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Max-Product for Maximum Weight Matching:
Convergence, Correctness, and LP Duality

Mohsen Bayati, Devavrat Shah, and Mayank Sharma

Abstract—Max-product “belief propagation” (BP) is an itera-
tive, message-passing algorithm for finding the maximum a poste-
riori (MAP) assignment of a discrete probability distribution spec-
ified by a graphical model. Despite the spectacular success of the
algorithm in many application areas such as iterative decoding and
combinatorial optimization, which involve graphs with many cy-
cles, theoretical results about both the correctness and convergence
of the algorithm are known in only a few cases (see Section I for ref-
erences).

In this paper, we will prove the correctness and convergence of
max-product for finding the maximum weight matching (MWM)
in bipartite graphs. Even though the underlying graph of the
MWM problem has many cycles, somewhat surprisingly we show
that the max-product algorithm converges to the correct MWM as
long as the MWM is unique. We provide a bound on the number
of iterations required and show that for a graph of size n, the
computational cost of the algorithm scales as O(n3), which is the
same as the computational cost of the best known algorithms for
finding the MWM.

We also provide an interesting relation between the dynamics of
the max-product algorithm and the auction algorithm, which is a
well-known distributed algorithm for solving the MWM problem.

Index Terms—Auction algorithm, belief propagation (BP),
distributed optimization, linear programming, Markov random
fields, maximum weight matching (MWM), max-product algo-
rithm, message-passing algorithms, min-sum algorithm.

I. INTRODUCTION

GRAPHICAL models (GMs) are a powerful method for
representing and manipulating joint probability distribu-

tions. They have found major applications in several different
research communities such as artificial intelligence [16], sta-
tistics [12], error-correcting codes [8], [11], [17], and neural
networks. Two central problems in probabilistic inference over
GMs are those of evaluating the marginal and maximum a
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posteriori (MAP) probabilities, respectively. In general, cal-
culating the marginal or MAP probabilities for an ensemble
of random variables would require a complete specification
of the joint probability distribution. Further, the complexity
of a brute-force calculation would be exponential in the size
of the ensemble. GMs assist in exploiting the dependency
structure between the random variables, allowing for the design
of efficient algorithms.

The belief propagation (BP) and max-product algorithms [16]
were proposed in order to compute, respectively, the marginal
and MAP probabilities efficiently. Comprehensive surveys of
various formulations of BP and its generalization, the junction
tree algorithm, can be found in [2], [24], [18]. BP-based mes-
sage-passing algorithms have been very successful in the con-
text of, for example, iterative decoding for turbo codes, com-
puter vision, and finding satisfying assignments for random sat-
isfiability problems. The simplicity, wide scope of application,
and experimental success of BP has attracted a lot of attention
recently [2], [11], [15], [17], [25].

BP (or max-product) is known to converge to the correct mar-
ginal (or MAP) probabilities on graphs with no cycles [16]. For
graphs with a single cycle, the convergence and correctness of
BP are rigorously analyzed in [1], [20]. For GMs with arbi-
trary underlying graphs, little is known about the correctness
of BP. Partial progress consists of: the correctness of BP for
Gaussian GMs was proved in [22], an attenuated modification
of BP is shown to work [10], the iterative turbo decoding algo-
rithm based on BP is shown to work in the asymptotic regime
with probabilistic guarantees in [17], and fixed points of BP
are shown to be locally optimal in [23], [9]. To the best of our
knowledge, limited theoretical progress has been made in un-
derstanding when BP works on graphs with cycles?

Motivated by the objective of providing justification for the
success of BP on arbitrary graphs, we focus on the application
of BP to the well-known combinatorial optimization problem of
finding the maximum weight matching (MWM) in a bipartite
graph, also known as the “Assignment Problem.” It is standard
to represent combinatorial optimization problems, like finding
the MWM, as calculating the MAP probability on a suitably de-
fined GM which encodes the data and constraints of the op-
timization problem. Thus, the max-product algorithm can be
viewed at least as a heuristic for solving the problem. In this
paper, we study the performance of the max-product algorithm
as a method for finding the MWM on a weighted complete bi-
partite graph.

