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In this paper, we study max-weight stochastic matchings on online bipartite graphs under both vertex and

edge arrivals. We focus on designing polynomial time approximation algorithms with respect to the online

benchmark, which was first considered by Papadimitriou, Pollner, Saberi, and Wajc [EC’21].

In the vertex arrival version of the problem, the goal is to find an approximate max-weight matching of a

given bipartite graph when the vertices in one part of the graph arrive online in a fixed order with independent

chances of failure. Whenever a vertex arrives we should decide, irrevocably, whether to match it with one

of its unmatched neighbors or leave it unmatched forever. There has been a long line of work designing

approximation algorithms for different variants of this problem with respect to the offline benchmark (prophet).

Papadimitriou et al., however, propose the alternative online benchmark and show that considering this new

benchmark allows them to improve the 0.5 approximation ratio, which is the best ratio achievable with respect

to the offline benchmark. They provide a 0.51-approximation algorithm which was later improved to 0.526

by Saberi and Wajc [ICALP’21]. The main contribution of this paper is designing a simple algorithm with a

significantly improved approximation ratio of (1 − 1/e) for this problem.

We also consider the edge arrival version in which, instead of vertices, edges of the graph arrive in an

online fashion with independent chances of failure. Designing approximation algorithms for this problem

has also been studied extensively with the best approximation ratio being 0.337 with respect to the offline

benchmark. This paper, however, is the first to consider the online benchmark for the edge arrival version of

the problem. For this problem, we provide a simple algorithm with an approximation ratio of 0.5 with respect

to the online benchmark.
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1 INTRODUCTION
The extensive literature on online Bayesian selection algorithms mainly focuses on the competitive

ratio. That is, how well the algorithm performs against the optimal offline solution. Competing
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against such a strong benchmark often leads to pessimistic outcomes. For example, it is well-known

that even for the single item version of the online Bayesian selection problem, the prophet inequality

problem, no online algorithm can be better than
1/2-competitive.

Another natural objective would be to compete with the best online solution. For many variants

of online Bayesian selection problems (when the input is generated stochastically) one can write a

dynamic program that makes the best decision at any point — hence the objective function is well

defined. However, these algorithms are rarely computationally efficient. Indeed, Papadimitriou,

Pollner, Saberi, and Wajc [23] show that a variant of the online stochastic matching problem is

PSPACE-hard to approximate within some small constant. Thus, they initiate studying approxima-

tion algorithms for this problem with respect to the online benchmark. That is the solution found

by an algorithm that has unlimited computational power, but is unaware of the part of the input

that has not arrived.

In this paper, we study max-weight stochastic matchings on online bipartite graphs under both

vertex and edge arrivals. Our main focus is on designing polynomial time approximation algorithms

with respect to the online benchmark.

The Vertex arrival model. The goal in this problem is to find a large-weight matching of a

bipartite graph when vertices in one part of the graph are online, arriving in a fixed order, each

with an independent chance of failure. The vertices in the other part are present from the beginning

thus referred to as the offline vertices. The graph, the arrival order of the online vertices, and

their chances of failure are known from the beginning. The only unknown is whether a vertex

actually arrives or if it fails. If a vertex does not arrive (i.e., fails), we do nothing about it. Otherwise,

we either match it irrevocably to one of its unmatched neighbors or leave it unmatched forever.

Papadimitriou et al. [23] refer to this problem as the RideHail problem due to its applications in

ride hailing. However, it also models scenarios in other types of matching markets such as labor

markets, online advertising, etc.

There has been a long line of work designing approximation algorithms for this problem (and its

variants) with respect to the offline benchmark (see [1, 11, 15, 19, 20, 23] and the references within.)

The best known algorithm with respect to this benchmark achieves a tight 1/2 approximation

ratio [12]. In their recent work, Papadimitriou et al. [23] show that this ratio can be improved to

0.51 if one considers the online benchmark instead. The online benchmark here is defined as a

max-weight matching found by an algorithm that has unlimited computational power but does

not know the arrival/failure of the future vertices. This approximation ratio was later improved to

0.526 using a machinery developed by Saberi and Wajc [25] for an online edge coloring problem.

In this work, we design a simple algorithm with a significantly improved approximation ratio of

(1 − 1/e) ≈ 0.632 with respect to the online benchmark.

Result 1. (See Theorem 1) There exists a polynomial time algorithm for the online bipartite

stochastic matching problem under (one-sided) vertex arrivals which finds a matching of weight

at least a (1 − 1/e) fraction of the one found by the best online algorithm.

Similar to Papadimitriou et al. [23], we also consider a more general version of the problem,

which is also studied by [10–12], where upon arrival of a vertex, weights of its edges are drawn

from a known joint distribution. However, weights of edges incident to different online vertices are

still independent. In Section 3.6 we explain how our algorithm and analysis can be extended to get

the same approximation ratio of (1 − 1/e) for this more general problem.
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The Edge arrival model. The only difference between this problem and the vertex arrival

version is that here, instead of the vertices, edges are online. Similarly, the goal in this problem is to

find a large-weight matching of a bipartite graph when edges are online, arriving in a fixed order,

each with an independent chance of failure. The graph, the arrival order of the edges and their

chances of failure are known from the beginning. The only unknown is whether an edge actually

arrives or if it fails. If an edge does not arrive (i.e., fails), we do nothing about it. Otherwise, we

decide irrevocably whether to add it to our matching or not. See [16] for potential applications of

this problem.

Designing approximation algorithms for the edge arrival version of the problem has also been

studied extensively (see [6, 11, 13, 17] and the references within), with the best approximation

ratio being 0.337 with respect to the offline benchmark [11]. It is also known that with respect to

this benchmark it is not possible to achieve an approximation ratio better than
3/7 [24]. This paper,

however, is the first to consider the online benchmark for the edge arrival version of the problem.

