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METHODOLOGY Open Access

MaxBin: an automated binning method to
recover individual genomes from metagenomes
using an expectation-maximization algorithm
Yu-Wei Wu1,2*, Yung-Hsu Tang1,3, Susannah G Tringe4,5, Blake A Simmons1,6 and Steven W Singer1,7

Abstract

Background: Recovering individual genomes from metagenomic datasets allows access to uncultivated microbial

populations that may have important roles in natural and engineered ecosystems. Understanding the roles of these

uncultivated populations has broad application in ecology, evolution, biotechnology and medicine. Accurate

binning of assembled metagenomic sequences is an essential step in recovering the genomes and understanding

microbial functions.

Results: We have developed a binning algorithm, MaxBin, which automates the binning of assembled metagenomic

scaffolds using an expectation-maximization algorithm after the assembly of metagenomic sequencing reads. Binning

of simulated metagenomic datasets demonstrated that MaxBin had high levels of accuracy in binning microbial

genomes. MaxBin was used to recover genomes from metagenomic data obtained through the Human Microbiome

Project, which demonstrated its ability to recover genomes from real metagenomic datasets with variable sequencing

coverages. Application of MaxBin to metagenomes obtained from microbial consortia adapted to grow on cellulose

allowed genomic analysis of new, uncultivated, cellulolytic bacterial populations, including an abundant myxobacterial

population distantly related to Sorangium cellulosum that possessed a much smaller genome (5 MB versus 13 to

14 MB) but has a more extensive set of genes for biomass deconstruction. For the cellulolytic consortia, the MaxBin

results were compared to binning using emergent self-organizing maps (ESOMs) and differential coverage binning,

demonstrating that it performed comparably to these methods but had distinct advantages in automation, resolution

of related genomes and sensitivity.

Conclusions: The automatic binning software that we developed successfully classifies assembled sequences in

metagenomic datasets into recovered individual genomes. The isolation of dozens of species in cellulolytic microbial

consortia, including a novel species of myxobacteria that has the smallest genome among all sequenced aerobic

myxobacteria, was easily achieved using the binning software. This work demonstrates that the processes required for

recovering genomes from assembled metagenomic datasets can be readily automated, an important advance in

understanding the metabolic potential of microbes in natural environments. MaxBin is available at https://sourceforge.

net/projects/maxbin/.
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Background
The development of high-throughput genomic sequencing

technologies has enabled the recovery of genomes directly

from microbial communities in natural and engineered

environments [1]. Genomes have been recovered from

microbial communities found in acid mine drainage [2,3],

permafrost [4], cow rumen [5], surface ocean water [6],

sludge bioreactors [7], acetate-amended aquifers [8], and

infant fecal samples [9]. A key step in genome recovery

from metagenomic sequence data is the classification

of sequences assembled from metagenomic reads into

discrete units, referred to as bins. These bins represent

composite genomes of individual populations that com-

prise the microbial community. A number of approaches

have been developed to bin assembled sequences from

metagenomic data [2,4-9]. Among these techniques, one

of the most widely used is emergent self-organizing maps

(ESOMs), which have been used to bin assembled

sequences by tetranucleotide frequencies [2] and read

coverage levels (time series binning) [9]. ESOMs calcu-

lated based on tetranucleotide frequencies can be ap-

plied to individual metagenomic datasets; however, time

series ESOMs require multiple datasets for accurate

binning. A related approach to time series ESOM bin-

ning is differential coverage binning, which uses plots of

differential read coverages of assembled sequences to

distinguish individual genomic bins. In both methods,

individual bins are tested for completeness (is it a

complete genome?) and distinctiveness (does the bin

only contain one genome?) using single-copy marker

genes.

For both ESOM and differential coverage binning

approaches, individual bins are chosen manually from

a graphical output. Existing automated binning algorithms,

such as AbundanceBin [10] or MetaCluster [11,12], are

designed to bin sequencing reads instead of assembled

metagenomic scaffolds. Here, we describe the develop-

ment of a novel binning method, MaxBin, which auto-

mates binning of assembled metagenomic scaffolds

using an expectation-maximization algorithm. In this

approach, tetranucleotide frequencies and scaffold cover-

ages are combined to organize metagenomic sequences

into individual bins, which are predicted from initial

identification of marker genes in assembled sequences.

The performance of MaxBin was evaluated on simulated

metagenomic datasets, individual datasets obtained

in the Human Microbiome Project and replicates of

cellulolytic consortia enriched from compost. Gen-

omic analysis of the members of the cellulolytic

consortia revealed multiple uncultivated cellulolytic

populations, including a recovered myxobacterial gen-

ome distantly related to Sorangium cellulosum that is

substantially smaller than most known myxobacterial

genomes.

Methods
A flow diagram for the operation of the MaxBin algorithm

is shown in Figure 1. Before applying the MaxBin binning

algorithm on any dataset, the sequencing reads need to be

assembled into contigs or scaffolds, which are contigs

linked by Ns based on paired-end information. Below, we

will use scaffolds to describe these assembled sequences.

MaxBin is capable of binning either contigs or scaffolds;

see the expectation-maximization algorithm section below

for details. The MaxBin algorithm utilizes two different

genomic features: tetranucleotide frequencies and scaffold

coverage levels to populate the genomic bins using

single-copy maker genes and an expectation-maximization

algorithm. After classifying the scaffolds into different

bins, MaxBin produces an optimal set of genomic bins

and reports the estimated genomic features, including:

genome sizes, GC content, genome completeness, and

genome coverage levels, and provides this information in

tabular form.

Probability estimations of genomic features

Genomic signatures have been shown to display a

species-specific pattern [13-16] and have been applied

to bin sequences from metagenomic datasets. The most

widely used genomic signature is tetranucleotide frequen-

cies, which has been used in a number of metagenomic

studies [4-8]. To distinguish whether two sequences are

sampled from the same species based on their tetranu-

cleotide frequencies, we downloaded 3,181 bacterial and

archaeal genomes from the IMG website (http://img.jgi.

doe.gov/), simulated genomic sequence fragments, and

calculated Euclidean distance between the extracted

tetranucleotide frequencies of the two sequences. The

lengths of the simulated sequences were randomly chosen

between 1,000 bps to 1,000,000 bps. The simulation was

performed one million times for intra-genome (sequences

sampled from the same genome) and one million times

for inter-genome (sequences sampled from different ge-

nomes) comparisons. The histogram of intra-genome and

inter-genome simulations, as shown in Additional file 1:

Figure S1(A) and S1(B), revealed a large difference, in

which intra-genome distances were grouped below 0.2

while inter-genome distances were more evenly distrib-

uted between 0.02 and 0.1. We estimated both the mean

and variance values separately for both intra-genome and

inter-genome Euclidean distances. The mean and standard

deviation values for intra- and inter-genome distances

were 0.015, 0.010 and 0.068, 0.034, respectively. We must

note that both distributions of intra- and inter-genome

distances were rejected by the Shapiro-Wilk test to be

normally distributed (W value is 0.81 and 0.93 for

intra- and inter-genome distances, respectively); how-

ever, because the difference between the histograms of

intra- and inter-genome distances is very clear, we still
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applied their mean and standard deviation values to test

whether the measured Euclidean distances are between

sequences sampled from the same genome or between

different genomes. We discuss this circumstance and

potential improvement in the Discussion section.

