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Abstract—Automatic recognition of gestures using computer
vision is important for many real-world applications such as
sign language recognition and human-robot interaction (HRI).
Our goal is a real-time hand gesture-based HRI interface for
mobile robots. We use a state-of-the-art big and deep neural
network (NN) combining convolution and max-pooling (MPCNN)
for supervised feature learning and classification of hand gestures
given by humans to mobile robots using colored gloves. The hand
contour is retrieved by color segmentation, then smoothened by
morphological image processing which eliminates noisy edges.
Our big and deep MPCNN classifies 6 gesture classes with 96%
accuracy, nearly three times better than the nearest competitor.
Experiments with mobile robots using an ARM 11 533MHz
processor achieve real-time gesture recognition performance.

I. INTRODUCTION

Hand gesture recognition has been a very active computer

vision research topic in recent years with motivating applica-

tions such as human-robot interaction (HRI), sign language

interpretation, computer games control, virtual reality and

assistive environments [1]. Research activities on HRI has

increased dramatically in recent times due to the widespread

availability of cost-effective digital cameras suitable for ubiq-

uitous computing [2], [3].

Compared to many existing HRI interfaces, hand gestures

have the advantage of being easy to use as well as being natural

and intuitive [4]. In order for a gesture recognition system to be

real-time, robust and deployable in uncontrolled environments,

the system needs to be able to operate in complex scenes

with different backgrounds under variable lightning conditions

[5], while taking into consideration different gesture positions,

orientation and occlusions [6]. The work we present in this

paper is the first step towards a complete interaction system

between humans and robotic swarms, where the humans

provide commands to the swarm using gestures, and the robots

in the swarm make use of distributed and coordinated sensing

and classification to reach swarm-level consensus about the

gesture and execute the command associated to it.

In general, vision-based hand gesture recognition ap-

proaches fall into two major categories: 3D model-based

methods and 2D appearance model-based methods [7]. 3D

hand models may exactly describe hand movement and fin-

ger flexibility however, these approaches are computationally

expensive and not suitable for real-time implementation [8] on

smaller domestic robots. Therefore, in this paper we focus on

2D appearance model-based methods.

Recently, different research efforts on 2D appearance

model-based methods for gesture recognition have emerged

[9], [10], [11], [12], [13], [14], [15], amongst which supervised

and unsupervised learning techniques such as Neural Net-

works (NNs), Support Vector Machine (SVMs) and Nearest-

Neighbor [16], [17], [18] classifiers have gained familiarity.

However, feature learning is not a part of such classification

schemes and needs to be performed separately to compute

features such as edges, gradients, pixel intensities and object

shape. For general objection recognition and image classifica-

tion tasks, variants of Convolutional Neural Networks (CNNs)

[19], [20], [21], [22] have emerged as robust supervised feature

learning and classification tools, especially when combined

with max-pooling [23], [22]. Therefore, this paper presents,

for the first time, the use of big and deep Max-Pooling CNNs

(MPCNNs) for hand gesture recognition in HRI applications.

II. THE CAMERA HARDWARE

The mobile foot-bot robots, small ground robots developed

within the Swarmanoid project [24] (http://www.swarmanoid.

org), were used as platform for our vision-based gesture

recognition system. The foot-bot robot, shown in Figure 2,

is specifically designed for swarm robotics research. It is

powered using an on-board ARM 11 533MHz processor with

128MB RAM and programmed in a Linux-based operating

environment. It has various sensors and actuators, such as:

range and bearing, Wi-Fi, 3-axis accelerometers and gyro-

scopes, infrared-based proximity, and distance scanner.

The foot-bot is equipped with two built-in cameras. One

is omni-directional, with a hyperbolic mirror mounted at the

bottom of the glass-tube in Figure 2. The other is a camera that

can be placed looking either to the front or to the ceiling. Both

cameras are capable of capturing video streams and images at

a maximum resolution of 3.0 megapixels.
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Fig. 1. MPCNN architecture using alternating convolutional and max-pooling layers.

III. MAX-POOLING CONVOLUTIONAL NEURAL

NETWORKS

Convolutional NNs (CNNs) are multi-layered NNs special-

ized on recognizing visual patterns directly from image pixels

[19], [25]. They are well-known for robustness to distortion

and minimal pre-processing [21]. They were used for detection

and recognition of objects including faces [21], hands, logos,

text [25], with record accuracy and real-time performance.