For this problem, we provide a simple algorithm with an approximation ratio of 0.5 with respect to

the online benchmark.

Result 2. (See Theorem 2) There exists a polynomial time algorithm for the online bipartite

stochastic matching problem under edge arrivals which finds a matching of weight at least a

1/2 fraction of the one found by the best online algorithm.

1.1 Our Techniques
For both vertex and edge arrival versions of the problem, we design LP-based algorithms consisting

of an LP and a rounding procedure. The LP which we borrow from [26] outputs a fractional

solution x, where for any edge e , xe can be interpreted as the probability of this edge joining

the matching. Papadimitriou et al. [23] also use the same LP and furtur give a lower-bound of

0.875 for its integrality gap. Other than the basic matching constraints, the LP has an additional

natural constraint which is crucial for separating the online and offline solutions. This constraint

relies on the fact that whether a vertex/edge fails or not is independent of any decision made by

the algorithm for the vertices/edges arriving before that. Thus, for instance, in the vertex arrival

version, this constraint states that for any edge e = (v,u), the offline vertex u should be unmatched

with probability at least xe/pv before the arrival of vertex v . Here, pv denotes the probability of v
not failing (i.e. arriving). We explain this in more detail in Section 3.1. In this section, we focus on

discussing our rounding procedure for the vertex arrival model to present the flavor of our work.

Our rounding procedure. To round the solution of the LP, we design a simple random rounding

procedure. Upon arrival of a vertex v , it may receive matching proposals from its unmatched

neighbors. If it receives any proposals, it accepts the best one (the one with the largest weight)

and joins the matching. Otherwise, it remains unmatched. The process of sending proposals is as

follows: Whenv arrives, any of its unmatched neighbors decides independently at random whether

to send a proposal. The probability of sending these proposals is set in a way that for any edge, the

probability of it being proposed is lower-bounded by xe . This is achievable in particular due to the

LP constraint discussed above.

To be able to highlight the properties of our algorithm which allow us to improve the algorithm

proposed by Papadimitriou et al. [23], we will give a brief overview of their algorithm below.
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Algorithm proposed by Papadimitriou et al. Let us emphasize that this is just a brief and

paraphrased overview of the algorithm proposed in [23] which we include for the sake of com-

parison. They start with the same LP that we use. However, their rounding procedure is different.

Upon arrival of an online vertex vt , it picks one of its neighbors randomly proportional to the

probabilities given by the LP and sends a proposal to it. If the neighbor is unmatched it accepts the

proposal with some probability and matches with vt . These probabilities are set in a way that each

edge joins the matching with probability at least 0.51xe . However, some vertices are not able to

satisfy this for their edges by sending only a single proposal. The algorithm gives such vertices a

second chance to send another proposal if their first proposal is not accepted, and this allows them

to guarantee a matching probability of 0.51xe for all the edges. In the rest of the paper, we will

refer to this algorithm as PPSW (the authors’ initials.)

As the first difference, in PPSW the offline vertices receive the proposals and need to decide

whether to accept a proposal without knowing their future proposals. In our algorithm however,

since the online vertices are the ones receiving the proposals they can make a decision while

knowing all their options. This is particularly helpful since edges are weighted and an online

vertex has the option of picking the one with the highest weight. With this advantage, however,

comes a new challenge. We cannot guarantee that all the edges will join the matching with a large

probability. Indeed, some low-weight edges may have a very small probability. To overcome this,

instead of analyzing the rounding loss for any edge, we lower-bound the loss imposed on any

online vertex due to the rounding procedure.

The second difference is in the number of proposals a vertex can send. We do not limit the number

of proposals a vertex can send. Indeed, a vertex can send proposals as long as it is unmatched.

PPSW on the other hand, imposes the limit of two proposal per any online vertex. This is due

to the way their analysis works. The main meat of their analysis is upper-bounding the positive

correlation between the matching status of the offline vertices, and allowing the vertices to send

many proposals worsens the correlation. Let us first explain why absence of positive correlation is

desirable. A key part of our analysis is proving that our algorithm satisfies the following property:

whenever an online vertex v arrives, the probability of it not receiving any proposals from any

subset S of its neighbors is at most ∏
u ∈S

(1 − x(v ,u)/pv ). (1)

As mentioned above, the probability of v receiving a proposal from any of its neighbors u is at

least x(v ,u). Since v arrives with probability pv , the probability of it not receiving a proposal from

a neighbor u is at most (1 − x(v ,u)/pv ). Thus, property (1) follows directly if we were allowed to

assume that the matching status of the vertices in S are independent when v arrives. It is not

complicated to show that the same holds if they are not positively correlated. Unfortunately though,

trying to prove this key property through positive correlation fails as we show via an example (See

Section 3.5.) that these events can indeed be negatively correlated. However, we are still able to

prove the existence of this property via a different method without concerning ourselves with the

correlation between the matching status of the offline vertices. We even show that our analysis is

tight for an instance of the problem. Interestingly, in this instance our algorithm does not cause

any positive correlation between the matching status of the offline vertices. (See Section 3.4.) This

all means that positive correlation by itself is not the enemy. It only hurts us if it decreases the

probability of a vertex receiving at least one proposal in comparison to the case of its neighbors

being independent. Our approach is to carefully lower-bound the probability of this event using

simple mathematical tools. See Lemma 3.4 for more details.
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1.2 Further Related work
As we mentioned before, most of the literature on online Bayesian selection focuses on designing

algorithms with respect to the offline benchmark which is often referred to as the prophet. It would

be impossible to do justice to this extensive literature in this amount of space, thus we just briefly

outline some of the most relevant works here. The study of prophet inequality problem, the single

item version of the online Bayesian selection problem, was initiated by Krengel and Sucheston [21]

who give an algorithm with competitive ratio of 1/2. Their seminal work was a starting point for

studying more general versions of online Bayesian selection problems. The ones most related to

multi-item prophet inequalities under matroid constraints [20], stochastic matching under vertex

arrivals [1, 11, 15, 19, 20, 23] and stochastic matching under edge arrivals [6, 11, 13, 17].

