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D
IA proteomics1 promises robust and accurate quantification 
of proteins over large-scale study designs and across hetero-
geneous laboratory conditions2. In all omics sciences, robust 

data analysis pipelines are as important as the data acquisition tech-
nology itself, and proteomics is no exception. MaxQuant3–6 is the 
most widely used software for analyzing data-dependent acquisi-
tion (DDA) proteomics data, providing a vendor-neutral complete 
end-to-end solution for all common experimental designs. With 
version 2.0, described here, MaxQuant offers an equally complete 
DIA software infrastructure, termed MaxDIA. Such a unified 
framework over all mass spectrometry-based proteomics based on 
peptide quantification comes with several advantages over existing 
software7–10. DDA libraries and DIA samples can be processed in 
integrated, consistent ways. Algorithmic parts of the workflow that 
do not depend on the type of acquisition, like protein quantifica-
tion algorithms (such as MaxLFQ11), protein redundancy grouping 
or protein-level FDR, can be applied to all data in exactly the same 
way, making DDA and DIA studies much more comparable.

The classical approach to DIA data analysis uses a spectral 
library of peptides, which are queried in the DIA samples and 
quantified in case of their presence. In this spectral library-based 
approach, the rate of false matches can, in principle, be controlled 
with techniques similar to those developed in DDA proteomics12. 
For instance, the target-decoy method13 has been adapted to DIA9. 
Additionally, several library-free approaches exist14, and spectral 
predictions have been successfully used for DIA data analysis15–20. 
However, effective control of FDRs, in particular on the level of 
identified proteins with library-free methods, although having been 
attempted by other software9,10, is still a critical aspect that requires 

thorough investigation. In case reliability of library-free identifica-
tions is achieved, DIA can additionally be employed in a discovery 
mode, without biases imposed by a library and, at the same time, 
with certainty that the identified set of proteins contains, at most, 
a predefined percentage of false positives—for example, 1%, as is 
standardly applied in DDA-based proteomics. Here we demonstrate 
that MaxDIA fulfills these criteria and can, indeed, be used in such 
a discovery DIA mode.

Machine learning is an integral part of MaxDIA. We use the 
bi-directional recurrent neural network21 (BRNN) approach termed 
DeepMass:Prism15 to create, in silico, very precise libraries of tan-
dem mass spectrometry (MS/MS) spectra for peptides digested 
from complete proteome sequence databases. BRNNs are also used 
for the dataset-specific prediction of liquid chromatography reten-
tion times. Furthermore, to score library DIA sample matches based 
on multivariate information derived from properties of the matches, 
we apply the gradient boosting method XGBoost22, which is highly 
superior to using only the matching score itself and also compared 
to applying other machine learning approaches.

High-quality three-dimensional (3D) or, in the presence of ion 
mobility data, 4D feature detection3,23 of the precursor data is one 
of the components of MaxQuant for DDA data, leading to noise 
suppression. In MaxDIA, fragment ions are additionally detected 
as 3D/4D features. Besides noise removal, this ensures that data are 
not over-interpreted. The feature detection on fragment data allows 
to require that all signals belonging to a 3D/4D peak contribute as 
evidence to only one peptide identification, ensuring that signals at 
slightly different retention times or ion mobility values, but really 
belonging to the same feature, are not used as independent evidence 
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for two similar peptides—for example, differing by a modification 
or resulting from an amino acid polymorphism.

In MaxDIA, we support two new and promising technologies, 
both of which enable deep quantification of DIA samples. One is to 
combine DIA with high-dynamic-range precursor data obtained by 
the BoxCar acquisition method24. The second is to use ion mobility 
as an extra data dimension on a trapped ion mobility spectrometry 
quadrupole time of flight (timsTOF Pro) mass spectrometer25–27 
for DIA. Both increase the quantified proteome in DIA samples, 
substantially providing highly precise and linear quantification 
over the whole dynamic range. Furthermore, because the MaxLFQ 
algorithm was designed to perform label-free quantification on 
pre-fractionated samples11, MaxDIA also has the capability to per-
form label-free quantification of pre-fractionated samples analyzed 
by DIA, which opens up applications of DIA requiring ultra-deep 
proteome quantification. Complete submissions to the PRoteomics 
IDEntifications28 (PRIDE) database using an adapted mzTab29 
scheme can also be performed automatically using MaxDIA.

Results
MaxDIA data analysis workflow. MaxDIA is embedded into the 
MaxQuant software environment (Fig. 1) and shares with it the 
graphical user interface, computational infrastructure and many 
algorithmic workflow components applicable to both. It is vendor 
neutral, with direct support for the most common native vendor 
file formats for reading mass spectra, as well as the open mzML file 
format30. Generic DIA acquisition modes are supported, includ-
ing overlapping windows, variable window sizes, pooled mul-
tiple windows and variable m/z–ion mobility regions for timsTOF 
instruments. MaxDIA can be operated in a classical library-based 
approach or in discovery DIA mode. In the former, DIA datasets 
are interrogated within MaxQuant by spectral libraries generated 
with MaxQuant, whereas the latter does not require acquisition of a 
spectral library. In discovery DIA mode, spectral libraries are gener-
ated by DeepMass:Prism15, a BRNN that enables precise prediction  

of spectral intensities from peptide sequences. Decoy spectra are 
generated by reverting library sequences under the constraint 
of preserving the cleavage characteristics of the protease that 
was used in the experiment and ensuring that the decoy peptide 
masses, retention times and ion mobility values follow the same 
multivariate distribution as the target peptides. DIA samples and 
libraries are then analyzed in an end-to-end workflow for peptide 
and protein identification and quantification. MaxQuant’s 3D or 
4D feature detection3,23 (Fig. 2) and de-isotoping are performed 
on the precursor data and on all liquid chromatography with tan-
dem mass spectrometry (LC–MS/MS) or LC–ion mobility spec-
trometry (IMS)–MS/MS fragment data domains corresponding 
to precursor selection windows. Defining MS/MS features in a 
multi-dimensional way is particularly important for fragment data, 
because it avoids over-interpretation of identification results. This 
enables the requirement that every MS/MS feature is used at most 
once in peptide identification. Problems might arise if such precau-
tions are not taken, because features will be double-counted for 
the identification of peptides that are similar to each other due to 
sequence homology or due to the presence or absence of a modifica-
tion but for which there is insufficient evidence for the existence of 
both peptide forms.

Bootstrap DIA. Central to the workflow is bootstrap DIA, which 
consists of multiple steps of matching the library spectra to DIA 
samples (Supplementary Fig. 1). These steps aim to bootstrap the 
DIA identification process based on the least possible prior knowl-
edge. Bootstrap DIA replaces and substantially extends the concept 
of the ‘first search–main search’ strategy31 as well as the ‘retention 
time alignment’ and ‘match between runs’ used in DDA MaxQuant. 
Increasingly more information is gained in each round, with this 
information used in subsequent rounds. For instance, in the first 
round of matching, no retention time constraint is used. Based on 
these matches, a linear model is fit between the library and sample 
retention times, which is used to align runs to one another, even 
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when gradient lengths substantially differ. This linear correction 
can be applied to the data, and, in the second round of match-
ing, retention times can be filtered based on a time window that 

is automatically adapted to the distribution of all retention time 
differences after linear alignment. This filtering removes suffi-
ciently many false-positive matches, so that, from the third round 
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Fig. 2 | 3D/4D feature detection of precursors and fragments. a, Visualization of precursors and fragments of a peptide measured on an Orbitrap. The 

raw data can be visualized together with the peak detection results as heat maps and 3D models for precursor and fragment data in the graphical user 

interface of MaxQuant. b, Two peptides with nearly equal mass, both with charge 2 and having very similar retention times, are resolved by ion mobility 

on a timsTOF Pro mass spectrometer. A heat map visualizes intensities as a function of retention time and collision cross-section for the precursor isotope 

patterns. The two respective MS/MS spectra of fragments assigned to the precursors are shown. RT, retention time.
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of matching, a non-linear retention time recalibration function  
can be determined. Application of the non-linear recalibration 
function allows to subsequently apply more stringent filtering. 
Similar multi-step recalibration and filtering steps are applied to 
precursor and fragment masses as well as to collision cross-sections, 
if applicable. Supplementary Fig. 2 shows how target decoy distribu-
tions are affected after each matching step with increasingly more 
stringent filers. The resulting non-linear precursor and fragment 
m/z recalibrations depending on m/z and retention time are shown 
in Supplementary Figs. 3 and 4.

