most of the earlier research on 

EAs has focused on this category of uncertainties [15]-[17]. In these studies, the effect of 

intrinsic noise on the convergence of existing EAs was analyzed, so that variants to cope 

with such uncertainties can be designed. 

( )F x

In the second category (Category II), uncertainties arise in the design variable vector . 

This situation may arise, for example, due to the small amount of deviations which are 

inevitable in most product manufacturing processes. Modeling uncertainty in  due to 

manufacturing tolerances gives rise to a modified fitness function of the form 

x

( )f x

( ) ( )F f= +x x δ ,                            (3) 

where ( 1 2, , , d )δ δ δ= …δ is the noise in the design vector which is commonly assumed to be 

Gaussian. Tsutsui and Ghosh [10], [11] proposed a noisy phenotype scheme to tackle 

Category II uncertainty problems when probabilistic uncertainty models are available. If 

insufficient data is available for constructing a probabilistic uncertainty model, it may be 

more desirable to employ a non-probabilistic approach such as convex modeling [20].  

The third category of uncertainties (Category III) arises due to fluctuations in operating 

conditions. Here, uncertainties do not arise from the minor deviations in the design 

variables, but from the environment where the design solutions will be put to practical 

use. We refer to these as environmental parameters to differentiate them from the design 

variables. This type of uncertainty may be suitably modeled using probabilistic or 

possibilistic approaches. In the case of aerodynamic design problems, the different Mach 

values represents the various flight operating speeds of the aircraft, however the Mach 
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number is certainly not one of the design variables to be optimized. In the presence of 

environmental uncertainties, the fitness function becomes 

( ) ( , )F f= +x x c ξ ,                     (4) 

where ( )1 2, , , nc c c= …c is the nominal value of the environmental parameters and  is a 

random vector used to model the variability in the operating conditions. It is worth 

noting here that most work on robust EAs has placed little emphasis on uncertainties in 

environmental parameters. Some discussions on categories II and III uncertainties can 

also be found in [9]. 

ξ

III. EVOLUTIONARY ALGORITHMS WITH ROBUST SOLUTION SEARCHING SCHEMES 

In this section, we focus on EAs for robust engineering design optimization problems 

under Category II & III uncertainties. Our emphasis is on the noisy phenotype scheme for 

use in GA optimization proposed by Tsutsui and Ghosh [10], which they refer to as 

Genetic Algorithms with Robust Solution Searching Schemes or GAs/RS3 in short. They 

introduced a single-evaluation model (SEM) for finding robust solutions in conjunction 

with a GA. The only difference between this robust search scheme and the standard GA 

lies in the evaluation component, where a random noise vector,δ , is added to the 

genotype before fitness evaluation. In biological terms, this means that part of the 

phenotypic features of an individual is determined by the decoding process of the 

genotypic code of genes in the chromosomes [10]. In the process of decoding, 

perturbations in the form of noise can be added to simulate this second form of 

uncertainties. The robust scheme generally operates on the basis that individuals who 

don’t perform well in the face of uncertainty would most likely fail in the selection 
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process to reproduce, while robust individuals are more likely to survive across the GA 

generations.  

The SEM was subsequently extended to derive new variants of robust search schemes. 

Tsutsui et al. [11] reported the multiple-evaluation model (MEM). In contrast to SEM, 

the Average or Worst MEM constructs m new intermediate chromosomes by adding 

several random vector noises,  (where i=1,2,…m), to the original chromosome and the 

fitness of the m perturbed individuals are calculated. Subsequently, the perceived fitness 

of an individual is estimated. 

iδ

In the Standard SEM, the perceived fitness value of an individual equals the resultant 

fitness of the perturbed chromosome, i.e., ( ) ( )F f= +x x δ . In Average MEM, the 

perceived fitness value is given by the average fitness of all m perturbed individuals, i.e. 

average{ f(x + δ1),  f(x + δ2),  … ,  f(x + δm) }. If the perceived fitness is taken as the 

worst among the m perturbed individuals, i.e., worst{ f(x + δ1), f(x + δ 2), … , f(x + δm) }, 

then we have the Worst MEM. Note that worst would represent minimum on a 

maximization optimization problem or maximum for a minimization problem. Hence, the 

Worst MEM may be considered as a more conservative variant of the Average MEM. The 

Average and Worst MEM may also be interpreted as approximate implementations of the 

idea of Bayes risk minimization and the max-min approach used in statistical decision 

theory; see, for example, [21], [22]. 

Arnold and Beyer [12] also reported the study of an (1+1) Evolutionary Strategy with 

isotropic normal mutations under Category II uncertainty. Their analysis pre-supposes 

that besides the fitness of the perturbed individual, the fitness of the parent (unperturbed) 

individual should also be considered. This robust search scheme is represented here as 
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SEM+Parent which may be regarded as a form of MEM with m=2. The perceived fitness 

value of an individual is then taken as the worst or average of the parent and perturbed 

individual, i.e., worst(f(x), f(x+δ)) or average(f(x),  f(x+ δ)). The generalized outline of 

an EA/RS strategy is given in Fig. 1. 

Empirical studies of the GAs/RS3 on several simple synthetic problems and recent 

applications to engineering design problems including multilayer optical coatings [13] 

and space structure design [14] suggest that the technique converges to robust designs. 

These studies also suggest that the GAs/RS3 with SEM scheme generally converges to 

robust solutions faster that the MEM, particularly for large values of m. Nonetheless, 

most of the empirical studies in the literature on the convergence of GAs/RS3 with SEM 

or MEM were conducted on simple low dimensional test problems (i.e., dimensionality = 

1 or 2). Here we conduct an empirical study of GAs/RS3 with SEM and MEM on 

problems with larger dimensionalities. 