It is worth mentioning that the connection between prophet inequalities and algorithmic mecha-

nism design first discovered by Hajiaghayi, Kleinberg and Sandholm [18], has played a significant

role in motivating the study of approximation algorithms for these online Bayesian selection

problems. For more detailed related work on the topic of prophet inequality and also its relations

to algorithmic mechanism design see [8, 22].

Max-weight matching on stochastic graphs has also been studied extensively under the query

model. That is, similar to our model, there is an underlying stochastic graph, however, to know

whether an edge exists it should be queried. Some works focus on having a small number of

queries [3–5, 27] while others require any queried and realized edge to join the matching [2, 7, 9, 14].

Themain application of thesemodels is for environments with costly queries such as organ exchange

markets.

Paper organization. The rest of the paper is organized as follows. In Section 2, we provide a

formal definition of our problems and some notions that we will use throughout the paper. Section 3

is about the vertex arrival model. In this section, we first present the algorithm and its analysis

in 3.1 and 3.3 respectively. Later, in 3.4, we provide an example for which our algorithm causes

positive correlation between the matching status of the offline vertices, and in 3.5 we show that the

analysis of our algorithm is tight. Further, in 3.6 we explain how our results can be extended to a

more general version of the problem where the weights of the edges connected to any online vertex

are drawn from a joint distribution. Finally, we discuss the edge arrival version of the problem in

Section 4 with the algorithm and its analysis being in 4.1 and 4.3 respectively.

2 PRELIMINARIES
We are given a bipartite graph G = (A,B, E) and a weight we for each edge e ∈ E. In the vertex

arrival model, we also have a probability pv for each v ∈ A and a fixed order (v1, . . . ,v |A |) over the
vertices in A. Vertices in B are initially present, but vertices in A arrive online. At any time t , with
probability pvt vertex vt arrives (or is realized). If it does, we are allowed to match vt irrevocably
to one of its unmatched neighbors or else commit to leaving it unmatched forever. If it does not

arrive, we do nothing at time t . In the edge arrival model, similarly, we are also given a probability

pe for each e ∈ E and a fixed order (e1, . . . , e |E |) over the edges. At any time t , with probability pet
edge et arrives (or is realized). If it does, we should decide irrevocably whether to add it to our

matching or lose it forever. Under both arrival models, the goal is to maximize the total weight of

the edges we add to the matching.

In this paper, our focus is on designing a polynomial time algorithms for the above problem

under both arrival models. We say that an algorithm A is an α-approximation if for any instance

I of the problem, it satisfies

E[A(I)] ≥ αE[OPTon(I)],
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whereOPTon is the optimal online algorithm. That is an algorithm that has unlimited computational

power, but its knowledge about the arrival of future vertices/edges is the same as ours.

For ease of notation, for any pair of edges e1, e2, we say e1 < e2 if e1 arrives before e2. We also

use e1 < t to mean e1 arrives before time t . (Note that in the vertex arrival model, an edge arrives

whenever its online end-point arrives.) Also, when it is clear from context, we will use t to refer to

the vertex vt (or edge et ), arriving at time t . Finally, we write our edges as ordered pairs, meaning

that for any edge (v,u) ∈ E we always have v ∈ A and u ∈ B.

3 VERTEX ARRIVALS
3.1 The Algorithm
We begin by writing a linear program that attempts to model the optimal (omnipotent) online

algorithm’s behavior. This LP is also used by Papadimitriou et al., however, for the sake of self-

containment we explain it in detail here. For any edge e ∈ E, we have a variable xe which represents

the probability of e joining the matching in OPTon. Here, the randomness can be over both the

stochastic arrivals of the vertices and any random decisions made by the algorithm. We claim then

that such xe are feasible for the following LP:

max

x

∑
e ∈E

wexe , (2)

s.t.

∑
e ∋v

xe ≤ pv ∀v ∈ A , (3)∑
e ∋u

xe ≤ 1 ∀u ∈ B , (4)

pv · (1 −
∑

e ′∋u ,e ′<e

xe ′) ≥ xe ∀e = (v,u) ∈ E , (5)

xe ≥ 0 ∀e ∈ E . (6)

The first two constraints (4 and 3) are standard matching constraints since each vertex can be

incident to at most one edge in the matching, and each v ∈ A is unmatched with probability at

least 1 − pv (when it fails). Constraint 5 is however special to the online solution. It asserts that for

any edge (vt ,u) the probability of u being unmatched before time t (the left-hand side) is at least

xe/pvt . This is due to the fact that arrival of vertex vt ∈ A is independent of whether u is matched

before time t . (All vertices arrive independently, and a non-omniscient algorithm must have made

all matching decisions independently of future arrivals.) If this constraint is not satisfied then u is

unmatched with probability less that xe/pvt . In this case, the probability that vt arrives and u is

still unmatched by time t is less than xe , contradicting the definition of xe .

Observation 3.1 ([26]). Let x be an optimal solution of the LP. We have OPTLP ≥ OPTon where

OPTLP =
∑

e ∈E wexe .

3.2 The Rounding Procedure
The next step of the algorithm is rounding the fractional solution of the LP. For that, we design

a simple rounding procedure that given any optimal solution of the LP (which is a fractional

matching), outputs an integral matching. Later we will prove that the output of this algorithm is a

(1 − 1/e)-approximate solution.