Additionally, using the max-product algorithm for problems
like finding the MWM has the potential of being an exciting
application of BP in its own right. The assignment problem is
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extremely well studied algorithmically. Attempts to find better
MWM algorithms contributed to the development of the rich
theory of network flow algorithms [9], [13]. The assignment
problem has been studied in various contexts such as job as-
signment in manufacturing systems [9], switch scheduling algo-
rithms [14], and auction algorithms [7]. Recently, we used the
max-product algorithm effectively in high-speed switch sched-
uling and wireless scheduling where the distributed nature of the
algorithm and its simplicity are very attractive for implementa-
tion purposes [5].

A. Our Results

The main result of this paper is to show that the max-product
algorithm for MWM always finds the correct solution, as long
as the solution is unique. Our proof is purely combinatorial and
uses only bipartite nature of the graph. We think that this result
and in particular our methods may lead to further insights in
understanding how BP algorithms work when applied to a more
general class of optimization problems.

We show that the complexity of this algorithm scales as
, where is the size of the graph, is the difference

between weight of the unique MWM and the second MWM,
and is the maximal value of edge weight. Thus, the running
time of max-product for MWM is essentially the same as the
running time of both the best centralized algorithm (assuming

, constant), and the auction algorithm proposed by Bert-
sekas.

Somewhat interestingly, we find that the dynamics of the auc-
tion algorithm and the max-product algorithm are essentially the
same and this observation leads to a precise relation between
these two algorithms. The auction algorithm with a relaxation
method can find the MWM (as well as a good approximate so-
lution) even in the absence of a unique solution. The above con-
nection between auction and max-product suggests a modified
version of the max-product algorithm. We show that the fixed
point of this modified max-product algorithm coincides with
a good approximate solution and can lead to an MWM when
the parameters are chosen properly. In general, this suggests a
method to obtain a (deterministic) modification of max-product
which can converge to a good approximate solution even when
the problem has multiple solutions. We believe that this heuristic
should also be of interest for other optimization problems.

B. Organization

The rest of the paper is organized as follows. In Section II,
we provide the setup, define the MWM problem (or assignment
problem) and describe a version of the max-product algorithm
(or the min-sum algorithm) for finding the MWM. In this paper,
we will use the term max-product and min-sum interchange-
ably for the same algorithm. Essentially, the min-sum algorithm
is obtained from the max-product algorithm by replacing each
variable with its logarithm.

Section III states and proves the main result of this paper. Sec-
tion IV presents a simplification of the max-product algorithm
and evaluates its computational cost. Section V discusses the
relation between the max-product algorithm and the celebrated

auction algorithm. The auction algorithm solves the dual of a
linear programming (LP) relaxation for the MWM problem. Our
result suggests the possibility of a deeper connection between
max-product and dual algorithms for optimization problems. Fi-
nally, we discuss some implications of our results in Section VI.

II. SETUP AND PROBLEM STATEMENT

In this section, we first define the problem of finding the
MWM in a weighted complete bipartite graph and then describe
the max-product algorithm for solving it.

A. Maximum Weight Matching

Consider an undirected weighted complete bipartite
graph , where ,

, and for , . Let
each edge have weight .

If is a permutation of
then the collection of edges
is called a matching of . We denote both the permutation
and the corresponding matching by . The weight of matching

, denoted by , is defined as

Then, the MWM is the matching such that

Note 1. In this paper, we always assume that the weights are
such that the MWM is unique. In particular, if the weights of
the edges are independent, continuous random variables, then
with probability , the MWM is unique. Otherwise, one may
make the MWM unique by adding sufficiently small indepen-
dent random noise to each of the edge weights.