A consequence of the bootstrap DIA process is that precursor 
and fragment masses, retention times and ion mobility values are 
non-linearly aligned between each DIA sample and library with-
out the need for spike-in standards. A prerequisite for this is that 
the DDA runs in the datasets used for the library are well aligned 
to each other, because the precision of alignment between library 
and DIA samples is otherwise limited by the variability of reten-
tion times and collision cross-sections within the library. Therefore, 
when processing libraries in MaxQuant, retention time and ion 
mobility alignments should be activated. A challenging attribute that 
can be learned from the data is non-linear retention time mappings 
between library and samples. This means that gradients between 
library and DIA runs do not need to be the same, and label-free 
quantification is possible even between DIA measurements with 
different gradient lengths. To evaluate the matching of different DIA 
gradient durations to a library, we generated a DDA library con-
sisting of 16 high-pH reversed-phase fractions of a HeLa cell lysate 
measured with 25-min gradients and measured the same sample 
unfractionated with DIA using 30-, 60-, 90- and 120-min gradients. 
Supplementary Fig. 5 shows retention time alignments between 
the library and DIA samples, and precise quantification among 
samples with different gradient lengths is shown in Supplementary 
Fig. 6. These capabilities greatly enhance the flexibility of 
MaxDIA, making the software applicable to analyzing a broader  
range of samples.

Scoring of library-to-sample matches by machine learning. To 
quantify the quality of match between a library spectrum and a DIA 
sample at a given retention time and collisional cross-section (CCS) 
value, if applicable, we first find a precursor feature and all frag-
ment features that match to the library spectrum with tolerances 
for m/z, retention time and CCS, dependent on the matching step 
in the bootstrap DIA workflow. To measure the match quality, we 
then calculate a score, which is the sum over all matching features of 
numbers between 0 and 1, each quantifying how far away from the 
apex the respective peak was hit (Supplementary Fig. 7). For a given 
library spectrum, this score is maximized over retention time and 
ion mobility. It is then ensured, through a second round of scoring, 
that every feature in a DIA sample is used, at most, for one library 
spectrum match.

This score then is enhanced through machine learning. To this 
end, we construct a feature space that, in addition to the score, 
contains various properties of the match (Supplementary Fig. 8), 
such as mass errors (in p.p.m.) for precursor and fragment ions as 
deviations from the theoretical masses calculated from elemental 
compositions. Also, the errors of retention times and ion mobilities 
are included in the feature space. An interesting feature is the apex 
fraction, which is the ratio of the intensity at the current retention 
time to the maximum peak intensity. We employ a classification 
algorithm to separate ‘target’ from ‘decoy’ hits based on this feature 
space. We define the machine learning-based match score as the 
assignment probability to the ‘target’ class of the machine learning 
algorithm. This is a number expressing the affinity to the ‘target’ 
spectra as opposed to the ‘decoy’ spectra. To eliminate the risk of 
overfitting, we determine these machine learning scores in five-fold 
cross-validation, such that a match for which the machine learning 

score is calculated has not been used for training the model that is 
used for its prediction.

We used several different classification algorithms and moni-
tored their effect on the identification performance of MaxDIA. 
We compared the performances of XGBoost22, fully connected 
multi-hidden layer neural networks, random forests32 and AdaBoost 
(Supplementary Fig. 9), scanning, for each algorithm, suitable 
ranges of meta-parameters. We found that XGBoost performs best 
among the tested algorithms, in contrast to Demichev et al.10, who 
found neural networks to perform favorably. This choice is also 
different from DDA where, for similar purposes, support vector 
machine-based methods are used33. XGBoost provides informa-
tion on the importance of features for classification (Supplementary 
Fig. 8). We found that, in the library-based approach, the feature 
defining whether the precursor has an isotope pattern assigned or 
was seen only as a single peak is of greater importance than the raw 
score itself. Furthermore, retention time, precursor mass errors, 
number of modifications and missed cleavages were among the top 
ten highest ranked features. Also among the top ten is the ‘sample 
fragment overlap’, which quantifies if and to what extent the N- and 
C-terminal ion series are overlapping in the DIA sample, thereby 
placing restrictions on the precursor mass.

Identification performance and quantification precision. To eval-
uate the performance of MaxDIA, we ran it, as well as Spectronaut 
13 and Spectronaut 14, on a dataset comprising 27 technical repli-
cate injections of peptides derived from the human HepG2 cell line 
measured in DIA as well as a DDA library created from 12 high-pH 
reversed-phase fractions (Methods). Using default parameters 
in both software, including a 1% FDR on precursor and protein 
levels, we obtained 6,238 protein groups mapped to Entrez Gene 
identifiers with MaxDIA compared to 6,015 with Spectronaut 13 
and 6,304 with Spectronaut 14, with an overlap of 5,542 among all 
software platforms (Fig. 3a). MaxDIA found 7.4% more peptides 
than Spectronaut 13 and 5.8% more than Spectronaut 14 at 1% 
library-to-DIA-matches FDR. We found several peptide properties 
to be similarly distributed among the identification results of the 
two software platforms (Supplementary Fig. 10), including reten-
tion time, precursor charge and mass-to-charge ratio and precursor 
mass error. In addition, the length distribution of identified pep-
tides was very similar between the two analysis software packages 
(Fig. 3b). Peptides that were uniquely found by MaxQuant were 
biased toward low signal intensity (Supplementary Fig 10a).

Although DIA is thought to be better in terms of data complete-
ness34,35 compared to DDA, we observe that this depends on the 
algorithmic details, and that there is a tradeoff between data com-
pleteness and confidence of protein identification within a specific 
sample, as opposed to the whole dataset. After identifying peptides 
and proteins for the whole dataset, we apply a ‘transfer q-value’ 
cutoff to the identifications of matches in each sample. Setting it 
to 1 implies that no sample-specific restrictions are applied and 
that the peptide is quantified, whenever any evidence is found for 
its existence. A transfer q value of 0.01 (equal to the global q value 
of library-to-sample matches) results in stringent identification in 
every sample and, hence, certainty about the actual sample-specific 
presence of peptides and proteins. We scanned through seven 
values of the transfer q value between 0.01 and 1 and monitored 
the number of proteins that have a certain number or fewer valid 
values in terms of label-free quantification (LFQ) intensities  
(Fig. 3c). As expected, for larger transfer q values, the curves are flat-
ter and higher in terms of total protein numbers. When using 1 for 
the ‘minimum ratio count’ parameter of the LFQ algorithm, most 
parts of all curves are above the line for the Spectronaut 13 software 
and slightly below for the Spectronaut 14 software. For ‘minimum 
ratio count’ = 2, which ensures higher accuracy of quantification, 
the array of curves is intersecting with the Spectronaut curves.  
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The ‘minimum ratio count’ parameter requires at least that many 
peptide features to be shared for a protein in a specific compari-
son between two samples11. After evaluating the accuracy of bench-

mark quantification results on several mass spectrometry platforms 
(see, for instance, Supplementary Fig. 15 for timsTOF data), we 
decided to select 0.3 as the default value for the transfer q value. 
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Fig. 3 | Performance evaluation. Twenty-seven technical replicates of HepG2 cell lysate were analyzed on an Orbitrap mass spectrometer (Methods).  

a, Number of identified protein groups with 1% FDR on protein and peptide level and number of peptides at 1% library-to-DIA-sample FDR obtained with 