Our rounding procedure is very simple and natural. Whenever a vertex vt ∈ A arrives, we

construct a random subset P of its unmatched neighbors as potential matches. Any unmatched

neighbors decide independently at random whether to send a matching proposal to vt and join
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subset P . If vt receives at least one proposal (i.e., if P is nonempty), it accepts the best one (the one

with the largest weight) and joins the matching. Otherwise, it remains unmatched forever. In our

algorithm, we set the probability of sending proposals in a way that for any edge e = (vt ,u) ∈ E, it
results in

Pr[vt receives a proposal from u] ≥ xe .

This is achievable thanks to the constraint 5 of the LP which separates the online and offline

benchmarks. In other words, it is not possible to satisfy this inequality for any arbitrary fractional

matching, and this is where we use the fact that we are competing with the best online algorithm.

To be able to satisfy this property, whenever vt arrives and u is unmatched we need u to send a

proposal to vt with probability at least

xe
pt Pr[u is unmactched]

.

This is of course achievable only if this number is not larger than one, which will be shown as a

consequence of our analysis.

Algorithm 1. Rounding Procedure

1: Let x be an optimal solution of the LP.

2: LetM ← ∅ be a matching of E.
3: for t ∈ |A| do
4: v ← vt
5: Let set Nv denote neighbors of vertex v in graph G.
6: P ← ∅.
7: For any vertex u ∈ Nv , define αu =

∑
e ∋u ,e<(v ,u) xe .

8: For any vertex u ∈ Nv , if u is matched inM and x(v ,u) > 0, then with probability

x(v ,u)
pv (1−αu )

add edge (v,u) to set P independently.

9: if P is non-empty and vt is realized then
10: Add edge argmaxe ∈P we to matchingM .

11: end if
12: end for
13: Return matchingM .

3.3 The Analysis
The purpose of this section is proving that Algorithm 1 finds a (1 − 1/e)-approximate matching.

Before proceeding with our analysis, we need to define some notations. In the rest of the paper,

we useWM to represent the weighted matching outputted by Algorithm 1. Moreover, for any

vertex v , if it is matched inWM, (i.e., v ∈ WM), we useWM(v) to represent the weight of its

matching edge inWM. Note thatWM andWM(v) are both random variables. For any vertex

u ∈ B and any time t , we define

αt ,u :=
∑

e ∋u ,e<(vt ,u)

xe .

Finally, for a given subset of vertices S ⊂ B, we define ESt to be the event in which all the vertices

from S are matched before time t , and F St to similarly be the event that all vertices in S are still free

(unmatched) just before time t .
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In our calculations, we will make use of the following lemma. However, to preserve the flow of

the paper, we defer its proof to Section 5.

Lemma 3.2. Let S ⊂ B be a set of vertices. Suppose we associate each vertex u ∈ S with a number

wu ∈ R. Then

∑
X ⊂S

Pr

[
ES\Xt ∩ FXt

] ∏
u ∈X

wu =
∑
X ⊂S

Pr

[
ES\Xt

] (∏
u ∈X

wu

) ∏
u ∈S\X

(1 −wu ).

We can now begin our analysis with a crucial property of our algorithm. That is upper-bounding

the probability of all the vertices in S being matched before time t for any S ⊂ B.

Lemma 3.3. At any time t , for any subset of vertices S ⊂ B, we have

Pr[ESt ] ≤
∏
u ∈S

αt ,u . (7)

Proof. We use proof by induction on t . Our claim holds for the base case of t = 1 as for t = 1,

both sides of Equation 7 equal to zero for nonempty S (and one for S = ∅). Assuming that for some

t ≥ 1, this equation holds, we will prove it for t + 1. In other words, we will prove

Pr[ESt+1] ≤
∏
u ∈S

(αt ,u + x(t ,u)), (8)

for any S ⊂ B. For now, we assume that

αt+1,u = αt ,u + x(vt ,u) < 1 (9)

holds for all u ∈ S . For such u, we may define

βt ,u =
x(vt ,u)

1 − αt ,u
∈ [0, 1). (10)

We aim to show that S satisfies Equation 8. For ESt+1 to occur, either all of S was matched already

before time t , or some vertex u ∈ S was matched exactly at time t , with the others matched before.
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This lets us compute

Pr[ESt+1] = Pr[ESt ] +
∑
u ∈S

Pr

[
ES\{u }t ∩ F {u }t

]
Pr

[
(vt ,u) ∈ M | E

S\{u }
t ∩ F {u }t

]
≤ Pr[ESt ] +

∑
u ∈S

Pr

[
ES\{u }t ∩ F {u }t

] x(vt ,u)

pv (1 − αt ,u )
pv (11)

(to be matched, (vt ,u) must have been added to P and vt must have arrived, independently)

=
∑
X ⊂S
|X | ≤1

Pr

[
ES\Xt ∩ FXt

] ∏
u ∈X

βt ,u

≤
∑
X ⊂S

Pr

[
ES\Xt ∩ FXt

] ∏
u ∈X

βt ,u (Equation 10)

=
∑
Y ⊂S

Pr

[
ES\Yt

] (∏
u ∈Y

βt ,u

) ∏
u ∈S\Y

(
1 − βt ,u

)
(Lemma 3.2)

≤
∑
Y ⊂S

©«
∏

u ∈S\Y

αt ,u
ª®¬
(∏
u ∈Y

βt ,u

) ∏
u ∈S\Y

(
1 − βt ,u

)
(inductive hypothesis, and Equation 10)

=
∏
u ∈S

(
βt ,u + αt ,u (1 − βt ,u )

)
=

∏
u ∈S

x(vt ,u) + αt ,u (1 − αt ,u − x(vt ,u))

1 − αt ,u

=
∏
u ∈S

(x(vt ,u) + αt ,u ),

which is exactly Equation 8.