Next, we model the problem of finding MWM as finding
a MAP assignment in a GM where the joint probability dis-
tribution can be completely specified in terms of the product
of functions that depend on at most two variables (nodes).
For details about GMs, we urge the reader to see [12]. Now,
consider the following GM defined on : Let ,

be random variables corresponding to the vertices of
and taking values from . Let their joint prob-

ability distribution, ,
be of the form

(1)

where the pairwise compatibility functions are defined
as

and
and

otherwise,

the potentials at the nodes are defined as
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and is the normalization constant. We note that the pairwise
potential ensures that the following two constraints are satis-
fied for any with positive probability: a) If node is
matched to node (i.e., ), then node must be match
to node (i.e., ). b) If node is not matched to
(i.e., ), then node must not be matched to node
(i.e., ). These two constraints encode the property that
the support of the above defined probability distribution is re-
stricted to matchings.

Claim 1: For the GM as defined above, the joint density
is nonzero if and only

if

and

are both matchings, and . Further, when

nonzero, they are equal to .
When, , then the product of ’s makes the

probability a monotone function of the sum of the edge weights
that are part of the corresponding matching. Formally, we state
the following claim.

Claim 2: Let be such that

Then, the corresponding is the MWM in
.

Claim 2 implies that finding the MWM is equivalent to
finding the MAP assignment on the GM defined above. Thus,
the standard max-product algorithm can be used as an iterative
strategy for finding the MWM. In fact, we show that this
strategy yields the correct answer. Before proceeding further,
we provide an illustrative example of the above defined GM.

Example 1: Consider a complete bipartite graph with .
The random variables , correspond to the index
of the node to which is connected under the GM. Sim-
ilarly, the random variables , correspond to the
index of the node to which is connected. For example,

means that is connected to . The pairwise
potential function encodes the matching constraints. For
example, corresponds to the
matching where is connected to and is connected
to . This is encoded (and allowed) by : in this example,

, etc. On the other hand,
is not a matching as con-

nects to while connects to . This is imposed by the
following: . We recommend
that the reader study this example in further detail in order to
gain familiarity with the above defined GM.

B. Min-Sum Algorithm for

The max-product and min-sum algorithms can be seen to be
equivalent. In this paper, we will look at the min-sum version for

the GM defined above. The max-product version and its equiva-
lence to min-sum algorithm are given in [3]. Now, the min-sum
algorithm is described as follows.

Min-sum algorithm.

(1) Let

denote the messages passed from to in the
iteration , for , . Similarly,
is the message vector passed from to in the
iteration .

(2) Initially and set the messages as follows. Let

and

where
if
otherwise

(2)

if
otherwise.

(3)

(3) For , messages in iteration are obtained from
messages of iteration recursively as follows:
for all , , and all ,

(4)

(4) Define the beliefs ( vectors) at nodes and
, , , in iteration as follows:

(5)

(5) The estimated1 MWM at the end of iteration is
, where , for

.
(6) Repeat (3)–(5) till converges.

III. MAIN RESULT

Now we state and prove Theorem 1, which is the main con-
tribution of this paper. Before proceeding further, we need the
following definitions.

1Note that, as defined, � need not be a matching. Theorem 1 shows that for
large enough k, � is a matching and corresponds to the MWM.
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Fig. 1. When n = 3 (a) is T and (b) is T .

Definition 1: Let be the difference between the weights of
the MWM and the second MWM; i.e.,

Due to the uniqueness of the MWM, . Also, define
.

Theorem 1: For any weighted complete bipartite graph
with unique MWM, the max-product or min-sum algorithm
when applied to the corresponding GM as defined above,
converges to the correct MAP assignment or the MWM within

iterations.

A. Proof of Theorem 1

We first present some useful notation and definitions. Con-
sider , . Let be the level- unrolled tree
corresponding to , defined as follows: is a weighted reg-
ular rooted tree of height with every non-leaf having degree

. All nodes have labels from the set
according to the following recursive rule: a) the root has label

; b) the children of the root have labels ;
and c) the children of each non-leaf node whose parent has
label (or ) have labels (or

). The edge between nodes labeled
in the tree is assigned weight for , .

Examples of such a tree for are shown in the Fig. 1.