A. Empirical Studies of EA/RS, SEM and MEM on Synthetic Problems  

In our numerical studies, we employ a standard binary coded GA. A linear ranking 

algorithm is used for selection. The population size is kept at 200. Uniform crossover and 

mutation are applied at probabilities of 0.9 and 0.01, respectively. In traditional GA 

search, the optimal solution represents the phenotype with the best fitness found at 

convergence. However, this might not be so in the GAs/RS3. The implication of best 

fitness in the GAs/RS3 is the perceived fitness of the phenotypes (this may be the average 

or worst fitness among the perturbed phenotypes). This suggests that the overall best 

phenotype obtained using GAs/RS3 with SEM may not materialize well as a robust 

solution. Conversely, the likelihood that the best phenotype using MEM materializes as a 
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robust solution would be generally higher than the SEM, and this increases with larger 

values of m. In summary, since the GAs/RS3 operates on the basis that individuals that 

are robust are more likely to survive across the GA generations, it may make more sense 

to select an optimal robust solution from individuals in the final population at 

convergence.  

   To facilitate a detailed study of the SEM and MEM approaches, a number of test 

functions are created using an expansion in terms of Gaussian basis functions as follows 

     
( )2

21
1

( ) e x p
2

m
d j i j

i j
i i

x c
f β

σ=
=

⎛ ⎞−⎜ ⎟= −
⎜ ⎟
⎝ ⎠

∑ ∑x ,         (5) 

where iβ , andijc iσ denote the amplitude, center and width of the ith basis function, 

respectively, and m is the total number of basis functions. 

      An example 2D test function derived from (5) is given by: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2 2 2 2
1 2 1 2

2 2 2 2
1 2 1 2

2 2
1 2

1 1 1 3
( ) 0.7 exp 0.75exp

0.18 0.32

3 1 3 4
exp 1.2exp         (6)

2 0.32

5 2
exp ,

0.72

x x x x
f

x x x x

x x

⎛ ⎞ ⎛− + − − + −⎜ ⎟ ⎜= +
⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎛ ⎞ ⎛− + − − + −⎜ ⎟ ⎜+ +
⎜ ⎟ ⎜
⎝ ⎠ ⎝
⎛ ⎞− + −⎜ ⎟+
⎜ ⎟
⎝ ⎠

x
⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

 

 

where x1 and x2 are the design variables while the parameters iβ , ,ic iσ and m in (5) have 

been randomly generated; see also Table I. The above function formed by a summation 

of five 2D Gaussian basis functions is shown in Fig. 2.  
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Besides the 2D synthetic function in (6), other functions of varying dimensions and 

number of local optima have been included in the present study. The parameters used to 

define the 5D and 10D synthetic functions with 10 peaks are given in Table II. In our 

numerical experiments, we used an uncertainty model with uniform distribution [ 1  to 

represent uncertainty in the design variables. The search is terminated when no 

improvements in the best solution is made for more than 45 generations. 

, 1]− +

The results obtained over 20 independent runs using the GAs/RS3 for the three 

synthetic test functions are summarized in Table III. These results indicate the number of 

times the GAs/RS3 successfully arrived at the vicinity of the robust optimum for each 

synthetic function across 20 independent runs. Here, we say that a solution lies in the 

vicinity if its distance to the robust optimum in the Euclidean sense is less than 0.001. 

The optimal robust solution is chosen based on the phenotype with the best fitness in the 

final population at the end of search. Alternative approaches can also be derived for 

selecting an optimum solution in the presence of noise; see, for example, Branke [18]. 

Based on the average number of function evaluations presented in Table III, it appears 

that the GAs/RS3 based on the SEM is more efficient than MEMs since the former makes 

fewer number of function calls before convergence. This is in line with the observations 

made earlier by Tsutsui and Ghosh in [11]. However, the results also indicate the very 

poor reliability of the SEM in locating the robust solution. The MEM on the other hand 

appears to be more reliable than the SEM in locating the robust solution for all the 

problems considered in this study. Furthermore, it can be observed that the reliability of 

the MEM increases with increasing m. Hence, it may make sense to employ the MEM 

with large m. However, this leads to a significant increase in the computational cost. The 
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next section presents a general surrogate-assisted approach which aims to improve the 

computational efficiency of the MEM approach. 

IV. MAX-MIN SURROGATE-ASSISTED EVOLUTIONARY ALGORITHM 

In all the runs conducted in the preceding section, many thousands of calls to the 

objective function have been made before convergence to the vicinity of the robust 

solution actually sets in. A continuing trend in engineering is the increasing use of high-

fidelity models to predict design improvements. However, moves towards the use of 

accurate analysis models result in extremely high computational cost in the robust 

evolutionary search process, which consequently leads to intractable design cycle times. 

Hence the use of MEM with large m may be computationally prohibitive since each 

function evaluation requires m runs of the analysis code. 

Since the design optimization cycle time is directly proportional to the number of calls 

to the analysis solvers, an intuitive way to reduce the search time of EAs is to replace as 

much as possible calls to the computationally expensive high-fidelity analysis solvers 

with lower-fidelity models that are computationally less expensive. Surrogate models or 

metamodels are low-fidelity statistical models that are built to approximate 

computationally expensive simulation codes.  