Before we complete our proof, we must still consider S ⊂ B where, for at least some u ∈ S , the
inequality from Equation 9 is violated. Let S ′ ⊂ S denote the vertices satisfying Equation 9. Then

Pr[ESt+1] ≤ Pr[ES
′

t+1] ≤
∏
u ∈S ′

αt+1,u ≤
∏
u ∈S

αt+1,u ,

since for any u ∈ S \ S ′, we have αt+1,u > 1 (and all other αt ,u are non-negative). □

Lemma 3.4. In Algorithm 1, at any time t , for any subset of vertices S ⊂ B, the probability that

none of the vertices in S joins P is upper-bounded by∏
u ∈S

(1 − x(t ,u)/pt ).

Proof. Pick some S ⊂ B. In order for none of the vertices from S to join P , then each u ∈ S that

is still unmatched must fail to be sampled with probability

x(vt ,u)
pt (1−αu )

= βt ,u/pt , using βt ,u as defined
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in the proof of Lemma 3.3. We can thus bound this probability to be at most∑
X ⊂S

Pr

[
ES\Xt ∩ FXt

] ∏
u ∈X

(1 − βt ,u/pt )

=
∑
Y ⊂S

Pr

[
ES\Yt

] (∏
u ∈Y

(1 − βt ,u/pt )

) ∏
u ∈S\Y

βt ,u/pt (Lemma 3.2)

≤
∑
Y ⊂S

©«
∏

u ∈S\Y

αt ,u
ª®¬
(∏
u ∈Y

(1 − βt ,u/pt )

) ∏
u ∈S\Y

βt ,u/pt (Lemma 3.3)

=
∏
u ∈S

(αt ,uβt ,u/pt + 1 − βt ,u/pt )

=
∏
u ∈S

αt ,ux(t ,u)/pt + (1 − αt ,u ) − x(t ,u)/pt

1 − αt ,u

=
∏
u ∈S

(1 − x(t ,u)/pt ). □

Lemma 3.5. For any vertex vt ∈ A, and any non-negative numberw we have:

Pr[WM(vt ) ≥ w] ≥ (1 − 1/e)
∑

e ∋vt ,we ≥w

xe . (12)

Proof. Fix some vt ∈ A andw ≥ 0. Let S ⊂ B denote the set of all u ∈ B such thatw(vt ,u) ≥ w .

Then as long as some vertex from S is added to P at time t , and vertexvt arrives, thenWM(vt ) ≥ w
will hold. Note that the arrival of vt is independent of P , so we can compute

Pr[WM(vt ) ≥ w] = pt Pr[S ∩ P , ∅]

= pt − pt
∏
u ∈S

(1 − x(t ,u)/pt ) (Lemma 3.4)

≥ pt − pt

(
1 −

∑
u ∈S

x(t ,u)

pt |S |

) |S |
(AM-GM)

≥ pt − pt exp

[
−

∑
u ∈S

x(t ,u)/pt

]
≥ pt − pt

(
1 − (1 − 1/e)

∑
u ∈S

x(t ,u)/pt

)
(convexity)

= (1 − 1/e)
∑
u ∈S

x(t ,u). □

Theorem 1. Algorithm 1 outputs a (1 − 1/e)-approximate matching, that is∑
vt ∈A

E[WM(vt )] ≥ (1 − 1/e) · OPTon.

Proof. By Observation 3.1 we know that OPTLP gives us an upper-bound for OPTon, that is:∑
e ∈E

wexe =
∑
vt ∈A

∑
e ∋vt

wexe ≥ OPTon.
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As a result, to prove this theorem, it suffices to show that for any vertex vt ∈ A we have

E[WM(vt )] ≥ (1 − 1/e)
∑
e ∋vt

wexe ,

which is the same as proving∑
e ∋vt

wexe − E[WM(vt )] ≤

(∑
e ∋vt

wexe

)
/e . (13)

By definition, for any vertex vt ∈ A we can write the left-hand side of this inequality as

∑
e ∋vt

wexe − E[WM(vt )] =

∫ ∞

w=0

( ∑
e ∋vt ,we>w

xe

)
−

∫ ∞

w=0
Pr[WM(vt ) > w]

=

∫ ∞

w=0

( ∑
e ∋vt ,we>w

xe − Pr[WM(vt ) > w]

)
≤

∫ ∞

w=0

( ∑
e ∋vt ,we>w

xe

)
/e (Lemma 3.5)

=

(∑
e ∋vt

wexe

)
/e .

This proves Equation 13 and concludes the proof of the theorem. □

3.4 Positive Correlation
Much of the detail needed in our proof of Theorem 1 and related lemmas is due to handling potential

correlation between the matched/unmatched status of the vertices in B. In particular, the proof

of our main lemma (Lemma 3.4) could proceed fairly directly if we were allowed to assume that

events E {u1 }t , . . . , E
{u |B | }
T (the events that vertices in u ∈ B are matched before any time t ), are

independent from each other. Similarly, if we had the notion of negative dependence used in [23],

namely negative association of the indicator variables for the events E {u }t , this would also suffice to

arrive at Lemma 3.4. In this section, we will show that a more involved analysis such as ours is in

fact necessary since our algorithm sometimes causes positive correlation between these events. We

construct a bipartite graph G = (A,B, E) with A = {v1,v2,v3} and B = {u1,u2}, such that before

time t = 3 the events E {u1 }
3

and E {u2 }
3

are in fact positively correlated. The edge set, along with the

values of pv and xe for v ∈ A and e ∈ E are given in the following diagram:

1/2

v1

1/4

v2

ε

v3

u1 u2

1/2 1/8 > 0

1/8

> 0
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One can easily verify that our solution x satisfies the LP constraints, and is optimal for certain

values of w (in particular, when w(v1,u1) = 100, and when w(v2,u1) = 2 and w(v2,u2) = 1, and small

weights incident to v3).

With probability 1/2, the first vertex v1 arrives, and is matched with u1 with probability
1/2

1/2
= 1.