After identifying the mean and standard deviation

values between the distributions of Euclidean distance,

as shown in Additional file 1: Figure S1(C), we define the

distance function between two sequences as

dist S1; S2ð Þ ¼ distEuc tetra S1ð Þ; tetra S2ð Þð Þ

where tetra (S) indicates the tetranucleotide frequency of

sequence S, and distEucðÞ function is used to calculate

the distances between the two sequences, S1 and S2, using

Euclidean distance function. The probability function that

two sequences were sampled from the same species is

defined as:

Pdist S1∈G S2ð Þð Þ ¼
N intra dist S1; S2ð Þ jμintra; σ

2
intra

� �

N intra dist S1; S2ð Þ j μintra; σ
2
intra

� �

þ N inter dist S1; S2ð Þ j μinter; σ
2
inter

� �

in which G S2ð Þ represents the genome that sequence S2
belongs to, dist S1; S2ð Þ is the distance between the

extracted tetranucleotide frequencies of S1 and S2 using

the Euclidean distance function, Nintra and Ninter are the

Gaussian distributions with estimated intra- and inter-

genome mean distance values (μintra and μinter) and

distance variance values σ
2
intra andσ

2
inter

� �

, respectively

(note that Pdist(S1 ∈ G(S2)) = Pdist(S2 ∈ G(S1)) since dist

(S1, S2) = dist(S2, S1). The distribution Pdist for Euclidean

distance is shown in Additional file 1: Figure S1(D). One

can easily observe from the figure that the lower the

distance, the more probable two sequences are sampled

from the same genome.

The scaffold coverage levels are also considered, as

coverage levels also carry important information and

have been applied to bin metagenomic data [7,9]. Shotgun

sequencing has been demonstrated to follow the Lander-

Waterman model, which calculates the coverage of the

sequenced nucleotides using a Poisson distribution [17]

and has been applied in the binning of metagenomic reads

[10,18]. The probability function that two sequences are

sampled from the same genome given their coverages is

modeled as:

Pcov S1 ∈G S2ð Þð Þ ¼ Poission cov S1ð Þð jcov S2ð Þ

where cov(S) indicates the coverage of sequence S, and
Poisson (cov(S1) | cov(S2)) is the Poisson probability dens-
ity function given mean value λ = cov (S2).

Expectation-maximization algorithm

MaxBin utilizes tetranucleotide frequencies and scaffold

coverage levels to estimate the probability that a scaffold

belongs to a bin using an expectation-maximization (EM)

algorithm. The algorithm consists of five steps as follows:

1. Estimate the tetranucleotide frequencies and coverage

levels for all scaffolds. Tetranucleotide frequencies are

calculated by scanning the number of all possible

tetramers (that is, four consecutive nucleotides)

using one bp sliding window on both forward and

reverse-complement strands of any scaffold.

Tetramers with non-nucleotide symbols (that is,

not A, T, C, or G) are discarded. Since DNA

fragments can be obtained from either strand of

the genomes, the frequency of one tetramer and

its reverse-complement is combined, resulting in

a total of 136 possible tetramers.

2. Initialize the total number of genomes N, their

inherent tetranucleotide frequencies tetrai and

coverage levels λi for i = 1,2…, N.

Figure 1 The general workflow of MaxBin. Tetranucleotude frequencies, scaffold coverage levels, and single-copy marker genes are collected

from metagenomic scaffolds. The collected information is computed by an expectation-maximization algorithm to bin sequences.
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3. Calculate the probability that any sequence Sj (j = 1,

2…, W; W is the total number of scaffolds) coming

from the ith genome Gi as

P
�

Sj∈Gi

�

¼
Pdist Sj∈Gi

� �

⋅Pcov Sj∈Gi

� �

XN

i¼1
Pdist Sj∈Gi

� �

⋅Pcov Sj∈Gi

� �

4. Calculate the new values for each tetrai and λi as

tetrai ¼

XW

j¼1
P Sj∈Gi

� �

⋅tetra Sj
� �

⋅lenght Sj
� �

XW

j¼1
P Sj∈Gi

� �

⋅lenght Sj
� �

λi ¼

XW

j¼1
P Sj∈Gi

� �

⋅cov Sj
� �

⋅lenght Sj
� �

XW

j¼1
P Sj∈Gi

� �

⋅lenght Sj
� �

5. Iterate step 3 and 4 until the parameters converge or

the number of runs exceeds a pre-defined maximum

number of runs. The maximum number of runs is

set to 50.

The EM algorithm calculates the probability that a

given scaffold belongs to any genome at the same time.

The maximum number of iterations of the EM algorithm

was determined by running MaxBin on simulated datasets

with different maximum iteration numbers and measuring

the performances of the binning results by precision and

sensitivity (see below). As shown in (Additional file 1:

Figure S2), the precision and sensitivity of the two simu-

lated datasets were very stable for all maximum iteration

number settings. We have set the maximum number to

perform EM algorithm to 50 in case some larger metagen-

omes need more iterations to achieve reasonable binning

results.

After the EM algorithm is finished, the scaffolds are

assigned to the bin with the highest probability as long

as the probability values surpass the minimum probability

threshold, which is set to 80%. Sequences that do not meet

the threshold are discarded as ‘unclassified.’

Before applying the EM algorithm on any metage-

nomic datasets, sequences shorter than minimum length

threshold are removed since these sequences are likely

to produce skewed tetranucleotide frequencies, which

confuse the binning algorithm and erroneously classify

shorter sequences into wrong bins. To find the best

minimum length cutoff threshold, we performed binning

using different length cutoff settings on simulated datasets.

The result demonstrated that MaxBin achieves the best

sensitivity and comparable precision with 1,000 bps cutoff

setting [see Additional file 1: Figure S3]. Therefore, we set

the minimum length threshold to 1,000 bps to achieve best

performances.

Initialization of the algorithm

A common practice for an expectation-maximization

algorithm is to randomize all parameters. This initial

condition permits the possibility of converging param-

eters into local maxima. At the same time, the number

of bins, which is one of the most crucial parameters, is

usually unknown. We employed the single-copy marker

genes to estimate the number of bins and initialize all

required parameters. Genes from the scaffolds were

predicted using FragGeneScan [19], and HMMER3 [20]

was used (with –cut_tc option) to scan the predicted

genes for 107 single-copy marker genes that are conserved

in 95% of all sequenced bacteria, which has been used to

determine the genome completeness of bins [7,21]. After

filtering out all mapped genes that do not meet the cover-

age threshold, which is 40%, the median number of scaf-

folds containing each of the marker genes is identified,

considering that some marker genes may be fragmented

into several pieces that may distort the estimation of

the number of bins. The shortest marker gene that

corresponds to the median number of bins is selected,

and the tetranucleotide frequencies and read coverages

of the scaffolds harboring this shortest marker gene are

extracted to generate the initialization parameters for

the algorithm. The reason we use the shortest marker

gene for initialization is that shorter genes are less

likely to be split between two scaffolds.

Recursive classification of bins

Despite careful selection of initialization conditions, the

EM algorithm sometimes may still group scaffolds from

several composite genomes into one bin. To alleviate this

problem, all bins are recursively checked for the median

number of marker genes. If the median number of marker

genes of any bin is at least 2, the bin will be treated as a

dataset waiting to be binned, and the whole EM algorithm

will be applied to split the bin. All bins (including those

created by reapplying EM algorithm on bins) will be

checked for the number of marker genes until no bins can

be split further.

Estimation of genome completeness

After the EM process, MaxBin scans the 107 marker genes

in all bins for genome completeness, which is measured as

the fraction of unique marker genes versus all marker

genes. Not all bacteria are equipped with all 107 marker

genes, such as the reconstructed genomes from the unculti-

vated TM7 lineage, in which representatives of this candi-

date phylum have only 100 out of all 107 marker genes [7].

