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Let Xi,n, n ∈ N,1 ≤ i ≤ n, be a triangular array of independent Rd -valued Gaussian random vectors with
correlation matrices �i,n. We give necessary conditions under which the row-wise maxima converge to
some max-stable distribution which generalizes the class of Hüsler–Reiss distributions. In the bivariate
case, the conditions will also be sufficient. Using these results, new models for bivariate extremes are
derived explicitly. Moreover, we define a new class of stationary, max-stable processes as max-mixtures of
Brown–Resnick processes. As an application, we show that these processes realize a large set of extremal
correlation functions, a natural dependence measure for max-stable processes. This set includes all functions
ψ(

√
γ (h)), h ∈Rd , where ψ is a completely monotone function and γ is an arbitrary variogram.

Keywords: extremal correlation function; Gaussian random vectors; Hüsler–Reiss distributions; max-limit
theorems; max-stable distributions; triangular arrays

1. Introduction

It is well known that the standard normal distribution � is in the max-domain of attraction of the
Gumbel distribution, that is,

lim
n→∞�(bn + x/bn)

n = exp
(− exp(−x)

)
, for all x ∈ R,

where bn,n ∈N, is a sequence of normalizing constants defined by bn = nφ(bn), where φ is the
standard normal density. By Theorem 1.5.3 in Leadbetter et al. [21], it is given as

bn := √
2 logn − (1/2) log logn + log(2

√
π)√

2 logn
+ o

(
(logn)−1/2). (1)

Sibuya [25] showed that the maxima of i.i.d. bivariate normal random vectors with correlation
ρ < 1 asymptotically always become independent. However, for triangular arrays with i.i.d. en-
tries within each row where the correlation in the nth row approaches 1, as n → ∞, with an
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appropriate speed, Hüsler and Reiss [17] proved that the row-wise maxima converge to a new
class of max-stable bivariate distributions, namely

Fλ(x, y) = exp

[
−�

(
λ + x − y

2λ

)
e−y − �

(
λ + y − x

2λ

)
e−x

]
, x, y ∈ R. (2)

Here, λ ∈ [0,∞] parameterizes the dependence in the limit, 0 and ∞ corresponding to complete
dependence and asymptotic independence, respectively. In fact, Kabluchko et al. [20] provide a
simple argument that these are also the only possible limit points for such triangular arrays.

More generally, Hüsler and Reiss [17] consider triangular arrays with i.i.d. entries of d-variate
zero-mean, unit-variance normal random vectors with correlation matrix �n in the nth row sat-
isfying

lim
n→∞ logn

(
11� − �n

) = 	 ∈ [0,∞)d×d , (3)

where 1 = (1, . . . ,1)� ∈ Rd and � denotes the transpose sign. Under this assumption, the row-
wise maxima converge to the d-variate, max-stable Hüsler–Reiss distribution whose dependence
structure is fully characterized by the matrix 	. Note that condition (3) implies that all off-
diagonal entries of �n converge to 1 as n → ∞. A slightly more general representation is given
in Kabluchko [19] in terms of Poisson point processes and negative definite kernels.

In fact, it turns out that these distributions not only attract Gaussian arrays but also classes
of related distributions. For instance, Hashorva [13] shows, that the convergence of maxima
holds for triangular arrays of general bivariate elliptical distributions, if the random radius is in
the domain of attraction of the Gumbel distribution. The generalization to multivariate elliptical
distributions can be found in Hashorva [14]. Moreover, Hashorva et al. [15] prove that also some
non-elliptical distributions are in the domain of attraction of the Hüsler–Reiss distribution, for
instance multivariate χ2-distributions.

Apart from being one of the few known parametric families of multivariate extreme value
distributions, the Hüsler–Reiss distributions play a prominent role in modeling spatial extremes
since they are the finite-dimensional distributions of Brown–Resnick processes [6,20].

Recently, Hashorva and Weng [16] analyzed maxima of stationary Gaussian triangular arrays
where the variables in each row are identically distributed but not necessarily independent. They
show that weak dependence is asymptotically negligible, whereas stronger dependence may in-
fluence the max-limit distribution.