Assuming this occurs, v2 matches u2 if it arrives (with probability 1/4) and u2 is added to P in the

second step (with probability
1/8

1/4
= 1/2).

The other 1/2 of the time, the first vertexv1 does not arrive, so u1 is added to P in the second step

with probability
1/8

(1/4)(1−1/2)
= 1 when v2 arrives with probability 1/4, and no edges are matched

otherwise. Overall, after time t = 2, both u1 and u2 are matched with probability 1/8, neither is

matched with probability 3/8, and justu1 is matched with probability 3/8+1/8 = 1/2. The indicator

variables for the events E {u1 }
3

and E {u2 }
3

will thus have positive covariance

Pr

[
E {u1,u2 }
3

]
− Pr

[
E {u1 }
3

]
Pr

[
E {u2 }
3

]
= 1/8 − (5/8)(1/8) = 3/64 > 0.

3.5 Tightness of the Analysis
First, we show that our algorithm indeed loses the factor of (1 − 1/e) compared to OPTon. We

construct the graph G = (A,B, E), where A = {v1, . . . ,vn,v∗} and B = {u1, . . . ,un}. For each i ,
there are edges (vi ,ui ) and (v∗,ui ) with weights 1/n2 and 1 respectively. The vertices from A arrive

in order v1, . . . ,vn,v∗, and we have pvi = 1 − 1/n for all i and pv∗ = 1. Then, the unique optimal

solution x to our LP is given in the following diagram (namely, x(vi ,ui ) = 1− 1/n and x(v∗,ui ) = 1/n).

v1 v2 vn

v∗

u1 u2 un

. . .

. . .

1 − 1/n 1 − 1/n 1 − 1/n

1/n 1/n 1/n

Consider what our algorithm would do faced with this graph. For each i , it would add ui to P with

probability 1, then add (vi ,ui ) to our matching if vi is realized. Hence, the probability that ui is
unmatched by the time we get to vertex v∗ is exactly 1/n, and is independent of all other vertices

from B. The probability that v∗ will have no neighbors unmatched is thus (1 − 1/n)n .
We can now bound our algorithms expected matching weight to be at most

(1 − (1 − 1/n)n) + n(1 − 1/n)(1/n2),

which for large n gets arbitrarily close to 1− 1/e . On the other hand, a trivial online algorithm could

instead never match any of the edges (vi ,ui ), and always take one of the edges (v∗,ui ), obtaining a

matching with weight 1 always. The optimal online algorithm, OPTon, would thus need to attain at
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least 1 in expectation, proving that our algorithm can never be (1 − 1/e + ε)-competitive for any

ε > 0.

Note that in this example, for any vertex A at the time of its arrival, the matching status of its

neighbors are independent. This intuitively means that the loss our algorithm incurs is not due to

the correlation it causes between the matching status of the vertices.

3.6 Generalization of the Algorithm and Analysis
With our analysis complete, we can now extend our algorithm to amore general version of the vertex

arrival model, allowing for distributions over edge weights. We will first describe the new model,

which Papadimitriou, Pollner, Saberi, and Wajc also considered for their algorithm [23]. We will

then explain the main considerations for adapting our algorithm and analysis from Sections 3.1–3.3

for this harder case.

General Vertex Arrival Model. Just as in the original vertex arrival model (described in Section 2),

we have a known bipartite graph G = (A,B, E) and fixed order (v1, . . . ,v |A |) over the vertices in
A. Vertices in B are initially present, but vertices in A arrive online in this order. However, rather

than having fixed weights for all edges, with each vertex vt ∈ A arriving with a probability pvt , we
instead realize a samplewt

from a distribution over possible weights for all edges incident to vt .
Formally, for each time 1 ≤ t ≤ |A|, there is a joint distribution Dt with finite support over

non-negative assignments of weights for all edges incident to vt . At time t , we draw a sample

wt ∼ Dt . This tells us the realized weight wt
e for each edge e = (vt ,u) incident to vt . As before,

we may now choose to match vt irrevocably to one of its unmatched neighbours. The goal is to

maximize the total realized weight of all edges in our matching, given by

∑
(vt ,u)∈M

wt
(vt ,u)
,

whereM denotes the set of edges in our final matching.

We note that this is indeed a generalization of our original vertex arrival model, which can be

represented here by Dt yielding the vector of values (w(vt ,u))u with probability pt , and the zero

vector with probability 1 − pt .

Modified Algorithm. To begin, we modify our LP from Section 3.1 to yield another LP relaxation

under this more general model, using the same natural extension as given in [23].

Since our distributions Dt are assumed to be finite, for each t , we let pt ,i denote the probability
mass for the i-th possibility (and i varies from 1 to the size of the support of Dt ), and definewt ,i ,u
to be the weight assigned to edge (vt ,u) in this case. We will have variables yt ,i ,u representing the

probability of vt being matched to u with valuewt ,i ,u in OPTon. These take the place of xe from
before (representing the probability of e being in our matching), so we can now give our modified
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LP:

max

y

∑
(vt ,u)∈E ,i

wt ,i ,u · yt ,i ,u , (14)

s.t.

∑
(vt ,u)∈E

yt ,i ,u ≤ pt ,i ∀vt ∈ A, i , (15)∑
t ,i

yt ,i ,u ≤ 1 ∀u ∈ B , (16)

pt ,i · (1 −
∑

t ′<t ,i′
yt ′,i′,u ) ≥ yt ,i ,u ∀vt ∈ A,u ∈ B, i , (17)

yt ,i ,u ≥ 0 ∀vt ∈ A,u ∈ B, i . (18)

The actual rounding procedure of Algorithm 1 also needs modification. At each iteration of the

loop, we will first samplewt ∼ Dt , obtaining some possibility î . We can define

αu =
∑
t ′<t ,i

yt ′,i ,u (19)

instead at Line 7. We will now add each vertexu ∈ Nv to P independently with probability

yt ,î ,u
pt ,î (1−αu )

instead of

x(v ,u)
pv (1−αu )

at Line 8. This is again easily seen to be well-defined, by Equation 17 from our

modified LP. The maximum weight sampled neighbour will then be chosen based on the sampled

weightswt ,î ,u .