     Development of EAs that employ surrogate models in lieu of high-fidelity models 

during search is a research topic that has attracted much attention in recent years. Various 

surrogate-assisted EAs have been proposed and generally found capable of significantly 

reducing the computational cost; see, for example, [23-29]. For a review of surrogate-

assisted evolutionary optimization frameworks, the reader is referred to [26,28]. 

Leveraging the understanding gained from these studies, we propose a novel EA based 
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on the combination of a max-min optimization strategy with a Baldwinian trust-region 

framework employing surrogate models for reducing the computational cost associated 

with robust evolutionary search.  

    To illustrate our approach, consider the bound constrained nonlinear programming 

problem described in section II. We focus on the case where evaluation of  is 

computationally expensive and it is desired to obtain a robust optimum solution on a 

limited computational budget. It is worth noting that the present approach may be easily 

extended to solve constrained problems by adopting either an augmented Lagrangian 

approach or by handling the objective and constraint functions separately [25]. However, 

here we concentrate on bound constrained non-linear programming problems for 

simplicity of presentation. 

( )f x

The basic steps of the proposed algorithm, which we henceforth refer to as max-min 

surrogate-assisted evolutionary algorithm (SAEA), are outlined in Fig. 3. In the first step, 

a database is initialized using a population of designs, either randomly or using design of 

experiments techniques such as Latin hypercube sampling or minimum discrepancy 

sequences [29]. The search then proceeds with the standard GAs/RS3, Worst MEM-m, for 

the initial z generations. All the design points thus generated and the associated exact 

values of the objective function are archived in the database that will be used later for 

constructing local surrogate models. Alternatively, one could use a database containing 

the results of a previous search on the problem or a combination of the two. Subsequently 

in the max-min SAEA, each individual in the population undergoes a local search 

strategy conducted using radial basis function surrogates. The objective of the local 

search is to find the worst-case performance of each individual by solving a minimization 
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problem constrained to the domain in which the uncertain parameters vary. The details of 

the steps involved in surrogate modeling and local search are presented in the sections 

that follow. 

A. Surrogate Modeling 

We employ radial basis functions (RBFs) for constructing surrogate models. Let 

{ , ( ), 1,2,...,i i }f i =x x n

ix

∈

ix

 denote the training dataset, where  is the input vector 

and is the output. Since, we are concerned with deterministic computer models, an 

interpolating RBF approximation of the following form is used. 

d∈x

( )f x

1

ˆ ( ) (|| ||)
n

i
i

f Kα
=

= −∑x x ,                              (7) 

where : is a radial basis kernel and 

denotes the vector of weights.  

( || ||)iK −x x
d →

{ }1 2, , ..., T n
nα α α=α

Typical choices for the kernel include linear splines, thin-plate splines, cubic splines, 

Gaussian and multiquadrics [31]. Here, linear splines are employed for constructing local 

surrogates since earlier work suggests that this kernel is capable of providing models 

with good generalization capability [25]. The RBF approximation hence takes the form 

1

ˆ ( ) || ||
n

i
i

f α
=

= −∑x x .                     (8) 

The weight vector is computed by solving the linear algebraic system of equations:  

Kα = f ,                                                       (9) 

where denotes the vector of outputs and 

denotes the Gram matrix formed using the training inputs, i.e., the ijth 

f { 1 2( ), ( ),..., ( ) T
nf f f= x x x } ∈ n

∈K n n×
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element of K is computed as || | |i j−x x . For a typical dataset with 500 training points 

and 20 inputs, surrogate model construction using linear splines takes a few seconds on a 

modern workstation. 

B. Estimating Worst-Case Performance  

In order to compute the worst case objective function value of each individual, , we 

need to minimize with appropriate bounds on defined by the region in which 

the uncertain parameters vary. This involves the solution of the following minimization 

problem 

cx

( cf +x x ) x

  Minimize:    ( )f + cx  x

   Subject to:   ∈ Ωx                            (10) 

where denotes the bounded domain in which the uncertain parameters vary. Clearly, 

when the uncertain variables have a uniform distribution (or they are modeled as interval 

variables), is a bounded box shaped domain. For the case of Gaussian uncertainty 

models, a bounded box shaped domain can be arrived at, for example, by using 

Ω

Ω

3σ± bounds. 

Clearly, when each evaluation of the objective function is time consuming, the max-min 

approach becomes computationally prohibitive. This is because the max-min approach 

involves solving a two-level optimization problem, i.e., at each function evaluation, the 

minimization problem in (10) needs to be solved to estimate the worst-case performance. 

To alleviate this computational bottleneck, we seek to efficiently approximate the 

solution to the original minimization problem (10) by solving a sequence of trust-region 

subproblems of the form Minimize:    ˆ ( )kf + k
cx x
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Subject to:       || || k≤ ∆x                        (11) 

where .  and m ax0 ,1, 2 , ... ,k k= k
cx k∆  are the initial guess and the trust region 

radius used for local search at iteration k, respectively. In practice, the above constraint 

can be transformed into appropriate bounds on the design variables (assuming that 

the norm is used to evaluate the constraint), which are then updated at each trust-

region iteration based on the value of 

L∞

k∆ . Also note here that the trust region radius is 

always constrained to ensure that the search for the worst-case performance is carried 

out within the domain , i.e., the constraint in (10) is satisfied by construction. Ω

For each subproblem (or during each trust-region iteration), a local surrogate model of 

the objective function, , is created dynamically. The n nearest neighbors of the 

initial guess,  are first extracted from the archived database of design points that 

have already been evaluated using the exact model. These points are then used to 

construct a local RBF surrogate model of the objective function. Note that care has to be 

taken to ensure that repetitions do not occur in the training dataset, since this may lead to 

a singular Gram matrix when constructing a RBF interpolant. The RBF surrogate models 

thus created are used to facilitate the necessary objective function estimations in the 

local searches.  