MaxDIA, Spectronaut 13 and Spectronaut 14. b, Histograms of peptide lengths identified with MaxDIA (blue) and Spectronaut 13 (red). c, Number of proteins 

with, at most, x out of 27 valid values for Spectronaut 13 (red), Spectronaut 14 (magenta) and MaxDIA with MaxLFQ minimum ratio count = 1 (blue, dashed) 

and = 2 (blue, solid). Multiple curves for the two MaxQuant series of curves correspond to seven different choices for the transfer q value (0.01, 0.03, 0.05, 

0.1, 0.3, 0.5 and 1). d, Histograms of coefficients of variation for analyses with default settings in MaxDIA (solid blue) and in Spectronaut 13 and Spectronaut 

14 (open). e, log–log scatter plot of LFQ intensities between two representative replicates obtained with MaxQuant. The two replicates were chosen to have 

the median Pearson correlation of all pairwise replicate comparisons. f, Same as in e for Spectronaut intensities. Similarly, the two replicates were chosen to 

represent the median Pearson correlation coefficient of all pairwise comparisons. g, Heat map with all pairwise Pearson correlations among the 27 replicates 

for MaxDIA (upper triangle) and Spectronaut (lower traingle). The two values corresponding to the comparisons in e and f are marked with red squares.  

h, log–log scatterplot of iBAQ protein intensities from MaxDIA against Spectronaut protein intsnsities. i, log–log scatterplot of MaxDIA iBAQ values averaged 

over the replicates against RPKM values from RNA-seq data. j, Same as i with protein intensities from Spectronaut.
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Study-specific objectives (completeness of quantification versus 
certainty of identification in individual samples) might suggest 
deviations from this default value.

The distribution of coefficients of variation (CVs) (Fig. 3d) 
indicates substantially higher quantification precision obtained 
with MaxLFQ (described below) in MaxDIA compared to both 
Spectronaut versions, with median CVs of 0.072, 0.109 and 0.114, 
respectively. Figure 3e,f shows typical log–log scatter plots of pro-
tein intensities between replicates displaying fewer outliers and 
higher Pearson correlation for MaxDIA. All pairwise replicate 
Pearson correlations of logarithmic intensities are represented as a 
heat map in Fig. 3g for both programs, showing consistently higher 
correlations for MaxDIA (median 0.993) compared to Spectronaut 
(median 0.977). We found a good overall agreement between aver-
aged Spectronaut intensities and MaxDIA intensity-based absolute 

quantification (iBAQ) values (Fig. 3h) with a Pearson correlation 
of 0.87. We performed mRNA versus protein copy number com-
parisons based on reads per kilobase per million mapped reads 
(RPKM)36 and iBAQ37 values, respectively, using MaxDIA and 
Spectronaut (Fig. 3i,j). Both comparisons showed similar correla-
tions between mRNA and protein levels, which are also compatible 
with correlations typically found in such studies38.

Accuracy of FDR estimates and discovery DIA. To evaluate the 
reliability of FDR estimates using MaxDIA’s target-decoy strategy, 
we used a pooled DDA library generated from mixed human and 
maize samples, with corresponding DIA runs comprising only 
human samples34. Hence, every match identified as being derived 
from the maize proteome is a known false-positive identification 
(having discarded peptides that are shared among proteins of the 
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Fig. 4 | Internal and external FDR. a, Number of identifications (blue: matches; green: peptides; red: protein groups) as a function of estimated FDR. The 

FDR is estimated once with the ‘internal’ target-decoy method implemented in MaxQuant (solid lines) and once with the ‘external’ method using mixing 

maize and human samples for generating the library and using only human sample in the DIA runs (dashed lines). b, Same as in a but using in silico 

predicted libraries generated using DeepMass:Prism15 c, Same as a but using the raw score instead of the machine learning–derived score. d, Same as b but 

using the raw score instead of the machine learning–derived score.
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two species). This enables calculation of an ‘external’ FDR, which 
is calculated independently of the ‘internal’ FDR estimated by the 
decoy approach in MaxDIA. Figure 4a compares internal and exter-
nal FDRs on match, peptide and protein group levels. The curves 
for internal and external FDR are in very good agreement on all 
three levels. When comparing the numbers of identified matches, 
peptides and protein groups at 1% FDR, which is often taken as a 
default value in shotgun proteomics, the numbers differed by only 
3.0%, 3.4% and 5.0%, respectively, between internally and exter-
nally controlled FDRs. Hence, our decoy-based FDR estimates are 
in good agreement with external FDR calculations.

Given these results, we investigated how accurate the FDR esti-
mates are for cases in which the library is dissimilar to the DIA 
sample. Hence, we assembled a library of in silico predicted spec-
tra based on DeepMass:Prism15 consisting of all tryptic peptides 
digested from all human UniProt39 sequences (Release 2019_05 
containing 20,959 proteins) without missed cleavages. We addition-
ally generated predicted retention times for each in silico spectrum 
based on a BRNN used previously for the same purpose15. Using 
this library with the same DIA dataset as in Fig. 4a, we generated 
the same curves for internal and external FDRs as before (Fig. 4b). 
Here as well, we observed good agreement between internal and 
external FDRs. In particular, at an FDR of 1%, the number of identi-
fied protein groups differed by only 1.5%. We did, however, identify 
39% more protein groups with the in silico library compared to the 
measured library. This highlights that MaxDIA does not require 
that spectral libraries are generated from matching samples in a 
project-specific manner, and yet FDRs are still reliably controlled. 
This enables the use of MaxDIA in a ‘discovery’ mode (discovery 
DIA), which is not biased by a library and completely hypothesis 
free in terms of which proteins can be found, by using in silico pre-
dicted libraries for all protein sequences. We repeated all analysis 
while replacing the DeepMass:Prism algorithm with two other spec-
tral prediction methods—wiNNer15 and PROSIT16—indicating that 
there are no substantial differences resulting from different choices 
among these prediction algorithms (Supplementary Fig. 11).

We additionally repeated these analyses using the raw matching 
score instead of the machine learning-improved score (Fig. 4c,d). 
This revealed that the agreement of internal and external FDR does 
not depend on whether the XGBoost-based machine learning was 
used to adjust the scoring. However, the use of machine learning 
did substantially increase peptide (83% and 58% for library DIA 
and discovery DIA, respectively) and protein group (28% and 18%, 
respectively) identifications.

MaxLFQ adaptation for DIA. A prime example of the re-use 
and continued development of algorithms from DDA MaxQuant 
to MaxDIA is the label-free quantification algorithm MaxLFQ11. 
Here, quantification is based on first calculating all pairwise peptide 
ratios between samples, which are then summarized by the intensity 
profile that best fits all the pairwise ratios. This procedure can be 
generalized to DIA by replacing a single ratio per peptide with mul-
tiple ratios derived from precursor intensities and from the most 
intense fragment peaks (Supplementary Fig. 12). This approach 
naturally implements hybrid quantification of precursor and frag-
ment intensities.

To benchmark quantification accuracy, we downloaded a 
four-species dataset with well-defined small ratios between replicate 
groups34. Ratios are expected to be 0%, 10%, 20% or 30%, depending 
on the species comprising: Homo sapiens, Caenorhabditis elegans, 
Saccharomyces cerevisiae and Escherichia coli. We tested several 
combinations of precursor, fragment or mixed quantification and 
fragment intensities summed up or kept separately. We measured 
the variability as the interquartile range of ratios within each spe-
cies and summed these over the four species (Fig. 5a). We found 
that hybrid quantification between precursors and fragments with 
fragment intensities kept separate for individual ion types in LFQ 
resulted in the smallest quantification errors measured as the sum of 
the interquartile ranges of ratio distributions over the four species. 
The accuracy observed exceeded both MS1- and MS2-level quan-
tification reported by Bruderer et al.34. A further question is how 
the filtering of fragments by their intensity improves quantifica-
tion accuracy. To this end, we used only the top N intense peaks for 
quantification while varying N (Supplementary Fig. 13a). We found 
that accuracy increases with the number of fragments used, indicat-
ing that no filtering of fragments by intensity is required. Similarly, 
we investigated whether filtering to the top N most intense peptides 
per protein is beneficial (Supplementary Fig. 13b), finding that it is 
best to use all available peptides.