CNNs were also used for vision-based obstacle avoidance for

mobile robots [17], image restoration, and segmentation of

biological images [20].

Fig. 2. The foot-bot mobile robot used for the experiments.

We use the special max-pooling [23] CNN of [22], the

MPCNN. MPCNNs have convolutional layers alternating with

subsampling layers [22]. They belong to a wide class of

models generally termed Multi-Stage Hubel-Wiesel Architec-

tures, following Hubel and Wiesel’s classic 1962 work on the

cat’s primary visual cortex [26], which identified orientation-

selective simple cells with local receptive fields similar to

those of convolutional layers, and complex cells performing

subsampling-like operations [27]. MPCNNs vary in how con-

volutional and subsampling layers are realized and trained

[22]. Figure 1 illustrates our MPCNN architecture used.

A. Convolutional layer

A convolutional layer is parametrized by: the number of

maps, the size of the maps and kernel sizes. Each layer has

M maps of equal size (Mx,My). A kernel of size (Kx,Ky)
(as shown in Figure 1) is shifted over the valid region of the

input image i.e. the kernel is completely inside the image [22].

Each map in layer Ln is connected to all maps in layer Ln−1.

Neurons of a given map share their weights but have different

input fields.

B. Max-pooling layer

The output of the max-pooling layer is given by the max-

imum activation over non-overlapping rectangular regions of

size (Kx,Ky). Max-pooling creates position invariance over

larger local regions and down-samples the input image by a

factor of Kx and Ky along each direction [23]. Max-pooling

leads to faster convergence rate by selecting superior invariant

features which improves generalization performance.

C. Classification layer

After multiple convolutional and max-pooling layers, a

shallow Multi-layer Perceptron (MLP) is used to complete

the MPCNN. The output layer has one neuron per class in

the classification task [22]. A softmax activation function is

used, thus each neuron’s output represents the posterior class

probability.

IV. DATA ACQUISITION AND MODELLING

A. Data acquisition

Gestures are presented to the foot-bots using colored gloves

to facilitate the retrieval of the hand contour. Images are

captured by the front (CMOS) camera of the robot using a

Bayer color filter array. The Bayer pattern is transformed into

its corresponding RGB image. All images are stored in an

8-bit unsigned Portable Network Graphics (PNG) format. In

our vision-based gesture recognition system, we define a vo-

cabulary of gestures based on the count of fingers. Therefore,

in total, 6 gestures (classes) are defined, from count = 0 until

count = 6, as shown in Figure 3.

2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA2011)

978-1-4577-0242-6/11/$26.00 ©2011 IEEE 343



(a) (b) (c)

(d) (e) (f)

Fig. 3. Number of gesture classes defined using the count of fingers.

We introduce an image-tuning routine for optimal imaging

results by automatically adjusting the camera’s gain and satu-

ration settings on each control step, based on the illumination

conditions in the surrounding environment. During the data

acquisition process, we capture images in a size of 512 x 384
pixels (0.2 megapixels) with an aspect ratio of 1.33:1 (4:3).

The reason for choosing smaller resolution images is due to

the necessity of real-time implementation.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Images taken at different distances from the robot. (a) 0.5m (b) 1.0m
(c) 1.5m (d) 2.0m (e) 2.5m (f) 3.0m

During the data acquisition phase, a total of 6000 images

were acquired at 6 different distances (in meters) from the

robot, d = [0.5 1.0 1.5 2.0 2.5 3.0], as illustrated in Figure 4.

For each distance, a minimum of 1000 images were captured.

The reason that 3 meters was chosen as the maximum distance

is because, beyond that it became visually challenging for

humans to distinguish the correct finger count by inspecting

the images. As illustrated in Figure 5 during data acquisition,

different finger combinations were used for each gesture class

in order to make the system more robust for identifying the

number of active fingers.

B. Color segmentation and preprocessing

The Red, Green, Blue (RGB) color space is the most

common color space used to represent color images. However,

RGB is an additive color space and it has a high correlation,

non-uniformity and mixing of chrominance and luminance

data [28]. Thus, RGB is not suitable for color analysis and

color based recognition.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Images taken using different finger combinations for each class.