ˆ ( )kf x

k
cx

After each iteration, the trust region radius k∆ is updated based on a measure that 

indicates the accuracy of the surrogate model at the kth local optimum, . The exact 

value of the objective function is calculated at  and the following figure-of-merit,

k
lox

k
lox kρ , is 

calculated  
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( ) (

ˆ ˆ( ) ( )k
c

k kf fk c
kf x f l o

ρ
−

=
−

x x

x

)l o .                         (12) 

The preceding equation provides a measure of the actual versus predicted change in the 

objective function value at the kth local optimum. The value of kρ is then used to update 

the trust region size,  as follows k∆

1k +∆  = 0.25 k∆ ,   if kρ ≤   0.25, 

= ,        if  0.25 <k∆ kρ < 0.75,                  (13) 

= ζ ,        if   0.75, k∆ kρ ≥

where ζ = 2 , if ||  || ∞  = or  ζ = 1 , if ||k k
lo c−x x k∆ k k

lo c−x x  ||∞  < k∆ .  

   The trust region radius, , is reduced if the accuracy of the surrogate, as measured 

by

k∆

kρ is low. If the surrogate model performs well, k∆ is increased or kept unchanged. As 

mentioned earlier, care has to be taken when updating the trust-region radius to ensure 

that the constraint is always satisfied. In other words, the value of is appropriately 

reduced further if this constraint is violated. Subsequently, the exact value of the 

objective function at the optimal solution of the kth subproblem is combined with the n 

nearest neighboring design points to construct an updated RBF surrogate model for the 

next iteration. The initial guess for the 

∈ Ωx k∆

( 1)thk + iteration is updated if kρ > 0, otherwise it 

is kept unchanged.  

   The trust-region iterations are terminated when , where is the maximum 

number of exact function evaluations for each individual in the EA population which is 

set a priori. At the end of the trust-region iterations, the exact objective function value of 

the locally optimized design point is determined. If this value is found to be lower than 

maxk k≥ maxk
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the baseline value, , then Baldwinian learning proceeds. In other words, the fitness 

of the individual is replaced with the worst case objective function value. Note that the 

individual itself remains unchanged. As indicated in Fig. 3, the SAEA is terminated when 

the computational budget specified by the user is exhausted or when the search 

converges. In our numerical studies we employ a feasible sequential quadratic 

programming (SQP) local optimizer to solve (11). 

( )f cx

   The steps discussed here can be readily extended to tackle category III uncertainty 

problems. The main difference is that the worst-case performance is now estimated by 

minimizing as a function of the environmental noise parameter vector ξ . 

Here, denotes the domain over which the environmental parameters vary.  

( , )f +x c ξ

Ω

C. Connections to other Approaches 

It is worth noting the resemblance of the proposed strategy to the Worst case MEM 

scheme proposed earlier in [11] and studied in the previous section. In the present 

approach, instead of a random search towards possible poorer fitness in the 

neighborhood of an individual, we conduct a systematic search for the worst solution 

using a trust-region approach. In the limit, , the Worst MEM and the proposed 

approach will converge to the same solution, where m is the number of times each 

individual is perturbed. Clearly, for this statement to hold, the trust-region steps must 

converge to the global minima of the fitness function within the domain . This will be 

the case for many problems of practical interest where even though over the entire 

design space the objective function is highly multimodal, it has a unique minimum 

within the subdomain . 

m → ∞

Ω

Ω
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 We next highlight some of the distinctive traits of the max-min approach using a one-

dimensional synthetic function which is sought to be maximized; see Fig. 4. The 

Average MEM searches for the robust optimum as measured by the expected fitness, i.e., 

        ( ) ( ) ( )averageF x f x q dδ δ δ
Ω

= +∫                             (14)                         

where ( )q δ is the probability density function (pdf) of δ . 

   In contrast, the max-min approach searches for the robust optimum as measured by the 

worst-case performance. The average and worst-case values denoted by ( )averageF x  

and ( )worstF x , respectively, are shown in Fig. 4 for the case when uncertainty in x is 

represented by the uniform distribution[ 1, 1]− + . These plots were generated by computing 

the average and worst-case function values for different values of x by exhaustively 

sampling the interval of the uncertain parameters.  

   The Average MEM approach maximizes an approximation to ( )averageF x  and hence it 

will converge to the vicinity of x=2. However, since the max-min approach 

maximizes , it will prefer the design point around x=8. In many situations, the 

solution x=8 may be preferable since the mean performance at this point is only 

marginally worse than that at x=2, while the worst-case performance is much better.  

( )worstF x

   In summary, the max-min approach is more conservative than the Average MEM 

since ( ) ( )worst averageF x F x≤ . In practice, the risk preferences of the decision maker 

dictate which robustness metric (average or worst-case) is appropriate for the problem 

under consideration. For many real-world engineering design problems where limited 

data on the uncertain parameters is available, it may make sense to optimize the worst-
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case performance. This is because the max-min approach only requires the domain of 

variation of the uncertain parameters, Ω , to be known – in principle, the precise details of 

the uncertainty distribution are not required. In contrast, to calculate the average 

performance, the joint pdf of the uncertain parameters is required unless further 

simplifying assumptions are invoked. It is of interest to note that the idea of optimizing 

for worst-case scenarios can be traced back to Wald’s maxmin principle in statistical 

decision theory [21] and the notion of anti-optimization coined by Elishakoff et al. [32].   