In recent years, several researchers have worked on approaches 
to remove interferences and improve the selection of transitions 
in DIA analysis40–43. Although this approach to improving quanti-
fication has its merits, in this study we followed a different strat-
egy with MaxLFQ to obtain high accuracy on the level of protein 
groups. Single-fragment features that are interfered by overlap-
ping features and, due to this, have incorrect intensities will 
not affect protein quantification in MaxDIA much because the 
protein-level quantification relies solely on the medians of pep-
tide signal ratios (Supplementary Fig. 12c). Hence, even if a frac-
tion of signals is affected by interferences, they are expected to 
drop out in the calculation of the median over multiple fragments 
and peptides. We compared MaxLFQ in MaxDIA to Avant-garde 
curated Skyline quantification on a multi-species benchmark 
dataset simulating realistic biological data41. We found that the 
transition-filtered quantification provided by Avant-garde is not 
systematically better than the MaxLFQ quantification in MaxDIA  
(Supplementary Fig. 14).

Next, we analyzed a quantitative benchmark dataset obtained on 
a SCIEX TripleTOF 6600 instrument, mixing proteomes from three 
species in defined ratios among replicate groups2 (Fig. 5b). Using 
the original library analyzed with MaxQuant and using default 
values for all parameters, we identified 4,627 protein groups and 
achieved linear quantification for all three species over the whole 
dynamic range. In discovery mode with a predicted library allowing 
for one missed tryptic cleavage, the number of identified protein 
groups rose by 48% to 6,858 (Fig. 5c), with, on average, improved 
quantification accuracy for the species with ratios as measured by 
interquartile ranges of species-specific ratio distributions. H. sapi-
ens, which expresses a much larger number of proteins, received the 
largest increase, identifying almost two-fold more protein groups 
(4,012 versus 2,127), whereas C. elegans and E. coli received propor-
tionally fewer additional proteins.

Fig. 5 | MaxlFQ for DIA. a, Stacked interquartile rages of protein ratio distributions in the small-ratio four-species dataset from Bruderer et al.34 using 

different versions of MaxLFQ for DIA and compared to the results from this publication. MaxDIA is capable of MS1 and MS2 level as well as hybrid 

quantification modes. b, Quantification of a three-species benchmark mixture measured on a SCIEX TripleTOF 6600 instrument mixing proteomes from 

three species in defined ratio2 with MaxLFQ for DIA. The accompanying DDA library was used. The box plots here and in the subsequent panels are based 

on the numbers of data points given in the tables below the respective plot (valid LFQ ratios). All box plots indicate the median and the first and third 

quartiles as box ends. Whiskers are positioned 1.5 box lengths away from the box ends. c, Same as b but analyzed with MaxDIA in discovery mode.  

d, Quantification of a three-species benchmark mixture measured on a Bruker timsTOF Pro instrument mixing proteomes from three species in defined 

ratio using a DDA library. e, Same as d but analyzed in discovery mode.
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We next acquired a quantitative three-species benchmark 
dataset using ion mobility on a Bruker timsTOF Pro instrument. 
Using the DDA library acquired on the same instrument type, we 

identified 10,352 protein groups. We again used MaxLFQ for DIA 
with hybrid quantification with separate intensities for each frag-
ment ion (Fig. 5d), seeing excellent quantification over the whole 
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dynamic range without non-linearities. In discovery mode (Fig. 5e), 
the number of identified protein groups increases to 10,466 with 
higher quantification accuracy, again judged by the interquartile 
ranges of ratio distributions. Scanning through the transfer q value, 
we found that quantification accuracy was best with a value near 0.3 
(Supplementary Fig. 15).

BoxCar and fractionated DIA. We recently implemented analy-
sis of data acquired using the BoxCar acquisition method in 
MaxQuant in the DDA context24, whose primary goal is to achieve 
higher dynamic range for the precursor intensities. Because this 
should be beneficial for DIA as well, we implemented its general-
ization to combining high-dynamic-range precursor measurements 
with DIA acquisition for the fragments. Furthermore, it is possible 
with MaxDIA to analyze and quantify DIA samples that have been 
pre-fractionated on peptide or protein levels. This feature can be 
applied to all supported instruments and DIA acquisition meth-
ods. To highlight these features, we acquired both DDA libraries 
and DIA measurements from HEK cell lysate as single shots and as 
high-pH reversed-phase peptide fractionated samples, which were 
pooled into eight fractions for MS analysis (Methods). We analyzed 

all combinations of libraries and samples, and, in addition, we ana-
lyzed the DIA samples in discovery DIA mode allowing for one 
missed trypsin cleavage (Fig. 6a). For the fractionated DIA samples, 
we observed an increase in the number of identified protein groups 
concomitant with the size of the library, with the most identifica-
tions in discovery mode. With single-shot samples, the number of 
identified proteins saturates with library size, having slightly more 
identifications with the fractionated library. However, comparing 
identifications for the single-shot DIA samples between fraction-
ated library and discovery mode, we found that the results were very 
similar, with 89% overlap of Entrez Gene identifier mapped protein 
groups (Supplementary Fig. 16). For a comparison of protein iden-
tifications for different fractionation depths of the DIA samples, 
see Supplementary Fig. 17. This indicates that, for both types of 
DIA samples, it is not compulsory to produce a deep, fractionated 
library, but that similar, or even better, results can be achieved in 
discovery DIA mode. Quantification with MaxLFQ among three 
replicates of fractionated DIA samples showed very good correla-
tion, with a median Pearson correlation of 0.993 (Fig. 6b).

We then compared the results obtained with the three different 
library creation approaches to RNA sequencing (RNA-seq) data of 
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HEK cells (Methods). Figure 6c compares the four sets of identi-
fications based on gene identifiers. Of the 9,503 genes covered by 
proteomics methods, 65% were found with all three library meth-
ods. An additional 25% were found with both discovery mode and 
fractionated library but not with the single-shot library. In total, 608 
proteins were uniquely found with the discovery approach, com-
pared to 251 with the deep-fractionated library, suggesting pref-
erence for the discovery mode from the perspective of results, in 
addition to its economic advantages. In Fig. 6d, the results from Fig. 
6c are displayed according to RPKM intervals of the RNA-seq data. 
The RNA-seq data show a bimodal left shoulder that is typical of 
expression noise44, genes for which there is only limited proteomic 
evidence of translation. As expected, highly abundant proteins 
are recovered with all methods, whereas, at low abundance, both 
the deep-fractionated library and discovery DIA approach add 
identifications.

Discussion
Here we introduce MaxDIA, a complete end-to-end DIA workflow 
embedded into the MaxQuant environment with major new features 
and broad applicability to established and novel MS technologies. 
We demonstrate the widespread and general utility of the software, 
including its use in analyzing BoxCar DIA and ion mobility DIA 
data, demonstrating very high proteome quantification coverage.

This framework lends itself to several extensions that are cur-
rently under development. In particular, although the analysis of 
post-translational modifications (PTMs) is possible, in principle, 
by providing suitable libraries with spectra from modified peptides, 
proper localization of the modification on the peptide has to be care-
fully implemented as an additional process after peptide identifica-
tion45. For these purposes, a PTM score guiding localization needs 
to be calculated directly from the DIA data and not from extracted 
spectra. Similarly, extensions to the identification of cross-linked 
peptides are straightforward46 and are planned for future releases 
of MaxDIA.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41587-021-00968-7.

Received: 17 November 2020; Accepted: 27 May 2021;  
Published online: 8 July 2021

References
 1. Doerr, A. DIA mass spectrometry. Nat. Methods 12, 35–35 (2014).
 2. Navarro, P. et al. A multicenter study benchmarks so�ware tools for label-free 

proteome quanti�cation. Nat. Biotechnol. 34, 1130–1136 (2016).
 3. Cox, J. & Mann, M. MaxQuant enables high peptide identi�cation rates, 

individualized p.p.b.-range mass accuracies and proteome-wide protein 
quanti�cation. Nat. Biotechnol. 26, 1367–1372 (2008).