Modified Analysis. Our analysis remains largely valid, and applies to this more general model

with minor modifications.

To start, αt ,u must be defined as in Equation 19. This allows the proof of Lemma 3.3 to go through

as written, replacing occurrences of x(vt ,u) with
∑

i yt ,i ,u . We must also more carefully expand the

probability at Equation 11, observing that

Pr

[
(vt ,u) ∈ M | E

S\{u }
t ∩ F {u }t

]
≤

∑
i

pt ,i
yt ,i ,u

pt ,i (1 − αt ,u )
= βt ,u .

Lemma 3.4 needs slight adjustment to its statement. We can instead show that, for any i , if we
assume that the i-th possible weight vector is drawn from Dt

, so the realized weight of (vt ,u) is
wt ,i ,u for all u, then the probability that no vertex from S joins P is upper-bounded by∏

u ∈S

(1 − yt ,i ,u/pt ,i ).

The proof now still holds, replacing all occurrences of x(t ,u) with yt ,i ,u , and replacing occurrences

of pt with pt ,i .
Lemma 3.5 can be modified similarly, again conditioning on the realization of Dt

, and making

the same substitutions, defining S ⊂ B as all u ∈ B wherewt ,i ,u ≥ w for the assumed realization i .
Finally, to extend Theorem 1 to this more general model, by taking expectations over the drawing

ofwt ∼ Dt
, it suffices to show for any time t and realization i that

E[WM(vt ) | w
t
u = wt ,i ,u ] ≥ (1 − 1/e)

∑
(vt ,u)∈E

wt ,i ,uyt ,i ,u .

Again, the proof carries out similarly to before, using our conditional version of Lemma 3.5, and

replacing occurrences ofw(vt ,u) and x(vt ,u) withwt ,i ,u and yt ,i ,u , respectively.
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4 EDGE ARRIVALS
4.1 The Algorithm
Similar to the vertex arrival version, we start with an LP for the online problem, and use its solution

to build our matching. Again, for each edge e ∈ E, we have the variable xe represent the probability
of e joining the matching in OPTon.

max

x

∑
e ∈E

wexe , (20)

s.t.

∑
e ∋u

xe ≤ 1 ∀u ∈ A ∪ B , (21)

pe · (1 −
∑

e ′∋v ,e ′<e

xe ′) ≥ xe ∀e = (v,u) ∈ E , (22)

pe · (1 −
∑

e ′∋u ,e ′<e

xe ′) ≥ xe ∀e = (v,u) ∈ E , (23)

xe ≥ 0 ∀e ∈ E . (24)

We would again like to assert that any xe corresponding to the execution of OPTon yields a valid

solution to this LP. Constraint 21 is as before.

We now consider Constraint 22. In order for OPTon to add e = (v,u) to the matching, it cannot

havematched any edge tov already. This occurswith probability exactly

∑
e ′∋v ,e ′<v xe ′ , by definition

of e ′, and since the corresponding events are disjoint. Finally, since pe being realized is independent
from all previous realizations (and any randomness used by the algorithm), the probability that

v has not been matched and e is realized is given by the left-hand side of Constraint 22, and

so the bound must follow. Constraint 23 is similar, and we obtain an observation analogous to

Observation 3.1.

Observation 4.1. Let x be an optimal solution of the LP. We have OPTLP ≥ OPTon where OPTLP =∑
e ∈E wexe .

4.2 The Rounding Procedure
We give our online rounding procedure in Algorithm 2. Here, we think of the vertices u ∈ B as

again making proposals to their neighbours v ∈ A with some probability (based on b), as long as
the corresponding edge ei is realized. Then, v must decide if it accepts a proposal online. This is as

opposed to the vertex arrival model, where v knew all its proposals upon arrival. Since the graph

is weighted, simply accepting the first proposal may result in a significant loss. To resolve this

issue, our algorithm is designed in a way that each edge e joins the final matching with probability

exactly xe/2. In this sense, our algorithm resembles the one designed by Ezra et al. [11] for the

vertex arrival version of the problem.

Before stating the algorithm formally, we give a brief overview. The algorithm starts with all the

vertices marked as alive, but as the algorithm proceeds it marks some of them as dead. Vertices in

B only die when they are matched. However, we sometimes mark a vertex in A as dead without it

being matched. At any time t , when edge e = (v,u) arrives, the algorithm needs to decide whether

to add this edge to the matching. Ifv is alive at this point, independent of the status ofu, it randomly

(with a probability set in Line 8 of the algorithm) decides whether to send a proposal to u. The
probability of this event is set in a way that the probability of u ever receiving a proposal from v
is equal to xe . If u is alive, it decides randomly (with a probability set in Line 10 of the algorithm)

whether to accept the proposal. If a match happens, we mark u as dead to ensure that we do not

match it again in the future. However, vertex v dies iff it send a proposal regardless of the proposal
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being accepted. This serves two purposes. First, to ensure that its future edges are not matched

with a probability higher than 1/2. Second, to ensure that alive/dead status of the vertices in A are

independent of each other throughout the algorithm.

Algorithm 2. Rounding Procedure

1: Let x be an optimal solution of the LP.

2: LetM ← ∅ be a matching of E.
3: Mark all the vertices in V as alive.

4: for t ∈ |E | do
5: Let et = (v,u) where v ∈ A and u ∈ B.
6: Define αu =

∑
e ∋u ,e<et xe .

7: Define αv =
∑

e ∋v ,e<et xe .