In recent times, researchers have proposed the use of the

YCbCr color space containing luminance (Y) and chromi-

nance (CbCr) information, whereby the explicit separation of

luminance and chrominance components reduces the effect

of uneven illumination making it attractive for color based

segmentation. In our approach to segment the colored glove,

a parametric Single Gaussian Model (SGM) method is applied

to model the orange glove color using the mean and the

covariance of the chrominant color with a bivariate Gaussian

distribution. Figure 6 illustrates the process modelled to seg-

ment the orange colored glove. The glove color distribution is

modelled using an elliptical Gaussian joint Probability Density

Function (PDF) using the following expression:

p[c/Ws] = (2π)−1|
∑

s

|−
1

2 exp(c−µs)T
∑

−1

s
(c−µs) (1)

where c is a color vector representing the random measured

values of chrominance (x, y) of a pixel with coordinates (i, j)
in an image, and Ws is the class describing the glove color.

c = [x(i, j)y(i, j)]T (2)

µs =
1

n

n∑

j=1

cj (3)

∑

s

=
1

n− 1
·

n∑

j=1

(cj − µs)(cj − µs)
T , (4)
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where µs represents the mean vector and
∑

s represents the

covariance matrix for the orange chrominance of the glove.

Using equations 2, 3 and 4, the Mahalanobis distance λ(c),
is calculated using equation 5, which measures the distance

between the color matrix cj and the mean vector µs.

λ(c) = (cj − µs)
T

−1∑

s

(cj − µs). (5)

The Mahalanobis distance λ(c) of a color vector c, is the

luminance and chrominance threshold used to segment the

orange colored glove from the image. During thresholding, the

3-channel image is transformed into a 1-channel binary ([0, 1]
pixel) image. Segmentation results of the orange colored glove

are shown in Figures 7(a) through (d). Moreover, for real-

world gesture recognition applications it is possible to replace

our colored glove model with recent skin color models present

in literature.

Fig. 6. Flowchart of framework modelled to segment orange glove.

The shape of the hand in the thresholded images indicates

that the orange glove is well separated from the background,

however, the hand contour contains a significant amount of

noisy edges. To smooth the hand contour, Morphological

Opening is performed, i.e. the images are eroded and then

dilated using a structuring element of size 3 x 3, se =
[0 1 0; 1 1 1; 0 1 0]. The smoothed images are shown in Fig-

ures 7(e) through (h). Our MPCNN implementation requires

all images to be of equal size. After visual inspection of the

image size distribution all images are resized to 28 x 28 pixels

and padded with 4 black pixels on each side, resulting in an

image size of 32 x 32 pixels as shown in Figure 8.

V. EXPERIMENTAL RESULTS

The acquired 6000 images are split in ratios of 60% and

40% for the training and test sets respectively, where 3600

images are used for training and the remaining 2400 are used

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. Figures (a) through (d) represent the thresholded images. Figures (e)
through (f) represent the smoothed images.

for testing. In order to evaluate our dataset and approach we

compare the performance of our system with the state-of-the-

art vision-based object and gesture recognition techniques.

A. Existing approaches

Many existing vision-based object and gesture recognition

approaches are present in literature, however we evaluate the

most recent and familiar approaches, which compute image

features of interest such as edges, gradients, pixel intensities

and object shape. Since SVMs [29] have gained much attention

in recent times due to their powerful generalization capabilities

as gesture classifiers [16], [18] we evaluate different feature

learning schemes using SVMs.

(a) (b) (c) (d) (e) (f)

Fig. 8. Images used to construct training and test sets. Each image represents
one of the 6 gesture classes (finger count).

The following approaches are evaluated in this paper using

our dataset: (i) The authors in [30], [31], [32] use Hu Invariant

Moments for feature learning from images of different objects

and gestures; (ii) Unsupervised feature learning is applied by

authors in [33] using the Spatial Pyramid (generally referred to

as Bag of Features or Bag of Words (BoW)) a combination of

SIFT and k-means; (iii) Shape properties of objects such as

roundness, form factor, compactness, eccentricity, perimeter,

solidity etc are used by the authors in [31], [34]; (iv) Skele-

tonization has been proposed by the authors in [35], [36] for

gesture recognition tasks, such as the counting the number of

fingers; (v) Pyramid of Histogram Oriented Gradients (PHOG)

[37], a variant of the famous HOG descriptor [38], gained
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popularity for its vectorized HOG feature learning approach;

(vi) The Fast Fourier Transform (FFT) has been used by the

authors in [39] to represent the shape of the hand contour in

images using the spatial domain; (vii) CNNs called Tiled CNNs

[40] are supervised feature learners and classifiers able to learn

complex invariances such as scale and rotational invariance.