 4. Azvolinsky, A., DeFrancesco, L., Waltz, E. & Webb, S. 20 years of Nature 
Biotechnology research tools. Nat. Biotechnol. 34, 256–261 (2016).

 5. Sinitcyn, P., Rudolph, J. D. & Cox, J. Computational methods for 
understanding mass spectrometry-based shotgun proteomics. Annu. Rev. 
Biomed. Data Sci. 1, 207–234 (2018).

 6. Sinitcyn, P. et al. MaxQuant goes Linux. Nat. Methods 15, 401 (2018).
 7. Röst, H. L. et al. OpenSWATH enables automated, targeted analysis of 

data-independent acquisition MS data. Nat. Biotechnol. 32, 219–223 (2014).
 8. MacLean, B. et al. Skyline: an open source document editor for creating  

and analyzing targeted proteomics experiments. Bioinformatics 26,  
966–968 (2010).

 9. Bruderer, R. et al. Extending the limits of quantitative proteome pro�ling 
with data-independent acquisition and application to acetaminophen- 
treated three-dimensional liver microtissues. Mol. Cell. Proteomics 14, 
1400–1410 (2015).

 10. Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, K. S. & Ralser, M. 
DIA-NN: neural networks and interference correction enable deep proteome 
coverage in high throughput. Nat. Methods 14, 41–44 (2020).

 11. Cox, J. et al. Accurate proteome-wide label-free quanti�cation by delayed 
normalization and maximal peptide ratio extraction, termed MaxLFQ.  
Mol. Cell. Proteomics 13, 2513–2526 (2014).

 12. Rosenberger, G. et al. Statistical control of peptide and protein error rates in 
large-scale targeted data-independent acquisition analyses. Nat. Methods 14, 
921–927 (2017).

 13. Elias, J. E. & Gygi, S. P. Target-decoy search strategy for increased con�dence 
in large-scale protein identi�cations by mass spectrometry. Nat. Methods 4, 
207–214 (2007).

 14. Tsou, C.-C. et al. DIA-Umpire: comprehensive computational framework for 
data-independent acquisition proteomics. Nat. Methods 12, 258–264 (2015).

 15. Tiwary, S. et al. High quality MS/MS spectrum prediction for data-dependent 
and -independent acquisition data analysis. Nat. Methods 16, 519–525 (2019).

 16. Gessulat, S. et al. Prosit: proteome-wide prediction of peptide tandem mass 
spectra by deep learning. Nat. Methods 16, 509–518 (2019).

 17. Yang, Y. et al. In silico spectral libraries by deep learning facilitate 
data-independent acquisition proteomics. Nat. Commun. 11, 146 (2020).

 18. Searle, B. C. et al. Generating high quality libraries for DIA MS with 
empirically corrected peptide predictions. Nat. Commun. 11, 1548 (2020).

 19. Lou, R. et al. Hybrid spectral library combining DIA-MS data and a targeted 
virtual library substantially deepens the proteome coverage. iScience 23, 
100903 (2020).

 20. Tran, N. H. et al. Deep learning enables de novo peptide sequencing  
from data-independent-acquisition mass spectrometry. Nat. Methods 16, 
62–66 (2019).

 21. Graves, A. et al. A novel connectionist system for unconstrained handwriting 
recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31, 855–868 (2009).

 22. Chen, T. & Guestrin, C. XGBoost: reliable large-scale tree boosting system. 
Preprint at https://arxiv.org/abs/1603.02754 (2016).

 23. Prianichnikov, N. et al. MaxQuant so�ware for ion mobility enhanced 
shotgun proteomics. Mol. Cell. Proteomics 19, 1058–1069 (2020).

 24. Meier, F., Geyer, P. E., Virreira Winter, S., Cox, J. & Mann, M. BoxCar 
acquisition method enables single-shot proteomics at a depth of 10,000 
proteins in 100 minutes. Nat. Methods 15, 440–448 (2018).

 25. Fernandez-Lima, F., Kaplan, D. A., Suetering, J. & Park, M. A. Gas-phase 
separation using a trapped ion mobility spectrometer. Int. J. Ion Mobil. 
Spectrom. https://doi.org/10.1007/s12127-011-0067-8 (2011).

 26. Silveira, J. A., Ridgeway, M. E. & Park, M. A. High resolution trapped ion 
mobility spectrometery of peptides. Anal. Chem. 86, 5624–5627 (2014).

 27. Meier, F. et al. Online parallel accumulation–serial fragmentation (PASEF) 
with a novel trapped ion mobility mass spectrometer. Mol. Cell. Proteomics 
17, 2534–2545 (2018).

 28. Perez-Riverol, Y. et al. �e PRIDE database and related tools and resources in 
2019: improving support for quanti�cation data. Nucleic Acids Res. 47, 
D442–D450 (2019).

 29. Griss, J. et al. �e mzTab data exchange format: communicating 
mass-spectrometry-based proteomics and metabolomics experimental results 
to a wider audience. Mol. Cell. Proteomics 13, 2765–2775 (2014).

 30. Martens, L. et al. mzML—a community standard for mass spectrometry data. 
Mol. Cell. Proteomics 10, R110 000133 (2011).

 31. Cox, J., Michalski, A. & Mann, M. So�ware lock mass by two-dimensional 
minimization of peptide mass errors. J. Am. Soc. Mass. Spectrom. 22, 
1373–1380 (2011).

 32. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
 33. Käll, L., Canterbury, J. D., Weston, J., Noble, W. S. & MacCoss, M. J. 

Semi-supervised learning for peptide identi�cation from shotgun proteomics 
datasets. Nat. Methods 4, 923–925 (2007).

 34. Bruderer, R. et al. Optimization of experimental parameters in 
data-independent mass spectrometry signi�cantly increases depth and 
reproducibility of results. Mol. Cell. Proteomics 16, 2296–2309 (2017).

 35. Ludwig, C. et al. Data‐independent acquisition‐based SWATH‐MS for 
quantitative proteomics: a tutorial. Mol. Syst. Biol. 14, e8126 (2018).

 36. Mortazavi, A., Williams, B. A., McCue, K., Schae�er, L. & Wold, B. Mapping 
and quantifying mammalian transcriptomes by RNA-seq. Nat. Methods 5, 
621–628 (2008).

 37. Selbach, M. et al. Widespread changes in protein synthesis induced by 
microRNAs. Nature 455, 58–63 (2008).

 38. Buccitelli, C. & Selbach, M. mRNAs, proteins and the emerging principles of 
gene expression control. Nat. Rev. Genet. 21, 630–644 (2020).

 39. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 45, 
D158–D169 (2017).

 40. Tsai, T. H. et al. Selection of features with consistent pro�les improves relative 
protein quanti�cation in mass spectrometry experiments. Mol. Cell. 
Proteomics 19, 944–959 (2020).

 41. Vaca Jacome, A. S. et al. Avant-garde: an automated data-driven DIA data 
curation tool. Nat. Methods 17, 1237–1244 (2020).

NATURe BIOTeCHNOlOgY | VOL 39 | DECEMBER 2021 | 1563–1573 | www.nature.com/naturebiotechnology1572

https://doi.org/10.1038/s41587-021-00968-7
https://doi.org/10.1038/s41587-021-00968-7
https://arxiv.org/abs/1603.02754
https://doi.org/10.1007/s12127-011-0067-8
http://www.nature.com/naturebiotechnology


ARTICLESNATURE BIOTECHNOLOGY

 42. Searle, B. C. et al. Chromatogram libraries improve peptide detection  
and quanti�cation by data independent acquisition mass spectrometry.  
Nat. Commun. 9, 5128 (2018).

 43. Teo, G. et al. MapDIA: preprocessing and statistical analysis of quantitative 
proteomics data from data independent acquisition mass spectrometry.  
J. Proteomics 129, 108–120 (2015).

 44. Hebenstreit, D. et al. RNA sequencing reveals two major classes of gene 
expression levels in metazoan cells. Mol. Syst. Biol. 7, 497 (2011).

 45. Bekker-Jensen, D. B. et al. Rapid and site-speci�c deep phosphoproteome 
pro�ling by data-independent acquisition without the need for spectral 
libraries. Nat. Commun. 11, 787 (2020).