In this paper, we consider independent triangular arrays Xi,n = (X
(1)
i,n , . . . ,X

(d)
i,n ), n ∈ N and

1 ≤ i ≤ n, where Xi,n is a zero-mean, unit-variance Gaussian random vector with correlation
matrix �i,n. Thus, in each row the random variables are independent, but may have different de-
pendence structures. Letting Mn = (M

(1)
n , . . . ,M

(d)
n ) denote the vector consisting of the compo-

nentwise maxima M
(j)
n = maxi=1,...,n X

(j)
i,n , j ∈ {1, . . . , d}, we are interested in the convergence

of the rescaled, row-wise maximum

bn(Mn − bn), (4)

as n → ∞, and the respective limit distributions.
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In Section 2, we start with bivariate triangular arrays. For this purpose, we introduce a se-
quence of counting measures which capture the dependence structure in each row and which is
used to state necessary and sufficient conditions for the convergence of (4). Moreover, the limits
turn out to be new max-stable distributions that generalize (2). The results on triangular arrays
are used to completely characterize the max-limits of independent, but not necessarily identically
distributed sequences of bivariate Gaussian vectors. Explicit examples for the bivariate limit dis-
tributions are given at the end of Section 2. The multivariate case is treated in Section 3, giving
rise to a class of d-dimensional max-stable distributions. In Section 4, we show how these distri-
butions arise as finite-dimensional margins of the new class of max-mixtures of Brown–Resnick
processes. Furthermore, it is shown that these processes offer a large variety of extremal corre-
lation functions which makes them interesting for modeling dependencies in spatial extremes.
Finally, Section 5 comprises the proofs of the main theorems.

2. The bivariate case

Before we start with bivariate triangular arrays, let us note that even the case of univariate se-
quences of independent yet non-identically distributed Gaussian random variables is not trivial.
In fact, many different distributions for the max-limits may arise, which are not necessarily max-
stable (see Example 2 below). In the sequel, we will therefore restrict to the case that the variances
of the univariate margins are close to some constant, which can be assumed to be 1 without loss
of generality, and we fix the normalization in (4). Later, for the sake of simplicity, we will always
consider margins with unit variance.

In order to state the main results in the bivariate case, we need probability measures on the
extended positive half-line [0,∞]. Endowed with the metric d(x, y) = |e−x − e−y |, the space
[0,∞] becomes compact. A function g : [0,∞] → R is continuous iff it is continuous in the
usual topology on [0,∞) and the limit limx→∞ g(x) exists and equals g(∞).

2.1. Limit theorems

Consider a triangular array of independent bivariate Gaussian random vectors Xi,n = (X
(1)
i,n ,

X
(2)
i,n ), n ∈N and 1 ≤ i ≤ n, with zero expectation and covariance matrix

Cov(Xi,n) =
(

σ 2
i,n,1 σi,n,1,2

σi,n,1,2 σ 2
i,n,2

)
,

with σ 2
i,n,j > 0 for all n ∈ N, 1 ≤ i ≤ n and j ∈ {1,2}. Further, denote by ρi,n = σi,n,1,2/

(σi,n,1σi,n,2) the correlation of Xi,n. For n ∈ N, we define a probability measure ηn on [0,∞] ×
R2 by

ηn = 1

n

n∑
i=1

δ
(
√

b2
n(1−ρi,n)/2,b2

n(1−1/σi,n,1),b
2
n(1−1/σi,n,2))

(5)
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which encodes the suitably normalized variances and correlations in the nth row. More precisely,
it maps the rate with which the variances and correlations converge to 1. Here, for any measurable
space (S,S) and a ∈ S, δa denotes the Dirac measure on the point a.

In this general situation, the next theorem gives a sufficient condition in terms of ηn for the
convergence of row-wise maxima of this triangular array.

Theorem 2.1. For n ∈ N and 1 ≤ i ≤ n, let Xi,n and ηn be defined as above. Further suppose
that for some ε > 0 the measures (ηn)n∈N satisfy the integrability condition

sup
n∈N

∫
[0,∞]×R2

[
eθ(1+ε) + eγ (1+ε)

]
ηn

(
d(λ, θ, γ )

)
< ∞. (6)

If for n → ∞, ηn converges weakly to some probability measure η on [0,∞] × R2, that is,
ηn ⇒ η, then

max
i=1,...,n

bn(Xi,n − bn) (7)

converges in distribution to a random vector with distribution function Fη given by

− logFη(x, y) =
∫

[0,∞]×R2
�

(
λ + y − x + θ − γ

2λ

)
e−(x−θ)

(8)

+ �

(
λ − y − x + θ − γ

2λ

)
e−(y−γ )η

(
d(λ, θ, γ )

)
,

for x, y ∈R.

Remark 2.2. Condition (6) implies

sup
n∈N,1≤i≤n

1

n

(
eb2

n(1−1/σi,n,1)(1+ε) + eb2
n(1−1/σi,n,2)(1+ε)

)
< ∞.