However, the metric of 107 marker genes is maintained as

the standard in the absence of specific phylum level counts

of conserved marker genes.
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Simulation of the test metagenomes

Simulated metagenomes with 10 species and 100 species

were generated by MetaSim [22] and assembled by Velvet

assembler 1.2.07 [23] with K = 55 and coverage cutoff set

to 1. The detailed genome simulation settings can be

found in Additional file 1: Table S1 and S2. For 10-species

metagenomes, we sampled 5 million and 20 million

paired-end reads referred to as the 20X and 80X datasets,

respectively. For 100-species metagenomes, the settings

used by [24] were mimicked, and 100 million paired-end

reads were sampled to create three datasets: simLC+,

simMC+, and simHC+. The 80-bps error model was

downloaded from the MetaSim website (http://ab.inf.uni-

tuebingen.de/software/metasim/errormodel-80bp.mconf/

view) and used in simulating all metagenomes.

Performance evaluation of the binning results of

simulated datasets

We adopted precision and sensitivity from [12] to evalu-

ate the binning performances of the simulated datasets.

Assume there are N genomes in the dataset and MaxBin

yielded M bins. The overall precision and sensitivity is

given as

Precision ¼

XM

i¼1
max

j
Rij

XM

i¼1

XN

j¼1
max

j
Rij

Sensitivity ¼

XN

j¼1
max

i
Rij

XM

i¼1

XN

j¼1
max

j
Rij þ unclassified sequences

in which Rij indicate the number of sequences (in terms

of base pairs) that belong to genome j appears in bin i. If

M >N, the majority of sequences in each bin likely

belong to a single genome and the precision will be high;

however, the sensitivity will be low since some genomes

are represented by more than one bin. On the other

hand if M <N, the sensitivity will tend to be high while

precision is likely to be low. We also note that scaffolds

lower than 1,000 bps, which is our minimum length

cutoff for MaxBin algorithm, are not included in the

unclassified sequences since these sequences cannot be

binned and will be discarded in the first step of the

binning algorithm.

Besides precision and sensitivity, we also evaluated the

amount of correctly binned and mis-assigned sequences

for individual species in the simulated datasets. We evalu-

ated the number of sequences of each species that appear

in each bin, and assigned the bins to the species with the

highest amount of sequences in the bins. If two or more

bins are assigned to the same species, only the bin with

the greatest amount of sequences belonging to that spe-

cies is kept, and only sequences belonging to that species

in that bin are regarded as correctly binned; all sequences

appear in other bins and sequences that do not belong

to the assigned species in any bin are regarded as mis-

assigned. Unclassified sequences are defined as se-

quences that pass the minimum length threshold but

are not classified into any bins. Sequences lower than

the minimum length threshold are not considered

here since these sequences are not treated as part of

the binning result.

Test environment

MaxBin was tested on a Linux operation system with

128G memory space and 16 AMD Opteron™ CPU cores

at 2.2 GHz. With the exception of HMMER3, which

MaxBin utilized to extract marker gene information,

MaxBin itself and other affiliated software are not

multi-threaded. The running time of MaxBin for all

simulated and real datasets is reported in Additional

file 1: Table S8. Note that MaxBin did not consume

more than 1GB of memory space for all our test datasets

except when we map reads against scaffolds to obtain

scaffold coverage information, suggesting that the MaxBin

algorithm could be executed on a personal computer.

Sequencing the enriched cellulolytic compost samples

Green waste compost samples were obtained from the

City of Berkeley, CA, on 30 June 2012. Replicate 50 mL

cultures (37A and 37B) containing MES-buffered M9TE

minimal media [25] were established with microcrystalline

cellulose (500 mg, 1% v/v) (Sigma-Aldrich) as the carbon

substrate. These cultures were incubated on rotary shakers

for two weeks at 37°C and 200 rpm. Five milliliters of this

culture (10%) was transferred to a second replicate set

of microcrystalline cellulose-containing cultures and

incubated for an additional two weeks. After the second

passage, DNA was extracted from culture biomass using

previously described methods [26]. DNA fragments for

Illumina sequencing were created using the Joint Genome

Institute standard library generation protocols for Illumina

HiSeq 2000 platforms. Illumina sequencing was performed

on a HiSeq 2000 system. The DNA fragments were assem-

bled using the Joint Genome Institute assembly pipeline.

Raw reads were trimmed using a minimum quality cutoff

of Q10. Trimmed, paired-end Illumina reads were assem-

bled using SOAPdenovo v1.05 (http://soap.genomics.org.

cn/soapdenovo.html) with default settings (-d 1 and -R) at

different Kmer sizes (85, 89, 93, 97, 101 and 105 respec-

tively). Contigs generated by each assembly (a total of six

contig sets from the six Kmer sizes), were merged using

in-house Perl scripts as following. Contigs were first

de-replicated and sorted into two pools based on length.

Contigs <1,800 bps were assembled using Newbler

(Life Technologies, Carlsbad, CA, USA) to generate

larger contigs (-tr, -rip, -mi 98, -ml 80). All assembled

contigs >1,800 bps, as well as the contigs generated
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from the Newbler assembly, were combined and merged

using minimus2 (-D MINID = 98 -D OVERLAP = 80)

(AMOS: http://sourceforge.net/projects/amos). The ave-

rage fold coverage (or read depth) of each scaffold was

estimated by mapping all Illumina reads back to the final

assembly using BWA (version 1.2.2) [27].

Extraction of glycoside hydrolase genes from the

Sorangium sp. bin

Glycoside hydrolase (GH) genes of the Sorangium sp.

binned genomes and the two Sorangium cellulosum strains

were extracted using dbCAN [28], which was based on the

protein families generated by CAZy database (http://www.

cazy.org/) [29]. The extracted GH families were then

grouped based on [30], in which the GH families were

classified into cellulases (GH5, 6, 7, 9, 44, 45, 48), endo-

hemicellulases (GH8, 10, 11, 12, 26, 28, 53), cell wall

elongation enzymes (GH16, 17, 74, 81), de-branching

enzymes (GH51, 54, 62, 67, 78), and oligosaccharide-

degrading enzymes (GH1, 2, 3, 29, 35, 38, 39, 42, 43, 52).

A new protein class, ‘lignin-degradation enzymes,’ was

defined by including the protein families from AA1 to

AA8 as suggested by [31].

Construction of phylogenetic trees

The 16S ribosomal RNA genes were extracted and aligned

using MUSCLE [32]. The alignments were refined using

Gblocks [33] and loaded into MEGA5 [34] to construct

the maximum-likelihood tree using default settings

(Tamura-Nei model, uniform rates, and complete dele-

tion) with 1,000 bootstraps. The marker gene trees were

built using the 35 marker genes previously reported [35].

The 35 marker genes were extracted from the downloaded

or binned genomes, translated to amino acid sequences,

and aligned by MUSCLE separately. The alignments were

then concatenated and refined using Gblocks. MEGA5

was again used to build the maximum-likelihood marker

gene tree using default settings (JTT model, uniform rate,

and complete deletion) with 1,000 replicates.

Identifying clusters of orthologous groups families

Multiple alignments of all clusters of orthologous groups

(COGs) were downloaded from eggNOG website (http://

eggnog.embl.de/) [36] and converted to hidden Markov

models using HMMER3 [20]. The functional categories of

all COGs were also downloaded from eggNOG website

for counting the numbers of genes for each functional

category.

Pathway mapping

Proteins extracted from Sorangium sp. were searched for

their KEGG (Kyoto Encyclopedia of Genes and Genomes)

Orthology (KO) numbers using KEGG2 KAAS web ser-

vice [37]. The resulting KO numbers were inputted into

the Search&Color Pathway web service (http://www.

genome.jp/kegg/tool/map_pathway2.html) available on

the KEGG2 website [38] to identify the associated

pathways.