 46. Müller, F., Kolbowski, L., Bernhardt, O. M., Reiter, L. & Rappsilber, J. 
Data-independent acquisition improves quantitative cross-linking mass 
spectrometry. Mol. Cell. Proteomics 18, 786–795 (2019).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing,  
adaptation, distribution and reproduction in any medium or format,  

as long as you give appropriate credit to the original author(s) and the source, provide a 
link to the Creative Commons license, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons 
license, unless indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons license and your intended use is not  
permitted by statutory regulation or exceeds the permitted use, you will need to  
obtain permission directly from the copyright holder. To view a copy of this license,  
visit http://creativecommons.org/licenses/by/4.0/.
© The Author(s) 2021

NATURe BIOTeCHNOlOgY | VOL 39 | DECEMBER 2021 | 1563–1573 | www.nature.com/naturebiotechnology 1573

http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturebiotechnology


ARTICLES NATURE BIOTECHNOLOGY

Methods
HepG2 technical replicate data. Cell culture and MS sample preparation. HepG2 
cells were from the American Type Culture Collection and cultured in MEM  
and 10% FCS. Cells were washed twice with ice-cold PBS and harvested using 
freshly prepared SDC bu�er (1% SDC, 10 mM TCEP, 40 mM CAA, 75 mM 
Tris-HCl pH 8.5). �e SDC lysates were heated to 95 °C for 10 min while shaking  
at 750 r.p.m. in a �ermoMixer (Eppendorf) and then sonicated for 10 min  
(10 × 30-s on/o� cycles) using a Bioruptor Pico sonication device (Diagenode). 
Protein concentrations were determined using the 660-nm assay (�ermo Fisher 
Scienti�c), and the proteins were digested with trypsin/Lys-C mix (Promega, 
V5071) overnight at 37 °C with a 1:50 enzyme-to-protein ratio. �e digestion was 
stopped by adding 2 volumes of 99% ethylacetate/1% tri�uoroacetic acid (TFA), 
followed by sonication for 1 min using an ultrasonic probe device (energy output 
~40%). �e samples were then de-salted using in-house-prepared, 200-µl, two-plug 
SDB-RPS StageTips47 (3M Empore, 2241). SDB-RPS StageTips were conditioned 
with 60 µl of isopropanol, 60 µl of 80% ACN/5% NH4OH and 100 µl of 0.2% 
TFA. �e SDC/ethylacetate mixture was directly loaded onto the tips, followed 
by two washing steps of 200 µl of 0.2% TFA each. Peptides were eluted with 80% 
ACN/5% NH4OH, speedvac dried and then resupended in 0.1% formic acid (FA). 
A�er estimation of the concentration using a NanoDrop device (�ermo Fisher 
Scienti�c), the samples were adjusted to 0.4 µg µl−1 with 0.1% FA, of which 2 µl 
(800 ng) was injected into the mass spectrometer.

LC–MS/MS measurements. Peptides were loaded on 40-cm reversed-phase columns 
(75-µm inner diameter, packed in-house with ReproSil-Pur C18-AQ 1.9-µm resin 
(ReproSil-Pur, Dr. Maisch)). The column temperature was maintained at 60 °C 
using a column oven. An EASY-nLC 1200 system (Thermo Fisher Scientific) was 
directly coupled online with the mass spectrometer (Q Exactive HF-X, Thermo 
Fisher Scientific) via a nano-electrospray source, and peptides were separated with 
a binary buffer system of buffer A (0.1% FA plus 5% DMSO) and buffer B (80% 
acetonitrile plus 0.1% FA plus 5% DMSO) at a flow rate of 250 nl min−1. The mass 
spectrometer was operated in positive polarity mode with a capillary temperature 
of 275 °C. The samples were acquired with a DIA method established by Bruderer 
et al.34. Briefly, the method consisted of an MS1 scan (m/z, 300–1,650) with an AGC 
target of 3 × 106 and a maximum injection time of 60 ms (R = 120,000). DIA scans 
were acquired at R = 30,000, with an AGC target of 3 × 106, ‘auto’ for injection time 
and a default charge state of 4. The spectra were recorded in profile mode, and the 
stepped collision energy was 10% at 25%.

High-pH reversed-phase fractionation. HepG2 cells were lysed as described 
in ‘Cell culture and MS sample preparation’. Next, 150 µg of total protein was 
digested with a trypsin/Lys-C mix (Promega, V5071) overnight at 37 °C with a 
1:50 enzyme-to-protein ratio. The digestion was stopped by adding 2 volumes of 
99% ethylacetate/1% TFA, followed by sonication for 1 min using an ultrasonic 
probe device (energy output ~40%). The peptides were de-salted using 30-mg 
(8B-S029-TAK) Strata-X-C cartridges (Phenomenex) as follows: (1) conditioning 
with 1 ml of isopropanol; (2) conditioning with 1 ml of 80% ACN/5% NH4OH; 
(3) equilibration with 1 ml of 99% ethylacetate/1% TFA; (4) loading of the sample; 
(5) washing with 2 × 1 ml of 99% ethylacetate/1% TFA; (6) washing with 1 ml of 
0.2% TFA; and (7) elution with 2 × 1 ml of 80% ACN/5% NH4OH. The eluates 
were snap-frozen in liquid nitrogen and lyophilized overnight. The lyophilized 
peptides were resuspended in 400 µl of 0.1% FA and fractionated using a 3 × 
250-mm XBridge column (Waters) on an ÄKTA HPLC system (GE Healthcare). 
Fractionation was performed with a flow rate of 0.5 ml min−1 and with a constant 
flow of 10% 25 mM ammonium bicarbonate, pH 10. Peptides were separated 
using a linear gradient of ACN from 7% to 30% over 15 min, followed by a 5-min 
increase to 55% ACN and a subsequent ramping to 100% ACN. Fractions were 
collected at 50-s intervals in 15-ml Falcon tubes to a total of 36 fractions and 
then pooled to obtain 12 fractions (A1-B1-C1, A2-B2-C2, etc.). All fractions 
were acidified by addition of FA to a final amount of 0.1% and then lyophilized. 
Peptides were subsequently resuspended in 100 µl of 0.1% TFA and de-salted 
using in-house-prepared C18 STAGE tips47 as follows: (1) equilibration with 
100 µl of isopropanol; (2) equilibration with 100 µl of 0.1% TFA; (3) loading of 
the sample; (4) washing with 100 µl pf 0.1% FA; and (5) elution with 30 µl of 80% 
acetonitrile/0.1% FA. Peptides were speedvac dried and resupended in 20 µl of 0.1% 
FA, and the concentration was estimated on a NanoDrop device (Thermo Fisher 
Scientific). The samples were then adjusted to 0.4 µg µl−1 with 0.1% FA, of which 
2 µl (800 ng) was injected into the mass spectrometer.

HeLa data with varying gradients. High-pH reversed-phase peptide fractionation. 
Next, 6 µg of HeLa peptides were loaded onto a Waters BEH130 C18 2.1 × 250-mm 
column in 90 µl of MS loading bu�er at a �ow rate of 0.5 ml min−1 using a Dionex 
Ultimate 3000 HPLC, and column temperature was maintained at 50 °C. A�er 
loading, a binary gradient of 10% bu�er A (2% acetonitrile, 10 mM ammonium 
formate, pH 9) to 40% bu�er B (80% acetonitrile, 10 mM ammonium formate, 
pH 9) was formed over 4.4 min, followed by a washout from 40% to 100% bu�er 
B over 1 min, a�er which the column was held at 100% bu�er B for 10 min before 
re-equilibration. Fractions were collected over a period of 6.4 min from the �rst 
peptide elution, with fraction collection each 8 s and automatic concatenation 

into 16 fractions (200 µl fraction volume). Fractions were dried down in a vacuum 
concentrator (Eppendorf) and resuspended in MS loading bu�er (0.3% TFA,  
2% acetonitrile).