Since b2
n ∼ 2 logn for n large, it follows that the variances of both components are uniformly

bounded. Thus, the single random variables in each row satisfy the uniform asymptotical negli-
gibility condition (see, for instance, [1])

max
i=1,...,n

P
(
bn

(
X

(j)
i,n − bn

)
> x

) → 0, n → ∞, (9)

for j = 1,2 and any x ∈ R.

Remark 2.3. In fact, one can extend the distribution Fη to mixture measures η taking infinite
mass at negative infinity. The only condition which needs to be satisfied is∫

[0,∞]×R2

[
eθ + eγ

]
η
(
d(λ, θ, γ )

)
< ∞.
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Remark 2.4. Random variables with variances bounded away from 1 from above do not influ-
ence the maximum in the limit of (7). This can easily be seen by allowing weak convergence of
ηn to η on the extended space [0,∞] × [−∞,∞)2.

Note that the one-dimensional marginals of Fη are Gumbel distributed with certain location
parameters, for instance,

− logFη(x,∞) = exp

[
−x + log

∫
[0,∞]×R2

eθη
(
d(λ, θ, γ )

)]
.

Moreover, Fη is a max-stable distribution since

Fn
η (x + logn,y + logn) = Fη(x, y),

for all n ∈N. This is a remarkable fact, since, in general, limits of row-wise maxima of triangular
arrays are not max-stable, not even if the random variables in each row are identically distributed.

The idea of constructing extreme value distributions as in (8) is not new. Indeed, it is well
known that any mixture of spectral measures is again a spectral measure. In our case, however,
these mixture distributions also arise naturally as the max-limits of independent Gaussian trian-
gular arrays.

If we assume that the margins have variance 1, that is, σi,n,1 = σi,n,2 = 1, we can obtain
a necessary and sufficient condition for the convergence of maxima. We denote by M1([0,∞])
the space of all probability measures on [0,∞] endowed with the topology of weak convergence.
By Helly’s theorem, this space is compact.

Theorem 2.5. Consider a triangular array of independent bivariate Gaussian random vectors
Xi,n = (X

(1)
i,n ,X

(2)
i,n ), n ∈ N and 1 ≤ i ≤ n, where X

(1)
i,n and X

(2)
i,n are standard normal random

variables. Denote by ρi,n the correlation of Xi,n. Let

νn = 1

n

n∑
i=1

δ√
b2
n(1−ρi,n)/2

(10)

be a probability measure on [0,∞]. For n → ∞,

max
i=1,...,n

bn(Xi,n − bn) (11)

converges in distribution if and only if νn converges weakly to some probability measure ν on
[0,∞], that is, νn ⇒ ν. In this case, the limit of (11) has distribution function Fν given by

− logFν(x, y) =
∫ ∞

0

[
�

(
λ + y − x

2λ

)
e−x + �

(
λ + x − y

2λ

)
e−y

]
ν(dλ), (12)

x, y ∈ R. The distribution in (12) uniquely determines the measure ν, that is, for two probabil-
ity measures ν, ν̃ ∈ M1([0,∞]) with ν 
= ν̃ it follows that Fν 
= Fν̃ . Furthermore, Fν depends
continuously on ν, in the sense that if νn ⇒ ν, as n → ∞, and νn, ν ∈ M1([0,∞]), then Fνn

converges pointwise to Fν .
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Remark 2.6. If ν is a probability measure on [0,∞), an alternative construction of the distri-
bution Fν is the following [19], Section 3: Let

∑∞
i=1 δUi

be a Poisson point process on R with
intensity e−u du and suppose that B has the normal distribution N(−2S2,4S2) with random
mean and variance, where S is ν-distributed. Then, for a sequence (Bi)i∈N of i.i.d. copies of B ,
the bivariate random vector maxi∈N(Ui,Ui + Bi) has distribution Fν .

Example 1. For an arbitrary probability measure ν ∈ M1([0,∞]), let (Ri)i∈N be a sequence of
i.i.d. samples of ν. Putting ρi,n = max(1 − 2R2

i /b
2
n,−1) in Theorem 2.5 yields

νn = 1

n

n∑
i=1

δmin(Ri ,bn) ⇒ ν, a.s.,

by the law of large numbers. Hence, (11) converges a.s. in distribution to Fν .

The above theorem can be applied to completely characterize the distribution of the maxima of
a sequence of independent, but not necessarily identically distributed bivariate Gaussian random
vectors with unit variance.