Note 2. is often called the level- computation tree at
node corresponding to the GM under consideration. The
computation tree in general is constructed by replicating the
pairwise compatibility functions and potentials

, , while preserving the local connectivity of
the original graph. They are constructed so that the messages
received by the node after iterations in the actual graph are
equivalent to those that would be received by the root in the
computation tree, if the messages are passed up along the tree
from the leaves to the root. The computation tree has been used
in most of the previous work on analyzing the BP algorithm,
e.g., [8], [10], [20], [22], [23].

A collection of edges in the computation tree is called a
-matching if no two edges of are adjacent in the tree ( is a

matching in the computation tree) and each non-leaf node is the
endpoint of exactly one edge from . Let be the weight
of a maximum weight -matching in which uses the edge

at the root.
Now, we state two important lemmas that will lead to the

proof of Theorem 1. The first lemma presents an important char-
acterization of the min-sum algorithm while the second lemma
relates the maximum weight -matching of the computation
tree to the MWM in .

Lemma 1: At the end of the th iteration of the min-sum
algorithm, the belief at node of is precisely

.

Lemma 2: If is the MWM of graph then for

That is, for large enough, the maximum weight -matching
in chooses the edge at the root.

Proof of Theorem 1: Consider the min-sum algorithm. Let
. Recall that where
. Then, by Lemmas 1 and 2, for

, .

Next, we present the proofs of Lemmas 1 and 2 in that order.

Proof of Lemma 1: It is known [21] that under the min-sum
(or max-product) algorithm, the vector corresponds to the
correct max-marginals for the root of the MAP assignment
on the GM corresponding to . The pairwise compatibility
functions force the MAP assignment on this tree to be a

-matching. Now, each edge has two endpoints and hence its
weight is counted twice in the weight of the -matching.

Next, consider the th entry of , . By definition, it
corresponds to the MAP assignment with the value of at the
root being . That is, the edge is chosen at the root in



BAYATI et al.: MAX-PRODUCT FOR MAXIMUM WEIGHT MATCHING 1245

Fig. 2. Consider a graph with MWM shown in (a). Projection of the path P for k = 4 as shown in (d) is decomposed to (b): path Q of length 4 and (c): cycle
C of length 4. The dashed edges belong to � while bold edges belong to � .

the tree. From the above discussion, must be equal to
.

Lemma 2 is the main step in proving Theorem 1 and its proof
covers more than one page. Before going into the details of
proof, let us give a high level description of it. Consider the com-
putation tree rooted at vertex and look at maximum
weight -matching on it. We assume that at the root, maximum
weight -matching of does not choose the correct edge

. Then we use the property of -matchings that each
vertex is connected to exactly one of its neighbors to construct
a new -matching on computation tree. This new matching is
going to have larger total weight if depth of the computation tree
is large enough. This last step uses an augmenting path based
argument for this matching problem. The above will contradict
the assumption that decision at the root is incorrect, and proves
Lemma 2.

Proof of Lemma 2: Assume the contrary that for some
,

for some (6)

Then, let for . Let be the -matching on
whose weight is . We will modify and find whose
weight is more than and which connects at the
root instead of , thus contradicting (6).

First note that the set of all edges of whose projection in
belongs to is a -matching which we denote by .

Now consider paths , in , that contain edges from
and alternatively defined as follows. Let ,

, and be a single vertex path. Let
, where is such that is con-

nected to under . For , define and
recursively as follows:

where is the node at level to which the endpoint node
of path is connected to under , and is

such that at level (part of ) is connected to
under . Note that, by definition, such paths for
exist since the tree has levels and can support a path
of length at most as defined above.

Example 2: Fig. 2(d) provides an example of such a path. The
corresponding bipartite graph has with its MWM shown
in Fig. 2(a). Fig. 2(d) shows , the computation tree for node

, till depth . A path, is highlighted by thick edges
alternatively complete and bold (edges from ) and dashed
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(edges from ). In the figure, ; ;
; and so on. Finally

where is a cycle of length (see
Fig. 2(c)) and is a path of length
(see Fig. 2(b)).

Now consider the path of length . Its edges are alter-
nately partitioned into edges from and edges . Let us refer
to the edges of as the -edges of . Replacing the -edges
of with their complement in (all edges of ) pro-
duces a new matching in ; this follows from the way the
paths are constructed. Note that is exactly equal to on
except along the path where it uses edges from .