It is to be noted here that in the GAs/RS3 based on SEM and MEM the effective fitness 

function contains noise since the design variables are randomly perturbed to estimate the 

fitness of each individual. In contrast, the present approach leads to a noise-free fitness 

function since a deterministic gradient-based local search procedure is employed to 

estimate the fitness of each individual. Further, the use of function approximations leads 

to significant reductions in computational cost. For example, consider the case when the 

maximum number of trust-region iterations kmax=3. Then the computational cost of the 

max-min SAEA is equivalent to the GAs/RS3 MEM with m=3.  

D. Empirical Study of Max-min SAEA on Synthetic Test Problems 

In this section we present results obtained using the max-min SAEA on the 5 and 10 

dimensional synthetic problems for which both the SEM and MEM fails to reliably 

produce good results. Note that apart from using the same parameter settings in Section 

III, the present algorithm has two additional user-specified parameters, n (maximum 

number of data points used to construct local surrogate models) and kmax (maximum 

number of trust-region iterations). In the studies presented, n is set equal to twice the 

population size and kmax is kept constant at 3.  
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A summary of the performance of the max-min SAEA is also presented in Table III; 

see the last row. It can be observed from the results that the max-min SAEA reliably 

locates the robust solution on both the 5D and 10D test functions. Specifically, the results 

obtained are comparable with those obtained earlier using the MEM strategy with m=20. 

However, since the maximum number of trust-region iterations is kept at three (i.e., three 

exact function evaluations are used to estimate the worst case performance of each 

individual in an EA population), the present approach has a computational cost 

equivalent to the MEM strategy with m=3 and a design search quality that is superior or 

competitive to m=20. In the next section, we illustrate the application of the max-min 

SAEA to a real-world design problem.  

V. AERODYNAMIC SHAPE DESIGN OPTIMIZATION USING MAX-MIN SAEA 

In this section we apply the max-min SAEA to the design of robust airfoil geometries that 

are sensitive to Category II and III uncertainties. An optimization method that requires 

many thousands of calls to a computationally expensive high-fidelity computational fluid 

dynamics (CFD) code has limited usefulness in solving such design problems. This 

motivates the application of the max-min SAEA to robust aerodynamic design on a 

limited computational budget. 

A. Aerodynamic Shape Design Optimization 

Over the past decades, design optimization of airfoils has been a major research area in 

the CFD community [33], [34].   Earlier efforts focused on inverse design problems and 

were based on local gradient search methods and, later, the more efficient adjoint method 

[35].  The use of GA for direct design optimization of airfoils emerged only recently 
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because each function evaluation requires a numerical solution of the Euler or Navier-

stokes partial differential equations, which often takes up many minutes of computer 

time. With the advent of faster processors and cost-effective parallel computing, GA has 

become an important tool for this design problem [36], [37].  Nevertheless, the 

computational load can still be prohibitive and hence recent research on this topic has 

focused on better genetic operators [38] and the use of approximations and surrogates in 

place of high-fidelity CFD codes [24], [25], [28], [29], [39] to accelerate the search 

process. 

The drag D and lift L on an airplane are the components of the total aerodynamic force 

parallel and vertical to the direction of flight, respectively, as shown in Fig. 5a.  While 

these forces are contributed by various body components, the aerodynamic performance 

of the airplane is principally determined by the airfoils that make up the wings.  The lift 

and drag (or lift and drag coefficients) of an airfoil are functions of its shape and, for a 

given shape, by the operating conditions defined by the flight speed (Mach number M∞) 

and the angle of attack (AoA) (Fig. 5b).  Most direct design studies of 2-dimensional 

airfoils addressed the problem of minimizing D subject to the constraint that L equals 

some design value [36]. 

An important concern in airfoil shape optimization is that the optimal design can be 

sensitive to small manufacturing errors and fluctuations in the operating conditions, in 

particular the Mach number [40].  In fact, analytical studies have shown that a multipoint 

approach that aggregates the cost function at different Mach numbers tend to fall into 

cusps that yield good performance at the design points, but poor elsewhere [41], [42]. 
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To address the inherent robustness issue of airfoil shape optimization, GAs are 

employed as they appear to offer robust solutions [43]. Separately, a (non-GA) design 

formulation was also proposed where the drag profile as function of Mach number was 

chosen as the design target [41]. Noteworthy, however, is the proposition of an approach 

that would address robustness in a more general context, thus applicable to both changes 

in Mach numbers as well as uncertainties in nominal geometry due to manufacturing 

errors.  This also motivates the application of the max-min SAEA in the present study. 

In the following, we shall consider the unconstrained optimization of the lift-to-drag 

ratio D/L. The significance of the ratio D/L in design can be understood, for example, in 

two airplane performance considerations [44]. First, a small D/L ratio entails a better 

engine thrust efficiency for cruising flight, which is given by 

( ) LDT ×= aircraft ofweight cruise .                    (15) 

Second, an airplane in a power-off gliding flight will descent at an angle θ gliding given by 

 LD=gliding tanθ .                              (16) 

Hence, low D/L entails a safer gliding flight in case of engine failure. 