MS analysis. Peptides were loaded onto a 40-cm column with a 75 µM inner 
diameter, packed in-house with 1.9 µM C18 ReproSil particles (Dr. Maisch). 
Column temperature was maintained at 60 °C with a column oven (Sonation).  
A Dionex UltiMate 3000 RSLCnano HPLC system (Thermo Fisher Scientific)  
was interfaced with a Q Exactive HF-X benchtop Orbitrap mass spectrometer 
(Thermo Fisher Scientific) using a Nanospray Flex ion source (Thermo Fisher 
Scientific). For all samples, peptides were separated with a binary buffer system 
of 0.1% (vol/vol) FA (buffer A) and 80% (vol/vol) acetonitrile/0.1% (vol/vol) FA 
(buffer B), and peptides were eluted at a flow rate of 400 nl min−1. Gradient  
ranges and durations were as follows: 5–40% buffer B over 30 min (DDA  
library); 3–19% buffer B over 10 min and 19–41% over 5 min (15 min DIA 
gradient); 3–19% buffer B over 20 min and 19–41% over 10 min (30 min  
DIA gradient); 3–19% buffer B over 40 min and 19–41% over 20 min (1-h DIA 
gradient); 3–19% buffer B over 60 min and 19–41% over 30 min (1.5-h DIA 
gradient); and 3–19% buffer B over 80 min and 19–41% over 40 min (2-h  
DIA gradient). For the DDA library, peptides were analyzed with one full 
scan (350–1,400 m/z, R = 60,000 at 200 m/z) with a target of 3 × 106 ions, 
followed by up to 20 data-dependent MS/MS scans with higher energy collision 
dissociation (HCD; target 1 × 105 ions, maximum injection time (IT) 28 ms, 
isolation width 1.4 m/z, NCE 27%, intensity threshold 3.7 × 105), detected in 
the Orbitrap (R = 15,000 at 200 m/z). Dynamic exclusion was enabled (15 s). For 
DIA measurements, peptides were analyzed with one full scan (350–1,400 m/z, 
R = 120,000 at 200 m/z) at a target of 3 × 106 ions, followed by 48 data-independent 
MS/MS scans spanning 350–975 m/z with HCD (target 3 × 106 ions, maximum IT 
22 ms, isolation width 14 m/z, NCE 25%), detected in the Orbitrap (R = 15,000  
at 200 m/z).

�ree-species timsTOF Pro benchmark data. Sample preparation. Human cervix 
carcinoma cell line HeLa was purchased from the German Resource Center for 
Biological Material. Cells were cultured in Iscove’s Modi�ed Dulbecco Medium 
(PAN-Biotech) supplemented with 10% (vol/vol) FCS (�ermo Fisher Scienti�c), 
1% (vol/vol) glutamine (Carl Roth) and 1% (vol/vol) sodium pyruvate (Serva) at 
37 °C in a 5% CO2 environment. A pure culture of the S. cerevisiae bayanus strain 
Lalvin EC-1118 was obtained from the Institut Oenologique de Champagne. Yeast 
cells were grown in YPD media as described by Fonslow et al.48. E. coli (TOP10) 
cells were purchased from �ermo Fisher Scienti�c and grown in LB liquid 
medium. A�er harvesting, cells were lysed by adding a urea-based lysis bu�er 
(7 M urea, 2 M thiourea, 5 mM DTT, 2% (wt/vol) CHAPS). Lysis was promoted by 
sonication at 4 °C for 15 min using a Bioruptor (Diagenode). A�er cell lysis, protein 
amounts were determined using the Pierce 660-nm Protein Assay (�ermo Fisher 
Scienti�c) according to the manufacturer’s protocol. Tryptic digestion applying a 
modi�ed �lter-aided sample preparation49 protocol was performed as described in 
detail previously50. To generate the two hybrid proteome samples, tryptic peptides 
were combined in the following ratios as detailed previously2,50]. Sample A was 
composed of 65% wt/wt human, 30% wt/wt yeast and 5% wt/wt E. coli proteins. 
Sample B was composed of 65% wt/wt human, 15% wt/wt yeast and 20% wt/wt  
E. coli proteins.

LC–MS analysis. Samples were analyzed by LC–MS on a timsTOF Pro 
(Bruker Daltonik), which was coupled online to a nanoElute nanoflow liquid 
chromatography system (Bruker Daltonik) via a CaptiveSpray nano-electrospray 
ion source. Peptides (corresponding to 200 ng) were separated on a reversed-phase 
C18 column (25 cm × 75 µm i.d., 1.6 µm, IonOpticks). Mobile phase A was water 
containing 0.1% (vol/vol) FA, and mobile phase B was acetonitrile containing 
0.1% (vol/vol) FA. Peptides were separated running a gradient of 2–37% mobile 
phase B over 100 min at a constant flow rate of 400 nl min−1. Column temperature 
was controlled at 50 °C. MS analysis of eluting peptides was performed in 
diaPASEF mode. For diaPASEF, we adapted the instrument firmware to perform 
data-independent isolation of multiple precursor windows within a single TIMS 
separation (100 ms). We used a method with two windows in each 100-ms 
diaPASEF scan. Sixteen of these scans covered the diagonal scan line for doubly 
charged and triply charged peptides in the m/z–ion mobility plane with narrow 
25-m/z precursor windows, resulting in a total cycle time of 1.6 s.

BoxCar DIA HEK data. Cell culture and MS sample preparation. HEK293 cells 
were grown in DMEM supplemented with penicillin, streptomycin and 10% 
FCS. Cells were washed twice with ice-cold PBS before scraping in PBS and 
centrifugation at 300g for 6 mins at 4 °C. Supernatant was aspirated and the pellet 
lysed in 2.5% SDS bu�ered with 50 mM Tris pH 8.1 and heated to 95 °C for 5 min, 
before probe sonication. �e BCA assay was used to quantify the protein content 
of centrifuge-clari�ed lysates before precipitation with 5 volumes of acetone. 
Pellets were resuspended in 50 mM Tris pH 8.1 containing 8 M urea, reduced 
with 1 mM DTT and alkylated with 5 mM IAA before initiation of digestion 
overnight with LysC at an enzyme-to-protein ratio of 1:100. �e digest mixture 
was diluted four-fold, and trypsin was added at an enzyme-to-protein ratio of 
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1:100 for 6 h, followed by an additional aliquot of trypsin overnight. Digestion 
was stopped by acidi�cation to 1% TFA, placed on ice for 5 min and centrifuged 
to remove insoluble material. Peptides were de-salted with mixed-mode SPE 
cartridges (Strata-XC, Phenomenex), activated with 100% methanol, conditioned 
with 80% acetonitrile/0.1% TFA and equilibrated with 0.2% TFA, which was 
followed by sample loading, washing with 99.9% isopropanol/0.1% TFA, washing 
twice with 0.2% TFA and washing once with 0.1% FA, before elution with 60% 
acetonitrile/0.5% ammonium hydroxide. Eluate was �ash-frozen and dried by 
centrifugal evaporation.

Offline peptide fractionation. Peptides were resuspended in buffer A (10 mM 
ammonium bicarbonate) and injected onto a 4.6 × 250-mm 3.5-μm Zorbax 300 
Extend-C18 column. Peptides were separated on a non-linear gradient exactly as 
described (ref. 51), using the following composition of buffer B (10 mM ammonium 
bicarbonate, 90% acetonitrile). Peptide fractions were frozen at −80 °C before 
centrifugal evaporation. Peptides were resuspended in 1% TFA and concatenated 
at by combining every 24th fraction for the library or every 8th fraction for the 
fractionated BoxCar DIA runs, using fractions 13–90.

Concatenated or non-fractionated samples were de-salted with SEP-PAK tC18 
SPE cartridges (Waters), activated with 100% methanol, conditioned with 80% 
acetonitrile/0.1% TFA and equilibrated with 0.2% TFA. After sample loading, 
cartridges were washed with 0.5, 1 and 3 cartridge volumes of 0.2% TFA and eluted 
with 1 volume of 80% acetonitrile/0.1% TFA and then frozen before drying in a 
centrifugal evaporator.