Data access

The MaxBin program is available at https://sourceforge.

net/projects/maxbin/. Metagenomic data, including raw

sequencing reads and assembled sequences, for the

enriched cellulolytic compost consortia are available at

JGI IMG/M website (https://img.jgi.doe.gov/cgi-bin/m/

main.cgi) under JGI taxon id 3300000869 (37A) and

3300001258 (37B). The MetaSim setting files, assembled

scaffolds, and coverage files for replicating the simulation

results, the binning results of HMP datasets that were

mentioned in the text, and the binning results of the

enriched cellulolytic compost metagenomes can be

downloaded from the MaxBin download page (http://

downloads.jbei.org/data/MaxBin.html).

Results
Testing MaxBin on simulated metagenomes

MaxBin has been designed as an automated metagenomic

binning software, which allows binning of assembled

metagenomic scaffolds after the assembly of metagenomic

sequencing reads with minimal human intervention. Max-

Bin was initially tested by binning several simulated meta-

genomic datasets produced by MetaSim [22] to evaluate

its effectiveness. MaxBin was applied to two simulated

metagenomes containing 10 species with different overall

sequencing coverage (20X versus 80X average coverage).

The species used in this simulation and their relative

abundance ratios, defined by the actual coverage levels

divided by summed coverage levels of all genomes, were

summarized in Additional file 1: Table S1. MaxBin was

first interrogated for its ability to classify sequences

correctly into corresponding bins. MaxBin successfully

binned the 80X metagenome into 10 bins, in which the

majority of sequences were correctly classified (Figure 2

(A)). High abundance genomes were binned almost per-

fectly; most of the erroneously binned sequences occurred

in low abundance genomic bins with similar coverage

levels. The precision was estimated to be 96.9%, as shown

in Table 1. These results demonstrated the ability of

MaxBin to estimate correctly the number of bins as well

as utilize tetranucleotide frequencies and scaffold coverage

information to bin most of the sequences accurately.

The metagenome with 20X average coverage was binned

into three bins, each consisting of sequences from the most

abundant three genomes (Figure 2(B)). Due to the lower se-

quencing coverages of the seven low abundance genomes,

the majority of assembled scaffolds that belong to these

low abundance genomes did not pass the minimum length

threshold and cannot be binned by MaxBin. Therefore,
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only three bins were produced from the 20X metagenome,

each belonging to the three genomes with highest

abundances. Most of the scaffolds belonging to the

seven low abundance genomes were discarded because

these scaffolds did not pass the length threshold. For

most binning methods, 1,000 bps is the minimum length

to bin scaffolds successfully (see Discussion for details).

Despite these limitations, MaxBin still binned the three

most abundant genomes with precision measured at

97.01%. We note that for both 80X and 20X samples, the

unclassified sequences were both lower than 1 Mbps

(Table 1; sequences below minimum length threshold

were not included), suggesting that MaxBin was able to

classify most of the sequences while committing very few

mis-assigned errors.

The binning capabilities of MaxBin were further tested

on more complex metagenomic datasets. Genome coverage

settings of three previously published simulated metage-

nomic datasets were generated (simLC, simMC, and

simHC) [24], and three datasets were produced with

similar settings: simLC+, simMC+, and simHC + [see

Additional file 1: Table S2]. MaxBin isolated 57 bins

from simLC+, 11 bins from simMC+, and 78 bins from

simHC+. The precision, sensitivity, and the amount of

unclassified sequences are also summarized in Table 1.

Overall, sequences from high abundance genomes were

binned more accurately and more comprehensively than

low abundance genomes as demonstrated for the simLC +

and simMC + datasets (Figure 3(A)-(B)). The first few

genomes with high abundance levels were binned very

accurately; the majority of mis-assigned scaffolds occurred

in low-abundance bins. Investigation of the assembled

sequences of simLC + and simMC+ demonstrated that

the correctly assigned scaffolds were significantly longer

than mis-assigned ones [see Additional file 1: Figure S4].

This phenomenon accounts for the high accuracy of

binning of the high abundance genomes, which gener-

ally consisted of longer scaffolds that can be binned

more accurately. This effect can also be observed in the

simMC+ dataset, in which only a small portion of scaf-

folds from low abundance genomes passed the MaxBin

minimum length threshold, and therefore only the high

abundance genomes were binned. Due to the poor assem-

bly quality of simMC+ (the N50 for simMC+ is only 383

while the N50 for simLC + and simHC + are 1293 and

17169, respectively), only 11 bins were generated from the

simMC+ dataset compared to 57 and 78 bins from the

simLC + and simHC+ datasets.

For simHC + dataset, which had an evenly distributed

species abundance levels, MaxBin yielded 78 bins

Figure 2 Binning performance estimated from two 10-genome

simulated datasets. Only scaffolds longer than 1,000 bps were used.

Each bar represents an individual genome; blue, red, and green parts

indicate correctly assigned, mis-assigned, and unclassified scaffolds,

respectively. In other words, the presence of red bars indicates that

part of the genome has been incorrectly assigned to bins belonging

to other species, and green bars are genome parts that are unclassified.

These do not count scaffolds shorter than 1,000 bps since these

scaffolds will be discarded before applying the expectation-maximization

algorithm and do not reflect the performance of MaxBin. Yellow lines

represent the relative abundance ratios of the corresponding species.

The Y-axis at the left and right side indicate binned genome sequences

in million bps and genome abundances in relative abundance ratio (%).

The species names of the genomes were indicated in Additional file 1:

Table S1. (A) 80X simulation. (B) 20X simulation. An entire red bar, such

as the fourth bin in the 20X simulation, indicates that scaffolds of this

species have been incorrectly assigned to other bins. Genomes with

much shorter bars indicate that these genomes were assembled

poorly and hence only a small proportion of scaffolds are longer

than 1,000 bps and show up in the figures.

Table 1 Binning performances of simulated datasets

Datasets Bin number Precision Sensitivitya Unclassifieda

10 genomes 20X 3 97.01% 96.15% 0.002 Mbps

80X 10 96.90% 99.34% 0.30 Mbps

100 genomes simLC+ 57 65.07% 62.83% 41.18 Mbps

simMC+ 11 74.95% 92.41% 0.68 Mbps

simHC+ 78 88.93% 73.46% 62.50 Mbps

aScaffolds shorter than 1,000 bps are not included in the estimation of sensitivity and the total amount of unclassified sequences.

Wu et al. Microbiome 2014, 2:26 Page 7 of 18

http://www.microbiomejournal.com/content/2/1/26



(Figure 3(C)) with 88.93% precision. In the simHC +

dataset, there were fewer mis-assigned scaffolds than

in simLC + (22.24 Mbps in simHC+; 53.24 Mbps in

simLC+). The appearance of unclassified sequences in

some bins, which was measured at 62.5 Mbps, was

probably due to the similarity of abundance levels

between different species, which resulted in a lowered

sensitivity of 73.46%.

Binning of datasets from the Human Microbiome Project

The Human Microbiome Project (HMP) was designed to

document the microbial populations that occupy habitats

in or on the human body. A total of 749 samples were

generated for selected corporeal habitats, including the

gut, the mouth, the vagina, and the skin [39]. MaxBin was

applied to identify genomic bins from three selected HMP

datasets with very different sample sizes: the tongue

dorsum sample SRS013705, the subgingival plaque

sample SRS014477, and the stool sample SRS018656.