As the lift specification is directly linked to the design take-off weight of an airplane, 

not imposing a constraint on the lift may lead to a design with inadequate lift 

performance.  This is generally true if the drag is chosen as cost function.  Nevertheless, 

our experience has shown that with D/L as cost function the final designs are in fact 

acceptable. We shall justify this by examining the lift, drag and pitching moment profiles 

of the optimum designs obtained by minimizing D/L later in subsection E.   
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B. Problem Formulation 

The unconstrained max-min SAEA is applied to the problem:  minimize the D/L ratio 

of a 2D airfoil at the transonic operating conditions of Mach 0.5 and AoA=2°.  Only 

compressible non-viscous flow is considered. A finite-volume Euler solver with body-

fitted grid and explicit time-stepping is employed in this study. Analysis of an airfoil 

geometry to calculate the objective function takes around 20 minutes on a Pentium III 

processor. 

The geometry of the airfoil is defined by a 24-parameter Hicks-Henne representation 

[33], with the NACA 0015 airfoil as the baseline shape.  Twelve basis functions are used 

to vary the upper and lower surfaces, respectively.  They are defined by: 

( )
200.25

1

log 0.5 log4

log 0.5 log

( ) (1 )
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( ) sin  11,12

i

i

i
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…           (17) 

where t is the non-dimensional abscissa.  An airfoil in the search space has upper (lower) 

surface ordinates y given by  

12

N A C A
1

( ) ( ) ( )i i
i

y t y t f tγ
=

= + ∑ . (18) 

Hence, each surface is defined by 12 control parameters iγ , which totals to 24 design 

parameters for the airfoil.  The parameters ti in (17) and the bounds of the design 

parameters are chosen to allow sizeable variations in the middle section of the airfoil, 

because drag-inducing pressure bumps occur mainly here. Fig. 6 shows the baseline 

NACA 0015 airfoil, the values of ti in the t-axis, and the allowable physical shape 

variations in percentage of the thickest section. 
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To begin, we optimized the airfoil geometry for fixed operating conditions of Mach 0.5 

and AoA=20 using a traditional GA search. Here, the configurations for the traditional 

GA and robust GAs are kept the same as in sections III and IV, apart from using a 

population size of 50. In this experiment, no perturbations have been included during the 

evolutionary search. This deterministic optimum will provide baseline results against 

which the performance of the robust designs can be compared. We present next the 

application of the max-min SAEA to design robust airfoils that are tolerant to Category II 

and III uncertainties. 

C. Category II Uncertainty: Presence of Manufacturing Errors 

The trust-region enabled max-min SAEA is first applied to the robust airfoil design in 

the presence of Category II uncertainty in order to account for variability in nominal 

geometry due to manufacturing errors. Using the proposed method, the optimization 

problem is defined as designing an airfoil shape with minimum resultant drag-to-lift ratio 

profile even when the design variables are perturbed within given bounds. The bounds 

on the design variables are chosen to represent manufacturing errors of ±5% in 

thickness, which is representative of geometric deviations encountered in practice.  

The geometry of the deterministic optimal airfoil is compared with the robust solution 

in Fig. 7.  The surface pressure profiles are shown in Fig. 8.  At the operating condition 

(Mach 0.5 and AoA=20), the deterministic optimal airfoil has a D/L ratio of 0.0114, 

whereas the robust airfoil has 0.0121. Hence, in terms of nominal performance, the 

design obtained using a deterministic formulation is better than the robust design, as 

expected. However, the inferiority of the latter in terms of nominal performance is 

compensated by its robustness as explained below. 
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In principle, even if noise is present in any of the design variables, the robust design 

should still produce a good D/L ratio. To investigate this, we conducted a Monte Carlo 

simulation study to investigate how the performances of the deterministic and robust 

designs change due to parameter uncertainties. Fig. 9 shows the probability density 

functions of the D/L ratio for the deterministic and robust designs. It can be clearly seen 

that the mean value of the objective function is lower for the robust design.  Specifically, 

the mean and standard deviation of D/L for the deterministic and robust designs are 

(0.0247, 0.0054) and (0.01673, 0.0052), respectively. The results obtained suggest that 

the mean performance, over the manufacturing tolerance, of the robust design is actually 

better than that of the deterministic solution.  Moreover, it is less sensitive (smaller 

standard deviation) to manufacturing uncertainties. 

D. Category III Uncertainty: Changing Environmental Parameters 

In this section, we apply the Max-min SAEA to search for an airfoil design which is 

robust against uncertainties in the Mach number. From the viewpoint of robust 

evolutionary search, the optimization problem is cast as designing an airfoil shape with a 

minimized resultant drag-to-lift ratio across a  range of Mach numbers, M∞∈[0.45, 0.55] 

, with the AoA kept fixed at 20.  This range of Mach values is obtained based on the 

designers’ prior knowledge on the typical flight operating conditions. Typically, an 

aircraft is designed to cruise at a certain speed at which it is the most efficient in terms of 

fuel consumption.  However, atmospheric disturbances entail fluctuations in the Mach 

number, hence the motivation of the present design problem. Note that in this problem 

the worst case D/L ratio for each individual in the EA population is found by 

maximizing it as a function of the Mach number.  
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 Our search from two independent runs yields two robust solutions, whose D/L ratios 

are both 0.013 at the operating condition of M∞=0.5. In comparison, the optimum found 

using a deterministic formulation has a D/L ratio of 0.0114.  The D/L ratios for the final 

designs across the range M∞ ∈ [0.45, 0.55] attained by the traditional GA and max-min 

SAEA are summarized in Fig. 10. The traditional GA optimizes the 24 design variables 

to attain a lowest possible drag-to-lift ratio profile at M∞=0.5, irrespective of how the 

optimized design fares at other Mach numbers. Naturally, the optimum D/L=0.011 at 

M∞=0.5 is a reduction of 15% over the robust designs at the same Mach number. The 

penalty for this is the extreme sensitivity to changes in Mach number, where a slight 

change of ±0.02 (4%) about M∞=0.5 will result in roughly 50% jump in D/L.   Moreover, 

the discontinuity in D/L is undesirable from viewpoint of aircraft stability.  On the other 

hand, even though the robust solutions have a higher D/L ratio of 0.013 at M∞=0.5, the 

results in Fig. 10 indicate that the max-min SAEA achieves a better overall drag 

reduction across the entire design range, with an average D/L value of 0.013 versus 

0.014 of the traditional GA. In this particular case, the robust GA achieves a 7% 

average-drag reduction over the entire interval with respect to the traditional GA.  