Next, 1 µg of peptide was loaded onto an Aurora 25 cm × 75 µm ID, 1.6-µm 
C18 column (IonOpticks) maintained at 40 °C. Peptides were separated with an 
EASY-nLC 1200 system at a flow rate of 300 nl min−1 using a binary buffer system 
of 0.1% FA (buffer A) and 80% acetonitrile with 0.1% FA (buffer B) in a two-step 
gradient from 3% to 27% B in 105 min and from 27% to 40% B in 15 min. All 
scans were recorded in the Orbitrap of a Fusion Lumos instrument running Tune 
version 3.3, equipped with a nanoFlex ESI source, operated at 1.6 kV, and the RF 
lens was set to 30%. The scan sequence was initiated with MS1 scans from 350 
to 1,650 m/z recorded at 120,000 resolution, with an AGC target of 250% and 
maximum injection time of 246 ms. The mass range was divided into 24 segments 
of variable width, with three BoxCar scans (multiplexed targeted SIM scan) 
isolating eight segments per scan, comprising every third segment. The segments 
used were identical to those in the MS2 scans, retaining a 1-m/z overlap between 
boxes in adjacent scans. The normalized AGC target was 200% per segment, 
with a maximum injection time of 246 ms. BoxCar scans were also recorded at 
a resolution of 120,000. This was followed by 24 MS2 scans from 200 to 2,000 
m/z with windows as previously described (ref. 34). Fragmentation was induced 
with HCD using stepped collision energy of 22%, 27% and 32% for the window 
center. Each MS2 scan was recorded at a resolution of 30,000 and an AGC target of 
1,000%, with a maximum injection time of 60 ms.

Data downloads. In addition to the data measured for this publication, we 
downloaded the following publicly available datasets. The four-species mixture 
dataset34 containing H. sapiens, C. elegans. S. cerevisiae and E. coli with ratios of 0%, 
10%, 20% and 30%, respectively, among replicate groups was downloaded from 
ProteomeXchange (PXD005573). SCIEX TripleTOF 6600 three-species benchmark 
data2 were obtained from ProteomeXchange (PXD002952). The HepG2 RNA-seq 
data are part of the ENCODE dataset52 and were downloaded from the Sequence 
Read Archive (SRA) (SRP014320). The HEK RNA-seq data are part of the Cell 
Atlas dataset53 and were downloaded from the SRA (SRP017465).

Data analysis. In all MaxQuant analyses for generating libraries and for analyzing 
DIA samples (MaxDIA), version 2.0.0 was used, and, for all parameters, the  
default values were used unless stated otherwise. In particular, MaxQuant  
was run with a transfer q value of 0.3 unless stated otherwise. Searches were 
performed with the following FASTA files from UniProt: UP000005640_9606  
(H. sapiens), UP000007305_4577 (Z. mays), UP000002311_559292 (S. cerevisiae), 
UP000000625_83333 (E. coli) and UP000001940 (C. elegans). Methionine 
oxidation and protein N-terminal acetylation were used as variable modifications 
in all searches, as is default in MaxQuant.

Comparing number of proteins among datasets. Proteins are assembled into protein 
groups for identification to account for the redundancy of protein sequences with 
regard to the peptide evidence distinguishing them. This works in MaxDIA in 
exactly the same way as in the standard DDA usage of MaxQuant. These protein 
groups are dataset dependent, and, hence, comparisons between two protein 
groups tables—for instance, in Venn diagrams or between a protein groups table 
and RNA-seq data—are non-trivial. Here, we follow the route of mapping all 
protein identifiers in a protein group to Entrez Gene identifiers54. In the vast 
majority of cases, protein groups map to single gene identifiers. For cases in  
which they map to more than one, both gene identifiers are taken into the set.  
For counting protein group identifications, we always remove protein groups  
that are flagged as ‘reverse’ or ‘only identified by site’. For human datasets,  
we removed protein groups denoted as ‘potential contaminant’ only if they  
are of non-human origin and kept human proteins, which consist mostly of  

human keratins. For the dataset containing bovine plasma, the proteins in the 
standard MaxQuant contaminant list of bovine origin were not removed.

FDR curves. For estimating external FDR, we used a combination of human and 
maize libraries from ref. 34 or of human and maize predicted libraries in discovery 
mode on the human HepG2 DIA samples. For analyzing library-to-DIA-sample 
matches and peptide identifications in Fig. 4, we do not apply a protein-level 
FDR and scan through the library-to-DIA-sample FDR. It is crucial to take this 
approach, in particular when comparing numbers of identifications with other 
software, because, when applying protein-level FDR in MaxQuant, peptides that 
are not mapping to a protein identified at the specified protein FDR are discarded, 
unlike in most other software packages. For obtaining the protein-level FDR curves 
in Fig.4, we applied a library-to-DIA-sample match FDR of 1%. Peptides that are 
shared between human and maize proteins were discarded. The sizes of the FASTA 
files were, for H. sapiens, 20,962 + additional 75,485 records, resulting in 1,525,028 
unique peptide sequences for one trypsin missed cleavage. For Z. mays, there 
were 39,400 + additional 59,878 records, resulting in 1,765,195 unique peptide 
sequences. We used a correction factor of 1.176 to account for the size differences, 
which corresponds to the ratio of total amino acid positions in the two databases.

RNA-seq data analysis. Raw reads were filtered using trimmomatic55 (v0.36) 
using default parameters for paired-end data. Filtered reads were mapped to the 
human reference genome GRCh38 (Ensemble release 100) using STAR56 aligner 
(v2.5.3a). Further processing—sorting, converting from SAM to BAM format 
and indexing—was done using SAMtools57 (v1.6). Gene expression quantification 
(RPKM) for protein-coding genes was performed in Perseus58 (v1.6.14.0).

Spectronaut analysis. Raw MS data were processed using Spectronaut version 
13.10.191212 and Spectronaut version 14.10.201222 using default settings, using 
a spectral library generated by searching using MaxQuant version 1.6.10.43. To 
determine the influence on the results of non-default parameter settings, we varied 
several of them as shown in Supplementary Fig. 10g.

Software development, requirements, availability and usage. MaxDIA was 
developed in conjunction with MaxQuant in C#, runs on Windows and Linux 
operating systems and requires .NET Core 2.1. In addition, .NET Framework 
4.7.2 has to be installed on Windows. The graphical user interface version is 
currently restricted to Windows. A platform-neutral command line version is 
available. MaxQuant is efficiently running in parallel on arbitrarily many CPUs 
on single-node platforms. Having 4 GB of memory per parallel running thread 
is recommended. Disk space should be at least twice the space that is used by 
the raw data. MaxQuant, including MaxDIA, can be downloaded from https://
www.maxquant.org/. MaxDIA is included in the standard MaxQuant release 
from version 2.0.0 onward. How to use MaxDIA in library or discovery mode is 
described in the accompanying Supplementary Notes document. It also contains a 
list of all user-definable parameters with a description of their meaning.

PRIDE support. We support complete submissions to the PRIDE database28 for 
the DIA identification results. We extended the mzTab format29 to cover DIA data 
sets. For this purpose, new controlled vocabulary terms were introduced, along 
with additional external reference files. These external reference files contain DIA 
library matches with mass, intensity and annotation information in a spectral 
library format (MSP format). MaxQuant will generate a new output folder called 
‘combined\msp’ into which these results are written. A user must provide this 
folder in addition to raw and mzTab files during submission to PRIDE. More 
details on a complete PRIDE submission are provided in the Supplementary Notes. 
This is the first instance of complete PRIDE submissions for DIA datasets.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article

Data availability
The MS proteomics data have been deposited to the ProteomeXchange Consortium 
(http://proteomecentral.proteomexchange.org) via the PRIDE partner repository 
with the dataset identifiers PXD022582 (DDA data) and PXD022589 (DIA data, 
also containing MaxQuant v2.0.0).

Code availability
MaxQuant is freeware, and the code is partially open and available at https://github. 
com/JurgenCox/compbio-base. All custom code used in generating figures is 
available at https://github.com/cox-labs/DIAtools.
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