Corollary 2.7. Suppose that Xi = (X
(1)
i ,X

(2)
i ), n ∈ N and 1 ≤ i ≤ n, is a sequence of inde-

pendent bivariate Gaussian random vectors where X
(1)
i and X

(2)
i are standard normal random

variables. Denote by ρi the correlation of Xi and let

νn = 1

n

n∑
i=1

δ√
b2
n(1−ρi)/2

be a probability measure on [0,∞]. For n → ∞,

max
i=1,...,n

bn(Xi − bn) (13)

converges in distribution if and only if νn converges weakly to some probability measure ν on
[0,∞]. In this case, the limit of (13) has distribution function Fν as in (12). Furthermore, for all
ν ∈ M1([0,∞]), Fν is attained as a limit of (13) for a suitable sequence (Xi )i∈N.

Remark 2.8. It is worthwhile to note that, in general, the class of max-selfdecomposable distri-
butions (cf. Mejzler [22], de Haan and Ferreira [8], Theorem 5.6.1), that is, the max-limits of
sequences of independent (not necessarily identically distributed) random variables, is a proper
subclass of max-infinitely-divisible distributions, that is, the max-limits of triangular arrays with
i.i.d. random variables in each row. The latter coincides with the class of max-limits of triangular
arrays, where the rows are merely independent but not identically distributed [1,10]. In the (bi-
variate) Gaussian case, the above shows that the max-limits of i.i.d. triangular arrays, namely the
Hüsler–Reiss distributions in (2), are a proper subclass of max-limits of independent triangular
arrays, namely the distributions in (12), which, on the other hand, coincide with the max-limits
of independent sequences.
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Example 2. The following example shows that without any assumptions on the variances, even
the univariate case is not trivial. Let Xi , i ∈N, be a sequence standard normal distribution. Define
the sequence of maxima

Mn = max
i=1,...,n

Xi/i, n ∈N.

Clearly, Mn converges almost surely to the non-degenerate random variable maxi∈N Xi/i, which
however is not an extreme value distribution.

2.2. Examples

In multivariate extreme value theory, it is important to have flexible and tractable models
for dependencies of extremal events. The max-stable distributions Fν in Theorem 2.5 for
ν ∈ M1([0,∞]) are max-mixtures of Hüsler–Reiss distributions with different dependency pa-
rameters. They constitute a large class of new bivariate max-stable distributions. We derive two
of them explicitly by evaluating the integral in (12).

Example 3 (Rayleigh distributed ν). The Rayleigh distribution has density

fσ (λ) = λ

σ 2
e−λ2/(2σ 2), λ ≥ 0, (14)

for σ > 0. Choosing the dependence parameter λ according to the Rayleigh distribution νσ , we
obtain the bivariate distribution function

− logFνσ (x, y) =
∫ ∞

0

[
�

(
λ + y − x

2λ

)
e−x + �

(
λ + x − y

2λ

)
e−y

]
λ

σ 2
e−λ2/(2σ 2) dλ, (15)

for x, y ∈ R. In order to evaluate this integral, we apply partial integration and use formulae
3.471.9 and 3.472.3 in Gradshteyn and Ryzhik [12]. Equation (15) then simplifies to

Fνσ (x, y) = exp

[
−e−min(x,y) − 1

η
e−(y+x)/2e−|y−x|η/2

]
, x, y ∈R, (16)

where η = √
1 + 1/σ 2 ∈ (1,∞). Note that σ parameterizes the dependence of Fνσ . As σ goes to

0 (i.e., η goes to ∞) the margins become equal. On the other hand, as σ goes to ∞ (i.e., η goes
to 1) the margins become completely independent. The corresponding Pickands’ dependence
function is given by

Aνσ (ω) = − logFνσ

(− logω,− log(1 − ω)
)

= max(ω,1 − ω) + 1

η

√
ω(1 − ω)max

{
ω

1 − ω
,

1 − ω

ω

}−η/2

, ω ∈ [0,1].
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Example 4 (Type-2 Gumbel distributed ν). The Type-2 Gumbel distribution has density

fb(λ) = 2bλ−3e−b/λ2
, λ ≥ 0,

for b > 0. With similar arguments as for the Rayleigh distribution the distribution function Fνb
,

where νb has density fb , is given by

Fνb
(x, y) = exp

[−e−x − e−y + e−(y+x)/2e−
√

((y−x)/2)2+2b
]
, x, y ∈ R.

In this case, the parameter b ∈ (0,∞) interpolates between complete independence and complete
dependence of the bivariate distribution. In particular, if b → 0, then the margins are equal and,
on the other hand, if b → ∞ then the margins are independent. Here, Pickands’ dependence
function is

Aνb
(ω) = 1 − √

ω(1 − ω) exp

(
−

√(
log(ω/(1 − ω))

2

)2

+ 2b

)
, ω ∈ [0,1].