The reads and assembled sequences were downloaded

from HMPDACC website (http://hmpdacc.org/). These

three samples were chosen to compare the performance of

MaxBin on real metagenomic datasets with very different

amounts of raw sequence reads (12 GB for SRS013705,

1.4 GB for SRS014477, and 6.4 GB for SRS018656). Max-

Bin yielded 31 bins for SRS013705, 4 bins for SRS014477,

Figure 3 Binning performance estimated from three 100-genome simulated datasets. The graph settings are the same as for Figure 2. The

species names of the genomes were indicated in Additional file 1: Table S2. (A) simLC + simulation. (B) simMC + simulation. (C) simHC+ simulation.
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and 10 bins for SRS018656, consistent with the total

base pairs of scaffolds that passed the minimum length

threshold (83 MB for SRS013705, 14 MB for SRS014477,

and 45 MB for SRS018656). The number of unclassified

sequences for SRS013705, SRS014477, and SRS018656

was 11.18, 0.37, and 2.17 Mbps. The taxonomy of the bins

was analyzed using MEGAN4 [40] and compared to the

results of the HMP community profiles (also downloaded

from HMPDACC website) generated by fragment recruit-

ment of the metagenomic sequencing data to related se-

quenced isolates [41]. The binning results and the closest

species are listed in Additional file 1: Table S3. In general,

MaxBin successfully generated bins for the high abun-

dance populations in each sample. For instance, three of

the four most abundant predicted species in SRS013705

were successfully binned, including populations related to

Prevotella melaninogenica, Streptococcus salivarius, and

Veillonella dispar. Similarly, in SRS014477, species among

the four recovered genomes included Treponema denti-

cola, Treponema vincentii, Corynebacterium matruchotii,

and Bacteroidetes oral taxon 274, which were identified

as the most abundant species in this sample. In the

SRS018656 dataset, three of the four most abundant

species were isolated as well, including Dialister invisus,

Bacteroides cellulosilyticus, and Ruminococcus sp., [see

Additional file 1: Table S3]. The MaxBin threshold on the

minimum scaffold lengths limited the number of isolated

bins that could be extracted from these datasets, including

several strains of Rothua dentocariosa in SRS014477 and

Fusobacterium sp. in SRS013705. Nevertheless MaxBin

was still capable of isolating most of the high abundance

genomes from real metagenomic samples with variable

sequencing depths and different species composition

complexity.

We compared our binning results to an approach

using emergent self-organizing maps (ESOM), [2,8,9].

An ESOM graph was generated for the tongue dorsum

sample SRS013705 based on tetranucleotide frequencies

[2], and the sequences on the graph were colored based

on the MaxBin binning results [see Additional file 1:

Figure S5]. Since ESOM relied on the contour boundaries

to distinguish binned genomes, we focused on observing

whether the bins generated by MaxBin were consistent

with the original ESOM boundaries. Indeed, comparison

between ESOM [see Additional file 1: Figure S5(A)] and

MaxBin binning results [see Additional file 1: Figure S5

(B)] demonstrated that most MaxBin bins (shown as

different colors) overlaid with the ESOM boundaries,

confirming the ability of MaxBin to separate genomes

according to their genomic signatures. In addition we

also observed that closely related populations, such as

the three bins representing three Prevotella species and two

bins belonging to the Leptotrichia species, were not suc-

cessfully resolved using the ESOM approach, suggesting

that MaxBin could further distinguish genomes with simi-

lar tetranucleotide frequencies based on scaffold coverage

levels and single-copy marker genes.

Recovering genomes from cellulolytic consortia using

MaxBin

MaxBin was also applied to metagenomes obtained from

replicates of enriched cellulolytic consortia derived from

green waste compost. These enriched communities have

yielded deeply sampled metagenomic datasets from

which individual genomes can be recovered [30,42,43].

Enrichments were performed at 37°C degrees over mul-

tiple passages and DNA was isolated from two replicates,

termed samples 37A and 37B, of the second passage for

metagenomic sequencing. Metagenomes obtained from

both 37A and 37B achieved reasonable assembly quality -

the N50 for the two replicates were 2,907 and 1,994 bps,

respectively. MaxBin was then used to bin the assembled

metagenomics data from the two replicates. The most

abundant 10 genomes of both replicates are shown in

Table 2. The complete list of bins and their genomic pro-

perties can be found in Additional file 1: Table S4. The

amount of unclassified sequences of 37A and 37B were

measured at 2.45 Mbps and 4.36 Mbps, respectively,

excluding scaffolds that were shorter than 1,000 bps.

We found that even though the two replicates were

enriched from the same compost inoculum, the species

composition and the relative abundance ratios of these

species diverged (Figure 4). In the 37A dataset, the most

abundant bin was classified as Sorangium sp. followed

by bins classified as Niastella sp. and Opitutus sp. In

37B, the most abundant species was classified as Nias-

tella sp., which was a nearly identical bin to the one

found in 37A, followed by Teredinibacter sp. and

Sphingomonas sp. The Sorangium sp. bin, which occu-

pied nearly half of the population in 37A (48.1%), was

only found at 2.5% abundance in 37B. Furthermore,

the second and third most abundant bins in 37B (Tere-

dinibacter sp. and Sphingomonas sp.) were not ob-

served in 37A. Note that the second most abundant

species in 37B, Teredinibacter sp., is distantly related

to Teredinibacter turnerae (with amino acid identity at

67.4%), an endosymbiotic cellulolytic gammaproteo-

bacteria isolated from the gill tissue of a shipworm,

Lyrodus pedicellatus [44].

The binning results obtained for MaxBin were com-

pared with two other binning methods: ESOM (tetranu-

cleotide frequencies) and differential coverage binning [7].

The ESOM graphs demonstrated that the MaxBin binning

results fit extremely well with the ESOM boundaries for

both replicates [see Additional file 1: Figure S6]. Differen-

tial coverage binning was performed on the Sorangium

sp., Niastella sp. and Opitutus sp. bins since initial inspec-

tion of the metagenomic datasets revealed that the
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assembled sequences for these populations were nearly

identical in 37A and 37B.

We inspected the Sorangium sp. genome that was

recovered using MaxBin, ESOM graph, and differential

coverage binning [see Additional file 1: Figure S7; Table 3].

The GC content of the three Sorangium sp. genomes, re-

covered by the three different approaches, were all 64%,

consistent with the high G + C proportion observed for

the genome of Sorangium cellulosum (71.4%) and other

myxobacteria [45]. The genome sequences that MaxBin

and ESOM recovered were more complete as compared

to the differential coverage binning approach: the

numbers of unique marker genes for MaxBin, ESOM,

and differential coverage binning were 102, 102, and 99

out of all 107 marker genes. When we increased the

minimum length threshold from 1,000 bps to 5,000 bps,

the number of marker genes for MaxBin and differential

coverage binning did not change (Table 3). We also ex-

tracted the Niastella sp. and Opitutus sp. genomes using

differential coverage binning method and compared their

genomic features in Additional file 1: Table S5.