The errors obtained on the test sets using these schemes are

tabulated in Table 1.

B. Big and deep MPCNNs

Our plain feed-forward MPCNN architecture is trained

using on-line gradient descent. Images from the training set

are rotated in order to learn rotational invariant features. All

images from the training set are used for training and also

for validation. Training ends once the validation error is zero

(usually after 50 to 100 epochs). Initial weights are drawn from

a uniform random distribution in the range [−0.05, 0.05].

TABLE I
EVALUATION OF DIFFERENT GESTURE RECOGNITION APPROACHES

Feature Learner Classifier Reference Error Rate

PHOG SVM [37] 27.04%

FFT SVM [39] 25.32%

Skeletonization SVM [35] [36] 21.55%

Hu Invariant Moments SVM [30] [31] [32] 20.34%

Shape Properties SVM [31] [34] 17.91%

Spatial Pyramid (BoW) SVM [33] 15.68%

Tiled CNN NN [40] 9.52%

Big and Deep MPCNN NN Proposed 3.23%

Our MPCNN architecture consists of 6 hidden layers as

shown in Figure 2, where C-layer represents convolutional

layers and MP -layer represents max-pooling layers. We use

n = 20 maps in our implementation, the activations of the

C1- and MP -1 layer for the input image shown in Figure

8(f) are shown in Figure 9(a) and 9(b), respectively. The free

parameters used for training are indicated in Figure 2, where

the output maps of the last convolutional layer (C3) are down-

sampled to 1 pixel per map, resulting in a 1 x 300 feature

vector for classification. All results reported are averaged by

using 100 separate training and test sets, where each training

set is constructed by selecting 60% random samples from each

class, while the remaining 40% samples from each class are

used in each test set.

(a) (b)

Fig. 9. Image activations using n = 20 maps. (a) represents the activations
of Figure 8(f) for the C1-layer in Figure 2. (b) represents the activations of
Figure 8(f) for the MP-1 layer in Figure 2.

We pick the trained MPCNN with the lowest validation

error and evaluate it on the test set (i.e. the test for best

validation). The best test error as shown in Figure 10 is

3.23%, where the training and validation errors are 0.002%

and 0.0012% respectively. As seen from Figure 10, 80 epochs

are sufficient to reach the lowest test error. Using a system with

a Core i5-650 (3.20 GHz) processor with 4GB DDR3 RAM

the computation time per training epoch is 426.12 s, while for

evaluating the validation and test sets it takes 189.12 and 48.58

s respectively. Performing offline training and online testing

using the foot-bot with an ARM 11 533MHz processor with

128MB RAM, it takes 0.82 s to capture, process and classify a

single image, which indicates real-time performance using the

C++ implementation of the MPCNN from [22]. The results in

Table 1 indicate that our approach outperforms current object

recognition techniques by far, making it the best choice for

real-time gesture recognition in HRI applications.

Fig. 10. Classification accuracies for training, validation and test sets using
the big and deep MPCNN architecture shown in Figure 2. Results are averaged
using 100 training and testing sets, where each set constructed by selecting
random samples.

VI. CONCLUSION

This paper presents a state-of-the-art big and deep MPCNN

for recognition of hand gestures in HRI applications. Our

MPCNN combines convolution and max-pooling for super-

vised feature learning and classification of hand gestures

from images. Experiments with mobile robots using an ARM

11 533MHz processor achieve real-time gesture recognition

performance with a classification rate of 96%.

Our current implementation uses a vocabulary of 6 hand

gestures, however, the vocabulary can be extended to 11

classes using two hands, i.e. from finger count 0 to 10. The

obtained results show that our vision-based gesture recognition

system can be effectively employed for HRI, even for small

and relatively not powerful robots, such as domestic mobile

robots (e.g., Roomba and Scooba), and swarm robotic systems.
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Future work will precisely include the application of this work

in the context of human-swarm interaction.
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