Lemma 3: The weight of -matching is strictly higher
than that of on tree .

This completes the proof of Lemma 2 since Lemma 3 shows
that is not the maximum weight -matching on , leading
to a contradiction.

Now, we provide the proof of Lemma 3.

Prooof of Lemma 3: It suffices to show that the total weight
of the -edges is less than the total weight of their complement
in . Consider the projection of in the graph .

can be decomposed into a union of a set of simple cycles
and at most one even length path of length

at most . Since each simple cycle has at most vertices and
the length of is

(7)

Consider one of these simple cycles, say . Construct the
matching in as follows: i) For , select edges
incident on that belong to . Such edges exist by the property
of the path that contains . ii) For , connect it
according to , that is, add the edge .

Now by construction. Since the MWM is unique,
the definition of gives us

However, is exactly equal to the total weight of the
-edges of , denoted by , minus the total weight of

the -edges of , denoted by . Thus

(8)

Since the path is of even length, either the first edge or the
last edge is an -edge. Without loss of generality, assume it is
the last edge. Then, let

Now consider the cycle

Alternate edges of are from the MWM . Hence, using the
same argument as above, we obtain

(9)

From (7)–(9), we obtain that for -matchings and in

(10)

This completes the proof of Lemma 3.

IV. COMPLEXITY

In this section, we will analyze the complexity of the
min-sum algorithm described in Section II-B. Theorem 1 sug-
gests that the number of iterations required to find the MWM
is . Now, in each iteration of the min-sum algorithm
each node sends a vector of size (i.e., numbers) to each
of the nodes in the other partition. Thus, the total number
of messages exchanged in each iteration are with each
message of length . Now, each node performs basic
computational operations (comparison, addition) to compute
each element in a message vector of size . That is, each node
performs operations to compute a message vector in
each iteration. Since each node sends message vectors, the
total cost is per node or per iteration for all nodes.
Thus, the total cost for iterations is .

Thus, for fixed and , the running time of the algorithm
scales as . Standard algorithms such as the Edmond–Karp
algorithm [9] or the auction algorithm [7] have a complexity of

. In what follows, we simplify the min-sum algorithm so
that the overall running time of the algorithm becomes
for fixed and . We make a note here that the Edmond–Karp
algorithm is strongly polynomial (i.e., does not depend on
and ) while the auction algorithm’s complexity is .
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A. Simplified Min-Sum Algorithm for

We first present the algorithm and show that it is exactly the
same as the min-sum algorithm. Later, we analyze the com-
plexity of the algorithm.

Simplified min-sum algorithm.

(1) Unlike min-sum algorithm, now each sends a
number to and vice versa. Let the message from

to in iteration be denoted as

Similarly, let the messages from to in iteration
be denoted as

(2) Initially and set the messages as follows:

Similarly

(3) For , messages in iteration are obtained from
messages of iteration recursively as follows:

(11)

(4) The estimated MWM at the end of iteration is
, where , for

.
(5) Repeat (3)–(4) till converges

Now, we state and prove the claim that relates the above mod-
ified algorithm to the original min-sum algorithm.

Lemma 4: In min-sum algorithm adding an equal amount
to all coordinates of any message vector (similarly

) at any time does not change the resulting estimated
matching for all , .

Proof: If a number is added to all coordinates of it
is not hard to see from (4) and structure of that other
message and belief vectors will change only up to an additive
constant to their coordinates. Hence, these changes do not affect

, for .

Lemma 5: The algorithms min-sum and simplified min-sum
produce identical estimated matchings at the end of every
iteration .

Proof: Consider the min-sum algorithm. In particular, con-
sider a message vector in iteration . First, we claim
that all for any given , , are the same.
That is, for and

For , this claim holds by definition. For , consider
the definition of ,

(12)

The first equality follows from definition in min-sum algorithm
while second equality follows from property of .
Equation (12) is independent of . This proves the desired
claim.