Moreover, transition of D/L from lower to higher Mach values is smooth. 

Hence it can be concluded that the robust scheme results in superior designs for low 

computational effort. It is also worth noting that the final designs are quite different for 

the traditional GA and max-min SAEA.  This is evident in Figures 11 and 12, which 

compare the shapes and pressure profiles of the three solutions. 
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E. Performance Validation of Final Designs 

To verify that unconstrained optimization of D/L in this study has not led to 

degradation in L, we now compare the lift, drag and pitching-moment profiles of the final 

designs.  Fig. 13 shows the polars (L versus D graphs) of the various airfoils at the design 

speed Mach 0.5, and for AoA ranging from -4° to 9°. It can be seen that for the design 

point of AoA=2°, all four designs have high lift and lower drag compared to the baseline 

airfoil.  At higher AoA all four designs offer better lift performance than the baseline 

geometry.  It is interesting to note that, for a fixed value of L, the Category III designs 

(robust to change in Mach number) have lower drag than the baseline over the entire 

range of AoA, whereas the Category II design (robust to manufacturing errors) and the 

deterministic optimum actually underperform at negative AoA. 

Additionally, the lift and pitching moments are plotted in Fig. 14, where it can be seen 

that the deterministic and Category II designs perform generally better than the Category 

III designs in terms of lift performance.  Finally, the pitching moments differ little from 

that of the baseline airfoil.  In particular, the moments are negative for positive AoA, 

confirming that the designed airfoils are statically stable. 

VI. CONCLUSIONS 

In this paper, we presented a max-min surrogate-assisted EA for robust engineering 

design. The fundamental idea was to search for designs that have the best worst-case 

performance in the presence of parameter uncertainty. Further, by leveraging a trust-

region approach which uses computationally cheap surrogate models, the present 

approach allows for the possibility of achieving robust design solutions on a limited 

computational budget. 
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The proposed algorithm was successfully applied to aerodynamic design of airfoil 

geometries that are robust to uncertainties in the operating conditions and manufacturing 

errors. It was shown that the present approach gives robust solutions that can be 

considered to be superior to those obtained using a deterministic optimization 

formulation. 
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TABLE I 
PARAMETERS USED FOR 2D SYNTHETIC FUNCTION IN (6). 

Centre / Peak Location Width parameter (σ) Multiplier 

(1,1) 0.3 0.7 

(1,3) 0.4 0.75 

(3,1) {Robust Solution} 1.0 1.0 

(3,4) {Highest Peak} 0.4 1.2 

(5,2) 0.6 1.0 

 
 

TABLE II 
PARAMETERS USED FOR 5-DIMENSIONAL AND 10-DIMENSIONAL SYNTHETIC FUNCTIONS 

OF 10 PEAKS DERIVED FROM (5). 
Centre / Peak Location Centre / Peak Location Width 

parameter 
(σ) 

Multiplier 

(10, 1.0, 6.0, 7.0, 8.0) (1.0, 1.0, 6.0, 7.0, 8.0, 1.0, 1.0, 
6.0, 7.0, 8.0) 

0.3 0.7 

(1.0, 3.0, 8.0, 9.5, 2.0) (1.0, 3.0, 8.0, 9.5, 2.0, 1.0, 3.0, 
8.0, 9.5, 2.0) 

0.4 0.75 

(3.0, 1.0, 3.0, 2.0, 5.0) 
{Robust Solution} 

(3.0, 1.0, 3.0, 2.0, 5.0, 3.0, 1.0, 
3.0, 2.0, 5.0) 

1.0 1.0 

(3.0, 4.0, 1.3, 5.0, 5.0) 
{Highest Peak} 

(3.0, 4.0, 1.3, 5.0, 5.0, 3.0, 4.0, 
1.3, 5.0, 5.0) 

0.4 1.2 

(5.0, 2.0, 9.6, 7.3, 8.6) (5.0, 2.0, 9.6, 7.3, 8.6, 5.0, 2.0, 
9.6, 7.3, 8.6) 

0.6 1.0 

(7.5, 8.0, 9.0, 3.2, 4.6) (7.5, 8.0, 9.0, 3.2, 4.6, 7.5, 8.0, 
9.0, 3.2, 4.6) 

0.5 0.6 

(5.7, 9.3, 2.2, 8.4, 7.1) (5.7, 9.3, 2.2, 8.4, 7.1, 5.7, 9.3, 
2.2, 8.4, 7.1) 

0.1 0.5 

(5.5, 7.2, 5.8, 2.3, 4.5) (5.5, 7.2, 5.8, 2.3, 4.5, 5.5, 7.2, 
5.8, 2.3, 4.5) 

1.0 0.2 

(4.7, 3.2, 5.5, 7.1, 3.3) (4.7, 3.2, 5.5, 7.1, 3.3, 4.7, 3.2, 
5.5, 7.1, 3.3) 

0.2 0.4 

(9.7, 8.4, 0.6, 3.2, 8.5) (9.7, 8.4, 0.6, 3.2, 8.5, 9.7, 8.4, 
0.6, 3.2, 8.5) 

0.3 0.1 
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TABLE III 
SUMMARY OF RESULTS OBTAINED USING GAS/RS3 ON THE TEST FUNCTIONS. 