The sequences that were found only in MaxBin-derived

bins compared to the differential coverage binning

method were collected and analyzed by MEGAN to

identify the taxonomy of these sequences. MEGAN

analysis of the scaffolds not classified by differential

coverage binning demonstrated that most of the scaffolds

missed by the differential coverage binning approach were

classified into the Proteobacteria lineage, as indicated in

Additional file 1: Figure S8. Since the bins closest in

abundance were affiliated with Bacteroidetes and Verru-

comicrobia, the sequences affiliated with the Proteobac-

teria lineage shown in Additional file 1: Figure S8 likely

belong to the Sorangium bin. Therefore, MaxBin collected

Table 2 Most abundant species in sample 37A and 37B

37A 37B

Bin number Species %a Completeness Bin number Species %a Completeness

001 Sorangium sp. 48.1% 95.30% 001 Niastella sp. 26.6% 94.40%

002 Niastella sp. 11.4% 95.30% 002 Teredinibacter sp. 12.7% 99.10%

003 Opitutus sp. 7.5% 84.10% 003 Sphingomonas sp. 10.0% 96.30%

004 Chitinophaga sp. 6.5% 98.10% 004 Cellulomonas sp. 7.9% 83.20%

005 Rhodanobacter sp. 5.5% 88.80% 005 Cellulomonas sp. 7.8% 92.50%

006 Cytophaga sp. 4.3% 98.10% 006 Chitinophaga sp. 4.8% 98.10%

007 Opitutus sp. 2.7% 60.70% 007 Rhodanobacter sp. 4.6% 46.70%

008 Oceanibaculum sp. 2.6% 86.00% 008 Pseudoxanthomonas sp. 4.5% 95.30%

009 Pelagibacterium sp. 1.6% 66.40% 009 Opitutus sp. 3.0% 92.50%

010 Cellulomonas sp. 1.3% 89.70% 010 Sorangium sp. 2.5% 93.50%

aRelative abundance ratios; defined as actual coverage levels divided by summed coverage levels of all genomes.

Pelagibacterium sp.

Oceanibaculum sp.

Opitutus sp.

Cytophaga sp.

Rhodanobacter sp.

Chitinophaga sp.

Cellulomonas sp.

Cellulomonas sp.

Opitutus sp.

Sphingomonas sp.

Teredinibacter sp.

Niastella sp.

Sorangium sp.

Figure 4 Species distribution comparison between enriched cellulolytic compost replicates 37A and 37B. Blue bars and red bars indicate

that the species was found in 37A and 37B, respectively.
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a more complete Sorangium sp. genome compared to

the differential coverage binning approach. We manually

inspected the five scaffolds grouped into the Bacteroidetes

lineage and found that the coverage levels of these

scaffolds (974.7, 1990.5, 1019.9, 1027.4, and 1709.5)

were much higher than predicted coverage of second

abundant species, Niastella sp. (270.36). Since the cover-

age levels of these five scaffolds were much closer to that

of Sorangium sp., their assignment may be consistent with

belonging to Sorangium sp. bin. An expanded genome size

obtained by MaxBin compared to differential binning was

also observed for the Niastella and the Opitutus spp.

genomes. In both cases, the majority of the additional

sequences recovered by MaxBin were affiliated with the

predicted lineage [see Additional file 1: Figure S8].

Sorangium sp. bin represents the genome of an unusual

myxobacterium

A complete 16S rRNA gene (90% identical to S. cellulosum)

was recovered from the bin containing the Sorangium sp.

genome and a phylogenetic tree was constructed to classify

the bin (Figure 5(A)). Analysis of the phylogenetic tree

demonstrated that the novel myxobacterial population

was a Deltaproteobacterium in the Myxococcales order

affiliated with the suborder Sorangiineae, but was distinct

from the family Polyangiaceae, which contains the vali-

dated species Sorangium cellulosum, Byssovorax cruenta

and Chondromyces apiculatus [46]. This new family in the

Sorangiineae has no cultivated members and consists of

16S rRNA clones representing uncultivated species. The

two 16S rRNA clones in this family that are most similar

(99% identity) to that of Sorangium sp. were recovered

separately from earthworm guts and large-discharge car-

bonate springs [Genbank: HM459718 and KC358117].

The phylogenetic classification of this bin was confirmed

by construction of a concatenated gene tree from the

genomic bin with 35 single-copy marker genes, which

confirmed that it was distantly related to Sorangium

cellulosum (Figure 5(B)). Surprisingly, the MaxBin binning

results, supported by complementary binning by ESOM

and differential coverage binning methods, demonstrated

that the Sorangium sp. genome was approximately 5 MB,

while the two sequenced strains of Sorangium cellulosum

have genomes of 13.0 MB (strain So ce56) and 14.7 MB

(strain So0157-2). Genomes of 11 myxobacterial genomes

were compared, and 193 genes were identified as univer-

sally shared. For those 193 genes, 158 genes were found to

be present in Sorangium sp., suggesting that despite its

significantly smaller size, this genome still contains most

of the common genes found in myxobacteria.

We compared the gene content between the three

Sorangium species to further understand their differences.

COG families of all extracted genes from the three Soran-

gium species were identified and compared. The identified

COGs were classified into different functional categories

for the three species, as depicted in Figure 6 (the actual

numbers can be referred to in Additional file 1: Table S6).

Since the genome sizes of the two Sorangium cellulosum

genomes were about 2.5 times larger than the recovered

Sorangium sp. genome, gene numbers for individual func-

tional categories were expected to be approximately 2.5

times larger for S. cellulosum isolates. Indeed, we observed

that the number of genes in COG categories for the two

Sorangium cellulosum species were, on average, 2.35 times

more than those in Sorangium sp. (7,535 and 7,255 genes

in all COG categories for the two Sorangium cellulosum

strains compared to 3,155 genes for Sorangium sp.).

Among the COG categories, gene numbers differed most

for COG group Q (Secondary metabolites biosynthesis,

transport, and catabolism); the two Sorangium cellulosum

isolate genomes averaged 4.17 times more assigned genes

than the recovered Sorangium sp. genome. Production of

large numbers of secondary metabolites is a characteristic

of myxobacterial metabolism, and Sorangium cellulosum

isolates in particular produce antifungal and antibacterial

compounds [47]. The only other myxobacterial isolate

with a similarly sized genome to the uncultivated Sor-

angium sp. genome is Anaeromyxobacter dehalogens

(5.01 MB) [48]. A. dehalogens is characterized by an exten-

sive genomic repertoire for anaerobic respiration, including

growth with nitrate, halogenated organics and metals as ter-

minal electron acceptors. The uncultivated Sorangium sp.

Table 3 Genome statistics of isolated Sorangium sp. using different binning methods

Differential coverage
(5,000 cutoff)

Differential coverage
(1,000 cutoff)

MaxBin
(1,000 cutoff)

MaxBin
(5,000 cutoff)

ESOM
(2,000 cutoff)

Total length 4,500,845 4,588,758 5,001,615 4,893,814 5,122,074

Scaffold count 82 93 150 104 143

Mean length (bps) 54,888.4 49,341.5 33,568.84 47,514.0 36,070.9

Maximum length (bps) 240,486 240,486 240,486 240,486 240,486

% GC 63.9 63.8 64 64 63.8

Total marker gene count 103 104 109 107 107

Unique marker gene count 99 99 102 102 102
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(A) 16s ribosomal RNA gene tree

(B) 35 single copy marker gene tree

Sorangium sp.

Sorangium cellulosum So0157-2

Sorangium cellulosum So ce56

Plesiocystis pacifica SIR-1

Haliangium ochraceum DSM 14365

Anaeromyxobacter dehalogenans 2CP-1

Thermobacillus composti KWC4

Stigmatella aurantiaca DW4/3-1

Corallococcus coralloides DSM 2259

Myxococcus stipitatus DSM 14675

Myxococcus xanthus DK 1622

Myxococcus fulvus HW-1

Paenibacillus mucilaginosus K02

Cystobacter fuscus DSM 2262

Sorangium sp.