The above stated property of min-sum algorithm immediately
implies that the vector has only two distinct values,
one corresponding to and the other corresponding
to , . Now subtract , from
all coordinates of . Lemma 4 guarantees the resulting
matching for all does not change. Performing the same
modification to all message vectors yields a modified min-sum
algorithm with the same outcome as min-sum. But each mes-
sage vector in this modified min-sum has all coordi-
nates equal to zero except the th coordinate. Denote these th
coordinates by . Now (4) shows these for all , , num-
bers satisfy the following recursive equations:

(13)

Similarly, for new beliefs we have

(14)

Now by adding to each side of (13) and dividing them by

it can be seen from (11) that numbers and
satisfy the same recursive equations. They also satisfy the same
initial conditions. As a result for all , , we have

(15)

and

(16)

This shows that the estimated matching computed at nodes in
modified min-sum and simplified min-sum algorithms are ex-
actly the same at each iteration which completes the proof of
Lemma 5.

Note 3. The simplified min-sum equations can also be derived
in a direct way by looking at the interpretation of the messages
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in the computation tree. More specifically, con-

sider the level- computation tree rooted at , . Also
consider its subtree , built by adding the edge at
the root of to graph of all descendants of . One can
show that the message is equal to the difference be-
tween weight of maximum weight -matching in that
uses the edge at the root and weight of the maximum
weight -matching in that does not use that edge. Now
a simple induction gives us the update (11).

B. Complexity of Simplified Min-Sum

Lemma 5 and Theorem 1 immediately imply that the sim-
plified min-sum, like min-sum, converges after iter-
ations. As described above, the simplified min-sum algorithm
requires a total of messages per iteration. Thus, for fixed

and , the algorithm requires a total of messages to
be exchanged.

Now, we consider the number of computational operations
done by each node in an iteration. From the description of sim-
plified min-sum algorithm, it may seem that each node will re-
quire to do work for sending each message and thus
work overall at one node. But, we present a simple method that
shows each node can compute message for all of its neighbors
with computational operation (comparison, addition/sub-
traction). This will result in overall computation per it-

eration. Thus, it will take computation in

iterations. This will result in total complexity of in
terms of overall messages as well as computation operations.

Here we describe an algorithm to compute messages
, using received messages ,

. This is the same algorithm that all , ,
and , , need to employ. Now, define

Then, from (11) we obtain

for (17)

We see that computing all messages takes op-
erations. From (17), it takes node computations to find

, , , , then it takes computation to compute

each of the , . That is, it takes opera-
tions for computing all messages , .

Thus, we have established that each node , ,
and , , need to perform computations to
compute all of its messages in a given iteration. That is, the
total computation cost per iteration is . In summary, The-
orem 1, Lemma 5, and discussion of this Section IV-B immedi-
ately yield the following result.

Theorem 2: The simplified min-sum algorithm finds the
MWM in iterations with total computation cost of

and total number of message exchanges.

V. AUCTION AND MIN-SUM ALGORITHMS

In this section, we will first recall the auction algorithm [7]
and then describe its relation to the min-sum algorithm.

A. Auction Algorithm for MWM

The auction algorithm finds the MWM via an “auction”: all
become buyers and all become objects. Let denote the

price of and be the value of object for buyer . The
net benefit of an assignment or matching is defined as

The goal is to find that maximizes this net benefit. It is clear
that for any set of prices , the MWM maximizes the
net benefit. The auction algorithm is an iterative method for
finding the optimal prices and an assignment that maximizes the
net benefit (and is therefore the MWM).

Auction algorithm.

• Initialize the assignment , the set of unassigned
buyers , and prices for all .

• The algorithm runs in two phases, which are repeated
until is a complete matching.

• Phase 1: Bidding.
For all

(1) Find benefit maximizing . Let

and (18)

(2) Compute the ”bid” of buyer , denoted by
as follows: given a fixed positive

constant ,
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• Phase 2: Assignment.
For each object ,

(3) Let be the set of buyers from which received
a bid. If , increase to the highest bid

(4) Remove the maximum bidder from and add
to . If , , then put

back in .