 

 

Number of times arriving at the Most Robust Peak 
(Over 20 Independent Runs) 

2D, 5 Peaks 5D, 10 Peaks 10D, 10 Peaks 

GA/RS 
Method 

 
Convergence 

Average 
no. of 
exact 

function 
evaluation

s  

 
Convergence

Average 
no. of 
exact 

function 
evaluation

s  

 
Convergence 

Average 
no. of 
exact 

function 
evaluation

s  
Pure 
SEM 

7 9,900 
 

14 14,920 
 

5 128,60 
 

Worst 
MEM 
m = 3 

16 31,500 
 

18 42,780 
 

15 56,760 
 

Worst 
MEM 
m = 10 

20 110,400 
 

20 130,800 16 138,800 
 

Worst 
MEM 
m = 20 

20 206,000 
 

20 273,600 
 

17 340,800 
 

Max-
min 

SAEA 

20 30,960 20 34,800 20 49,210 
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BEGIN EA/RS 
Initialize: Generate a population of designs.  
While (termination condition is not satisfied)  

For (each individual in population)  ix
• For (j =1 to m) 

 Draw realization of uncertain parameters jδ from given distribution
 Perturb individual i to arrive at j i j′ ← +x x δ  
 Evaluate fitness of perturbed solution ( )jf ′x   

                           End For 
• Determine effective fitness, F(xi), of individual i, 

1

1( ) ( )m
i jj

F f
m =

′= ∑x x  or 1 2( ) { ( ), ( ),..., ( )}i mF worst f f f′ ′ ′=x x x x   

End For 
Apply standard EA operators to create a new population.  

End While 
END 

Fig. 1.  Evolutionary algorithm with robust solution searching schemes for 
category II uncertainty. 

 
 

f (x1, x2) 

2 

 
x1 

Fig. 2.  A plot of the 2D synthetic function in (6). 
 
 
 

x
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Trust-Region Enabled Max-min SAEA 
BEGIN  
Initialize: Generate a database containing a population of designs.  

     (Optional: upload a historical database if exists) 
While (EA termination condition is not satisfied)  

For (each individual i in population) 
 If  (Status is database building)  

 Evaluate individual i using exact analysis code  ( )if x

 Update vector and corresponding fitness value in database ix ( )if x
Else { Apply trust-region enabled feasible SQP solver } 

 Set trust-region sub-problem, k =1, o δ∆ =  
 While (trust-region termination condition not satisfied)  

 Choose from database n nearest design points to the individual 
 k

cx
 Construct a local RBF surrogate model using these points 
 Establish the domain in which the uncertain parameters vary Ω

 Locate the point with worst-case fitness, , in direck
lox t 

neighborhood of individual (within bounds specified by the 
domain 

k
cx

Ω ) using the RBF surrogate 

 Evaluate  using exact analysis code k
lox

 Update vector and corresponding exact fitness 
value in the database  

k
lox

( )k
lof x

 Calculate the figure-of-merit, defined in equation (12). kρ
 Update trust region size k∆ ensuring that k∆ ∈Ω   
 Increment k by 1. 

 End While 
 Set , i.e., the fitness of individual i is set to the worst-

case value 
( ) ( )k

iF f=x x lo

 End if  
 Return as the fitness of individual i ( )iF x

End For 
Apply standard EA operators to create a new population.  

End While 
END  
 

 

 

Fig. 3.  Trust-Region enabled max-min SAEA 
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Fig. 4.  Illustration of effective fitness functions obtained using average and worst-case 
analysis for a model problem involving maximization of ( )f x . 
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direction of flight

lift L 

drag D 
weight

θ

angle of attack α
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)(σn

)(σp

L 

(normal unit vector) 

(pressure) 

C  (contour)

AoA D 

M∞ flow direction  

(b) 

 

 

Fig. 5.  Forces acting on: (a) an airplane, and (b) an airfoil 
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Fig. 6. Airfoil geometry characterized using a 24-parameter Hicks-Henne representation 
(The bottom labels indicate the values of the 12 parameters ti) 
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Fig. 7.  Comparison of airfoil geometries obtained using traditional GA (deterministic 
design) and max-min SAEA (robustness to manufacturing errors). 
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Fig. 8.  Comparison of pressure profiles obtained using traditional GA (deterministic 
design) and max-min SAEA (robustness to manufacturing errors). 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9.  Probability density function of D/L Ratio for deterministic and robust designs 
using Monte Carlo simulation.  
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Mach vs Drag/Lift (D/L)
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Fig. 10.  The relationship between Mach and D/L for deterministic and robust designs 
using traditional GA and Max-min SAEA, respectively. 

 
 

Fig. 11.  Comparison of airfoil geometries obtained using traditional GA (deterministic 
design) and max-min SAEA (designs 1 and 2, robustness to changing Mach number). 
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Fig. 12.  Comparison of pressure profiles obtained using traditional GA (deterministic 
design) and max-min SAEA (designs 1 and 2, robustness to changing Mach number). 
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Fig. 13.  Polars (L vs. D graphs) of final designs at Mach 0.5 
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Fig. 14.  Lift and pitching moment of final designs at Mach 0.5 