Sorangium cellulosum So0157-2

Sorangium cellulosum So ce56

Plesiocystis pacifica SIR-1 16s rRNA copy 1

Haliangium ochraceum DSM 14365

Anaeromyxobacter dehalogenans 2CP-1

Thermobacillus composti KWC4

Stigmatella aurantiaca DW4/3-1

Corallococcus coralloides DSM 2259

Myxococcus stipitatus DSM 14675

Myxococcus xanthus DK 1622

Myxococcus fulvus HW-1

Paenibacillus mucilaginosus K02

Cystobacter fuscus DSM 2262

Plesiocystis pacifica SIR-1 16s rRNA copy 2

Figure 5 Phylogenetic trees built for the species Sorangium sp. found in 37A and 37B. Arrowheads indicate the whereabouts of Sorangium

sp. in the trees. (A) 16S ribosomal RNA gene tree. (B) Concatenated gene tree for 35 protein-coding marker genes.
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genome lacked genes for denitrification, sulfate reduction,

and metal reduction, indicating that it may primarily have

an aerobic lifestyle [see Additional file 1: Figure S9].

In contrast to the general survey provided by COG

family comparisons, extraction of glycoside hydrolase

(GH) and auxiliary activity (AA) enzymes using the CAZy

database demonstrated that the number of genes relevant

to biomass deconstruction was, on average, doubled in the

uncultivated Sorangium sp (Figure 7). In particular, genes

that cluster with glycoside hydrolase families specifically

involved in cellulose hydrolysis (GH5, 6, 7, 9, 44, 45, 48)

were twice as abundant (29 versus 13 and 16) in the

uncultivated Sorangium sp. genome compared to the S.

cellulosum isolate genomes (the actual number of all GH

genes are listed in Additional file 1: Table S7).

Discussion
MaxBin provides an automated method to recover ge-

nomes from individually assembled metagenomic datasets

by combining information from tetranucleotide frequencies

and scaffold coverage levels, which were used in previous

binning methods, including the ESOM and differential

binning approaches [7]. Most of these previous binning

methods were based on visualization of scaffolds, and the

bins were selected manually from the identified boundar-

ies or clusters of scaffolds. Several recent studies based on

Stochastic Neighbor Embedding (SNE) achieved a better

clustering of metagenomic scaffolds and were partially au-

tomated by human-automated polygon selection method

[49,50]. To the best of our knowledge, MaxBin is the only

fully automated metagenomic scaffold binning software

package that only requires users to input assembled

scaffolds and the coverage levels of these scaffolds.

MaxBin can also calculate the coverage levels of scaffolds

automatically if sequencing reads are provided. Even

though some other automated metagenomic binning tools

exist, such as AbundanceBin [10] or MetaCluster [11,12],

they are all designed to classify sequencing reads, not

assembled scaffolds.

The tetranucleotide frequency is a genomic signature

that is most commonly used for binning purpose. In

principle MaxBin can accommodate different genomic

signatures, including hexanucleotide signatures, which

have been used in other binning algorithms (for example,

CompostBin [51]). However, ESOM binning studies have

demonstrated that binning by tetranucleotide frequencies

best balances phylogenetic resolution with ease of com-

putational processing [2,52]. We therefore decided to

use tetranucleotide frequencies for binning purpose in

the MaxBin algorithm.

Due to the high dimensionality of the feature space

and the associated problems of dimensionality in the use

of tetranucleotide frequencies, shorter fragments will

produce noisy frequency profiles and have resulted in

poor performance [51]. Therefore, most binning methods

based on tetranucleotide frequencies will filter out short

sequences based on different minimum length cutoff set-

tings. For example, the minimum length cutoff threshold

of ESOMs is 3,000 bps while thresholds as low as 500 bps

were used for time series ESOMs, which combined eleven
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Figure 6 Comparison of the numbers of clusters of orthologous groups (COG) families predicted from the genes extracted from the

three Sorangium species.
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metagenomic datasets [9]. For differential coverage

binning approach, thresholds of 2,000 to 5,000 bps

were applied. The thresholds are necessary in all these

binning methods to prevent incorrect binning of short

scaffolds; however, application of a threshold that is

too stringent will discard relevant sequences to recover

more complete genomes. Since our tests on applying

different length cutoff values on all simulated datasets

revealed that 1,000 bps threshold yielded the highest

sensitivity value [see Additional file 1: Figure S3], the

threshold for scaffold length for MaxBin was determined

to be 1,000 bps. For MaxBin, binning may be performed

at different thresholds and the results compared, as was

demonstrated for the Sorangium sp. bin, to determine the

proper threshold to achieve correct and comprehensive

binning.

To find the metric for comparing whether two se-

quences were sampled from the same genome or from

different genomes, we performed an experiment to find

the distributions of tetranucleotide frequency distances

for both intra- and inter-genome distances. We then

identified the mean and standard deviation values and

inserted them into the probability function of the

expectation-maximization algorithm. The Shapiro-Wilk

test rejected the null hypothesis that the intra- and inter-

genome distances were normally distributed (W= 0.81

and 0.93). However, the differences between intra- and

inter-genome distributions, as shown in Additional file 1:

Figures S1(A) and S1(B), are large enough to distinguish

intra- and inter-genome tetranucleotide frequency dis-

tances. Therefore, the mean and standard deviation values

were inserted into equations for the Gaussian distributions

for both intra- and inter-genome distances in order to

estimate the probability that any two sequences were

sampled form the same genome. This procedure was

also supported by analysis of our binning performance

on the simulated and real metagenomic datasets. We will

continue to look for the most suitable probability function

for further refinement of the MaxBin algorithm.

MaxBin also incorporates scaffold coverage levels as

well as tetranucleotide frequencies. The scaffold coverage

levels have been incorporated in the binning procedures

for recovering genomes from a number of metagenomic

datasets [7,9,42]. An important advantage of scaffold

coverage levels is that it distinguishes sequence fragments

extracted from species with similar tetranucleotide fre-

quencies. For example, in Additional file 1 Figure S5(B)

we showed that at least three Prevotella species and two

Leptotrichia species were grouped together on the ESOM

map, based on tetranucleotide frequencies, but were

separated by MaxBin. MaxBin was able to separate these

bins with similar tetranucleotide frequency profiles

using scaffold coverage levels, which reflected the gen-

omic coverage levels in sequences recovered from the

human microbiome samples. We note that using the

scaffold coverage levels for binning has one caveat:

shared genomic regions between different genomes may

have elevated coverage levels and confused the binning.

The situation will be exacerbated if there are strains of

the same species in the metagenome datasets, which

will generate scaffolds with combined coverage levels.

Theoretically, strains from the same species may still be

binned separately using MaxBin if the assembly algorithms

can recognize sequencing reads that belong to each strain;

however, widely used assembly tools still cannot identify

sequences from different strains and cannot assemble

them separately. We attempted to assemble a simulated

dataset with two different strains from the same species

0

20

40

60

80

100

120

140

160

180

200

Sorangium cellulosum

So0157-2

(14.78 Mbps)

Sorangium cellulosum

So ce56

(13.03 Mbps)

Sorangium sp.

(5.00 Mbps)

Lignin-degradation enzymes

Oligosaccharide-degradation 

enzymes

Debranching enzymes

Cell wall elongation enzymes

Hemicellulases

Cellulases

Figure 7 The number of cellulose-, hemicellulose-, and lignin-degradation genes extracted from the three Sorangium species. Genome

sizes are indicated below the species names.

Wu et al. Microbiome 2014, 2:26 Page 14 of 18

http://www.microbiomejournal.com/content/2/1/26



with very different coverage settings along with eight other

species using Velvet (K = 55); however Velvet assembled

most of the sequences from the two strains together and

created scaffolds with much higher coverage levels than

the actual coverage levels of the two strains. With the

development of more advanced assembly tools, MaxBin

will be capable of generating separate strain-level bins

based on differences in coverage. We note that genome-

amplified or in vitro normalized samples will not be

binned accurately by MaxBin since the amplification and

normalization process may disrupt the actual scaffold

coverage levels and confuse both the assembly algorithms

and MaxBin.