Theorem 3 [6]: If , then the assignment
converges to the MWM in iterations with running
time (where and are as defined earlier).

B. Connecting Min-Sum and Auction

The similarity between (17) and (18) suggests a connection
between the min-sum and auction algorithms. In the auction al-
gorithm, the equations for calculating the bids are exactly the
same as those for updating messages in the simplified min-sum
algorithm. But when updating the prices, the maximum is taken
over all incoming bids which is different from the dynamics of
the simplified min-sum equations. Moreover, in the auction al-
gorithm, bidders do not bid at every iteration and do not bid
to every object but in the simplified min-sum algorithm each
vertex sends a message to all of its neighbors at every iteration.
Based on these similarities and the difference we made modifi-
cations to both the simplified min-sum and auction algorithms
which we called min-sum auction I and min-sum auction II, re-
spectively. We will show that these versions are equivalent and
derive some of their key properties. Here we consider the naïve
auction algorithm (when ) and deal with the case in
Section V-B-I.

Min-sum auction I.

(1) Each sends a number to and vice versa.
Let the messages in iteration be denoted as

.
(2) Initialize and set .
(3) For , update messages as follows:

(19)

(4) The estimated MWM at the end of iteration is the
set of edges where

and

(5) Repeat (3)–(4) till is a complete matching.

Min-sum auction II.

• Initialize the assignment and prices for
all .

• The algorithm runs in two phases, which are repeated
until is a complete matching.

• Phase 1: Bidding.
For all ,

(1) Find that maximizes the benefit. Let

and (20)

(2) Compute the ”bid” of buyer , denoted by

and

• Phase 2: Assignment.
For each object

(3) Set price to the highest bid,
.

(4) Reset . Then, for each add the pair
to if , where is a

buyer attaining the maximum in step (3)

Theorem 4: The algorithms min-sum auction I and II are
equivalent.

Proof: Let and denote the bids and prices at the
end of iteration in algorithm min-sum auction II. Now, identify

with and with . Then it is immediate
that min-sum auction II becomes identical to min-sum auction
I. This completes the proof of Theorem 4.

Next we will prove that if the min-sum auction algorithm ter-
minates (we omit reference to I or II), it finds the correct MWM.
As we will see, the proof uses standard arguments (see [7] for
example).

Theorem 5: Let be the termination matching of the
min-sum auction I (or II). Then it is the MWM, i.e., .

Proof: The proof follows by establishing that at termina-
tion, the messages of min-sum auction form the optimal solution
for the dual of the MWM problem and is the corresponding
optimal solution to the primal, i.e., MWM. To do so, we first
state the dual of the MWM problem

subject to (21)

Let be the optimal solution to the above stated dual
problem and let solve the primal MWM problem. Then, the
standard complimentary slackness conditions are

(22)
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Thus, are the optimal dual-primal solution for the
MWM problem if and only if a) is a matching, b) sat-
isfy (21), and c) the triple satisfies (22). To complete the proof,
we will prove the existence of , such that satisfy
conditions a)–c).

To this end, first note that is a matching by the termination
condition of the algorithm; thus, condition a) is satisfied. We
shall consider the min-sum auction II algorithm for the purpose
of the proof. Suppose the algorithm terminates at some iteration

. Let and be the prices of in iterations and ,
respectively. Since all ’s are matched at the termination, from
step (4) of the min-sum auction II, we obtain

(23)

At termination (iteration ), is matched with or is
matched with . By the definition of the min-sum auction
II algorithm

(24)

From (23) and (24), we obtain that

(25)

Define and . Then, from (25),
satisfy the dual feasibility, that is, (21). Further, by def-

inition they satisfy the complimentary slackness condition (22).
Thus, the triple satisfies conditions a)–c) as required.
Hence, the algorithm min-sum auction II produces the MWM,
i.e., .