8: Let b be a Bernoulli random variable which is equal to one with probability
xet

pet (1−αu )
.

9: if u is alive, et is realized, and b = 1 then
10: If v is also alive, then with probability

1

2−αv
add et toM and mark v as dead.

11: Mark u as dead.

12: end if
13: end for
14: Return matchingM .

We note that this algorithm necessarily returns a valid matching since whenever we add an edge

ei = (v,u) toM , we also mark both v and u as dead (and will never again add any of their incident

edges toM). Otherwise, everything is well-defined (notably, αv ,αu ∈ [0, 1]) by the LP constraints.

4.3 The Analysis
The first half of our analysis will focus on showing that the proposals arriving at a given vertex u
are well-behaved. To begin, we show that a vertex u ∈ B proposes to v with probability exactly

x(v ,u).

Lemma 4.2. On any iteration t of Algorithm 2, the probability that the condition at Line 9 holds is

xet .

Proof. We prove this by strong induction for a given vertex u ∈ A. Fix t ≥ 1, and suppose this

holds for all t ′ < t . That is, for every (v,ut ′) < t , the probability that the condition at Line 9 holds

(that is, the probability that u proposes to vt ′) is xet ′ . Then, defining αt ,u :=
∑
u ∋e ,e<(vt ,u) xe as

computed at Line 6, the probability that u is dead at the start of iteration t is exactly αt ,u , since u is

marked dead as soon as it makes its first (and thus only) proposal.

Whether et is realized and whether b = 1 at iteration t both occur independently of what has

occurred so far, and with probabilities
xet

pet (1−αt ,u )
and pet respectively. Thus, the probability that all

three conditions from Line 9, and that u proposes to vt , is exactly xet . □

Next, we observe that for a fixed v ∈ A, the proposals received from its neighbors u ∈ B are

independent.

Lemma 4.3. For an edge et ∈ E, let Pet denote the event that in iteration t , the condition at Line 9

holds. Then for any v ∈ A, the events {P(v ,u) : (v,u) ∈ E} are independent.
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Proof. Let et = (v,u). We observe that P(v ,u) depends only on randomness from iteration t
(whether et was realized, the value of b), as well as whether u is alive or not. However, the aliveness

of u itself depends on these same variables from the previous edge incident to u processed by

the algorithm (or u is deterministically alive if et is the first such edge). Thus, inducting over all

such edges, whether u is alive or not depends only on realizations of edges and values of b from

iterations t ′ where et ′ = (v
′,u) for some v ′. Importantly, P(v ,u) is a deterministic function of these

random inputs, which are importantly disjoint from P(v ,u′) for other u
′ , u. □

Now that we know that the proposals are well-behaved, we can prove our main result for edge

arrivals.

Theorem 2. Algorithm 2 outputs a 1/2-approximate matching, that is∑
e ∈E

weE[WM(e)] ≥ OPTon/2.

Proof. We have already noted in Section 4.2 that Algorithm 2 outputs a correct matching. It thus

suffices to prove that each edge e = (v,u) is added toM with probability xe/2, by Observation 4.1.

For a given v , we prove this by induction over all edges incident to v , in order of arrival.

Fix some t ≥ 1 where et = (v,u). Suppose that any et ′ = (v,u
′) with t ′ < t is added with

probability xet ′/2. Then, at time t , the probability that v is already marked dead (equivalently, that

an edge incident to v has been added toM) is exactly

∑
e ∋v ,e<t xe/2 = αv/2, as these are disjoint

events. By Lemma 4.3, the proposals to v were independent, so even conditioned on v being still

alive, the probability that v receives a proposal from u is as given by Lemma 4.2, namely xe . Thus,
the probability that v is alive and proposed to by u, and (v,u) is then added toM , is

(1 − αv/2) · xe ·
1

2 − αv
= xe/2. □

5 PROOF OF LEMMA 3.2
Proof. We begin by considering the events E and F . Throughout, we assume a single fixed t , and

drop it from the subscripts. First, for any X ⊂ B, the set of events EX \Y ∩ FY over Y ⊂ X partition

the probability space. In particular, we get the identity∑
Y ⊂X

Pr

[
EX \Y ∩ FY

]
= 1.

Even better, this same identity holds when we condition all probabilities by an arbitrary event, so

for X ⊂ S ⊂ B we have∑
Y ⊂X

Pr

[
ES\Y ∩ FY

]
=

∑
Y ⊂X

Pr

[
ES\X

]
Pr

[
EX \Y ∩ FY | ES\X

]
= Pr

[
ES\X

]
(25)

by conditioning on ES\X .
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Letting S ⊂ B andw ∈ RS be arbitrary, we now get∑
X ⊂S

Pr

[
ES\X

] (∏
u ∈X

wu

) ∏
u ∈S\X

(1 −wu )

=
∑
X ⊂S

( ∑
Y ⊂X

Pr

[
ES\Y ∩ FY

] ) (∏
u ∈X

wu

) ∏
u ∈S\X

(1 −wu ) (Equation 25)

=
∑
Y ⊂S

Pr

[
ES\Y ∩ FY

] ∑
Y ⊂X ⊂S

(∏
u ∈X

wu

) ∏
u ∈S\X

(1 −wu )

=
∑
Y ⊂S

Pr

[
ES\Y ∩ FY

] (∏
u ∈Y

wu

) ∑
Y ⊂X ⊂S

©«
∏

u ∈X \Y

wu
ª®¬

∏
u ∈S\X

(1 −wu )

=
∑
Y ⊂S

Pr

[
ES\Y ∩ FY

] (∏
u ∈Y

wu

) ∏
u ∈S\Y

(wu + (1 −wu ))

=
∑
Y ⊂S

Pr

[
ES\Y ∩ FY

] (∏
u ∈Y

wu

)
. □
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