To find the number of bins in a metagenome, which

is one of the most crucial parameters in MaxBin, we

predicted genes from the metagenomes, identified 107

single-copy marker genes using HMMER3, estimated

the number of marker genes in the metagenome, and

took the median value among all marker gene counts

as the number of bins in the metagenomes. We note that

this method is based on heuristics, and the parameter is

greatly influenced by the assembly quality, in which low

quality assemblies will result in lower marker gene counts.

Furthermore, there are also other single-copy marker gene

sets, such as 35 marker genes used in predicting effective

genome size in metagenomic samples [35] and 40 marker

genes identified in [53]. Even though our median-number-

based heuristic method and the 107 marker genes work

well in MaxBin, we will keep exploring other more robust

methods or more suitable marker gene sets for identifying

the number of bins in metagenomes in our future works.

The binning performance of MaxBin also depends

heavily on assembly quality. For example, MaxBin only

generated 11 bins from the simulated simMC + dataset

since this dataset was poorly assembled compared to

simLC+ and simHC+. High quality assemblies yield longer

scaffolds, which will pass the minimum length threshold

for MaxBin and have less-biased tetranucleotide fre-

quencies. Recent developments in assembling metage-

nomic sequences [54-56] and uneven coverage single cell

sequences [57] should improve the binning performance

of MaxBin and other binning algorithms. Recent work has

reported that preassembly filtering approaches, including

digital normalization and read partitioning, produce

higher assembly quality in two large soil metagenomes

[58]. These advances suggest that MaxBin and other

binning algorithms will be able to recover genomes

from highly complex natural samples.

MaxBin was capable of binning high abundance popula-

tions obtained from metagenomic datasets from three dis-

tinct samples obtained in the Human Microbiome Project.

These bins were consistent with previous genome assign-

ments based on fragment recruitment to isolate genomes

and validate the ability of MaxBin to recover individual

genomes [41]. The inability to obtain bins for lower abun-

dance populations from the HMP metagenomes was also

seen in the simulated dataset 20X and simMC+, in which

MaxBin was unable to bin genomes with lower abundance

levels, which tend to have fewer scaffolds that pass the

minimum length threshold for assignment by MaxBin.

Binning population genomes that represent 54% of the

assembled sequence was achieved with the replicates of

consortia adapted to grow on cellulose as a sole carbon

source. These simple bacterial communities provided an

opportunity to compare comprehensively the performance

of MaxBin to the ESOM (tetranucleotide) and differential

coverage approaches. Mapping the MaxBin-assigned bins

onto the ESOM results demonstrated that MaxBin was

capable of reproducing the individual bins denoted by the

map contours and was able to distinguish closely related

bins (for example, two Cellulomonas sp. in the 37A

dataset) not resolved by the ESOM method [see Additional

file 1: Figure S6(B)]. A detailed comparison of the ESOM-

derived bin for the Sorangium sp. with the MaxBin-derived

bin in the 37A dataset revealed that the ESOM bin

recruited sequences that had approximately 100-fold

coverage (the coverage of Sorangium sp. bin is estimated

to be more than 1,000-fold), indicating that sequences

with 100 or lower coverage levels were not binned cor-

rectly and accounted for the larger predicted genome size

(5 versus 5.12 MB). In contrast, differential coverage

binning recovered a smaller predicted genome (4.59 MB

versus 5 MB); however, the additional scaffolds from the

MaxBin results were shown to affiliate with the Sorangium

sp. based on MEGAN analysis of the translated protein

sequences in these scaffolds. MaxBin also recovered an

expanded set of scaffolds compared to differential cover-

age binning for the Niastella sp. and Opitutus sp. bins

present in both replicates. A key advantage of the MaxBin

method compared to the differential coverage binning

method for these datasets is that the Terednibacter sp.

and Sphingomonas sp. bins were only present in the 37B

sample, so these genomes could not be recovered using

the differential coverage binning method.

A surprising result from the replicate cellulolytic consor-

tia, common to all three binning methods, was the recovery

of a myxobacterial genome distantly related to Sorangium

cellulosum that was predicted to be approximately 5 MB.

Most myxobacterial genomes are >9 MB [59] and the two

most closely related genomes to this bin from strains of

Sorangium cellulosum are >13 MB. The relatively large ge-

nome sizes of myxobacteria are consistent with their social

activities and their ability to adapt to multiple environments

[47]. The only myxobacterial genome of comparable size is

Anaeromyxobacter dehalogens, which has a mosaic genome

that combines specific genes of the myxobacteria with a

versatile anaerobic metabolism typical of other Deltaproteo-

bacteria [48]. Since Sorangium sp. does not possess genes
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required to live in an anaerobic environment, the reduction

in genome size compared to other myxobacteria may arise

from a different mechanism compared to A. dehalogens.

The significantly reduced genome and the gene content of

the recovered genome of the novel Sorangium sp. is con-

sistent with a lifestyle that does not require the complex

adaptations to respond to multiple environmental stimuli

and may lack the social organization typically observed in

myxobacteria. The observed dominance of the Sorangium

sp. in one of the cellulolytic consortia and the expansion

of genes for biomass deconstruction relative to sequenced

Sorangium cellulosum strains suggests that this unculti-

vated population is specifically adapted to deconstruct

plant biomass in natural environments than Sorangium

cellulosum. Detailed comparative studies between the

recovered genome of this unusual Sorangium sp. and

other myxobacteria, as well as isolation of representatives

of this uncultivated family, may expand our understanding

of the evolution and the emergence of complex adaptive

traits characteristic of the myxobacteria.

Currently, MaxBin is not able to bin viruses or plas-

mids, which lack the prokaryote marker genes to initiate

the expectation-maximization algorithm. To alleviate

this deficiency, we will refine MaxBin by adding genomic

features that are distinct from these marker genes to bin

viral genomes and plasmid sequences from metagenomic

datasets in our future works. Also, the performance of

MaxBin is greatly influenced by the estimation of the

number of bins from the marker genes and the tetranu-

cleotide frequency distance distributions. Improving the

estimation of marker genes and identifying a more suit-

able distance distribution function will improve the al-

gorithm and make it a generally applied tool for the

recovery of individual genomes from metagenomic

datasets.

Conclusions
We have developed an automated binning algorithm

that classifies assembled sequences in metagenomic

datasets into recovered individual genomes. The algo-

rithm was tested on several simulated and real metagen-

omes and shown to be highly accurate, comparing

favorably to existing methods for metagenomic binning.

Application to enriched cellulolytic consortia identified a

number of uncultivated cellulolytic bacteria, including a

myxobacterium that possessed a remarkably reduced

genome and expanded set of genes for biomass decon-

struction compared to its closest sequenced relatives.

This work demonstrates that the processes required for

recovering genomes from metagenomic datasets can

be readily automated, an important advance in under-

standing the metabolic potential of microbes in natural

environments.

Availability of supporting data
The MaxBin program is available at https://sourceforge.

net/projects/maxbin/. Metagenomic data for the enriched

cellulolytic compost consortia are available at JGI IMG/M

website (https://img.jgi.doe.gov/cgi-bin/m/main.cgi) under

JGI taxon id 3300000869 (37A) and 3300001258 (37B).

The MetaSim setting files, assembled scaffolds, and cover-

age files for replicating all simulation results, the binning

results of HMP datasets that were mentioned in the text,

and the binning results of the enriched cellulolytic compost

metagenomes can be downloaded from the MaxBin down-

load page (http://downloads.jbei.org/data/MaxBin.html).

Additional file

Additional file 1: MaxBin Supplementary Materials.
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