The min-sum auction II algorithm looks very similar to the
auction algorithm and inherits some of its properties. However,
it also inherits some properties of the min-sum algorithm. This
causes it to behave differently from the auction algorithm. The
proof of convergence of the auction algorithm relies on two
properties of the auctioning mechanism: a) the prices are always
nondecreasing and b) the number of matched objects is always
nondecreasing. By design, a) and b) can be shown to hold for
the auction algorithm. However, it is not clear if a) and b) are
true for min-sum auction. In what follows, we state the result
that prices are eventually nondecreasing in the min-sum auction
algorithm; however, it seems difficult to establish a statement
similar to b) for the min-sum algorithm as of now.

Theorem 6: If is unique then in the min-sum auction II
algorithm prices eventually increase. That is, ;
s.t ; , .

Proof: Proof of Theorem 6 is essentially based on i) the
equivalence between the min-sum auction algorithms I and II,
and ii) arguments very similar to the ones used in the proof of
Lemma 2, where we relate prices with the computation tree.

Our simulations suggests that in the absence of the condition
“ ” from step (4) of min-sum auction I, the
algorithm always terminates and finds the MWM as long as it
is unique. This along with Theorem 6 leads us to the following
conjecture.

Conjecture 1: If is unique then the min-sum auction I ter-
minates in a finite number of iterations if condition “

” is removed from step (4).

C. Relation to -Relaxation

In the previous section, we established a relation between the
min-sum and auction (with ) algorithms. In [7], [6] the au-
thor extends the auction algorithm to obtain guaranteed conver-
gence in a finite number of iterations via a -relaxation for some

. At termination, the -relaxed algorithm produces a triple
such that (a1) is a matching, (b1) satisfy

(21), and (c1) the following modified complimentary slackness
conditions are satisfied:

(26)

The conditions (c1) are referred to as -CS conditions in [7].
This modification is reflected in the description of the auction
algorithm where we have added to each bid in step (2). We es-
tablished the relation between min-sum and auction for in
the previous section. Here we make a note that for every ,
a similar relation holds. To see this, we consider min-sum auc-
tion I and II where the bid computation is modified as follows:
modify step (3) of min-sum auction I as

and modify step (2) of min-sum auction II as
and , For these modified

algorithms, we obtain the following result using arguments very
similar to the ones used in Theorem 5.

Theorem 7: For , let be the matching obtained from
the modified min-sum auction algorithm I (or II). Then,

(i.e., is within of the MWM).

D. Implications

The relation between min-sum and auction algorithms re-
sulted in equivalent algorithms min-sum auction I and II. The
further modification of the min-sum auction I (or II) based on the
-relaxation method allows for designing (deterministic) dis-

tributed algorithm that works even in the presence of nonunique
MWM (Theorem 7). This suggests a method for designing mod-
ification of min-sum or max-product for general optimization
problem so as to work in the presence of a nonunique solution.
Further, the min-sum auction I algorithm by design is dual un-
like the auction being primal-dual. This may be of interest in
optimization methods on its own.

VI. DISCUSSION AND CONCLUSION

In this paper, we proved that the max-product algorithm con-
verges to the desirable fixed point in the context of finding the
MWM for a bipartite graph, even in the presence of loops. This
result has a twofold impact. First, it will possibly open avenues
for a demystification of the max-product algorithm. Second, the
same approach may provably work for other combinatorial op-
timization problems and possibly lead to better algorithms.
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Using the regularity of the structure of the problem, we man-
aged to simplify the max-product algorithm. In the simplified
algorithm, each node needs to perform addition–subtrac-
tion operations in each iteration. Since iterations are re-
quired in the worst case, for finite and , the algorithm re-
quires operations at the most. This is comparable with
the best known MWM algorithm. Furthermore, the distributed
nature of the max-product algorithm makes it particularly suit-
able for networking applications like switch scheduling where
scalability is a necessary property.

The relation that we established between the auction algo-
rithm and the min-sum algorithm is tantalizing. It suggests a
method to design modification of max-product algorithm for
general optimization problem that may work even in the pres-
ence of nonunique solutions.

Future work will consist of trying to extend our result to
finding the MWM in a general graph, as our current arguments
do not carry over.2 Also, we would like to obtain tighter bounds
on the running time of the algorithm since simulation studies
show that the algorithm runs much faster on average than the
worst case bound obtained in this paper.
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