Every multivariate max-stable distribution admits a spectral representation [23], Chapter 5,
where the spectral measure contains all information about the extremal dependence. Recently,
Cooley et al. [7] and Ballani and Schlather [2] constructed new parametric models for spectral
measures. For the bivariate Hüsler–Reiss distribution, de Haan and Pereira [9] give an explicit
form of its spectral density on the positive sphere S1+ = {(x1, x2) ∈ [0,∞)2, x2

1 + x2
2 = 1}. More

precisely, they show that for λ ∈ (0,∞)

− logFλ(x, y) =
∫ π/2

0
max

{
e−x sin θ, e−y cos θ

}
sλ(θ)dθ, x, y ∈R,

and give a rather complicated expression for sλ. Using the equation

φ

(
λ − log tan θ

2λ

)
= sin θ

cos θ
φ

(
λ + log tan θ

2λ

)
, λ ∈ (0,∞), θ ∈ [0,π/2],

their expression can be considerably simplified and the spectral density becomes

sλ(θ) = 1

2λ sin θ cos2 θ
φ

(
λ + log(tan θ)

2λ

)
, θ ∈ [0,π/2].

For the spectral density sν of the Hüsler–Reiss mixture distribution Fν as in (12), where ν does
neither have an atom at 0 nor at ∞, we have the relation

sν(θ) =
∫ ∞

0
sλ(θ)ν(dλ), θ ∈ [0,π/2].

For the two examples above, we can compute the corresponding spectral densities.
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Figure 1. Spectral densities of the Rayleigh (left) and Type-2 Gumbel (right) mixture distribution for dif-
ferent parameters σ and b, respectively.

Example 3 (continued). For the Rayleigh distribution, sνσ is given by

sνσ (θ) = e−(1/
√

2)| log tan θ |
√

1+1/σ 2

4
√

σ 4 + σ 2(sin θ cos θ)3/2
, θ ∈ [0,π/2].

Example 4 (continued). For the Type-2 Gumbel distribution with parameter b > 0, the spectral
density has the form

sνb
(θ) = e−ub(θ)

4(sin θ cos θ)3/2

(
1 − (log tan θ)2

4ub(θ)2

)(
1 + 1

ub(θ)

)
, θ ∈ [0,π/2],

with ub(θ) = √
(log tan θ)2/4 + 2b.

Figure 1 illustrates how these spectral measures interpolate between complete independence
and complete dependence for different parameters.

3. The multivariate case

Similarly as in Hüsler and Reiss [17], the results for standard bivariate Gaussian random vectors
can be generalized to d-dimensional random vectors. To this end, define a triangular array of
independent d-dimensional Gaussian random vectors Xi,n = (X

(1)
i,n , . . . ,X

(d)
i,n ), n,d ∈ N and 1 ≤

i ≤ n, where X
(j)
i,n , j ∈ {1, . . . , d}, are standard normal random variables. Denote by �i,n =
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(ρj,k(i, n))1≤j,k≤d the correlation matrix of Xi,n. Let 1 = (1, . . . ,1)� ∈Rd and

ηn = 1

n

n∑
i=1

δ√
b2
n(11�−�i,n)/2

(17)

be a probability measure on the metric space [0,∞)d×d , equipped with the Euclidean distance.
Throughout this paper, squares and square roots of matrices are to be understood component-
wise. For a measure τ on [0,∞)d×d , we will denote by τ 2 the image measure of τ under the
transformation [0,∞)d×d → [0,∞)d×d , 	 �→ 	2. Further, let D ⊂ [0,∞)d×d be the subspace
of conditionally negative definite matrices which are symmetric and have zeros on the diagonal,
that is,

D :=
{

(aj,k)1≤j,k≤d = A ∈ [0,∞)d×d : x�Ax ≤ 0 for all x ∈ Rd \ {0} s.t.

d∑
i=1

xi = 0, aj,k = ak,j , aj,j = 0 for all 1 ≤ j, k ≤ d

}
,

and let D0 ⊂ D be the space of strictly conditionally negative definite matrices, that is, where
x�Ax < 0 holds in the above definition. In particular, note that D0 is open in D and that D is a
suitable subspace for the measures η2

n since η2
n(D) = 1 for all n ∈ N. For 	 = (λj,k)1≤j,k≤d ∈

[0,∞)d×d , define a family of transformed matrices by

�l,m(	) = 2
(
λ2

mj ,ml
+ λ2

mk,ml
− λ2

mj ,mk

)
1≤j,k≤l−1,

where 2 ≤ l ≤ d and m = (m1, . . . ,ml) with 1 ≤ m1 < · · · < ml ≤ d . It follows from the proof
of Lemma 2.1 in Berg et al. [3] that if 	 ∈ D0, then �l,m(

√
	) is a (strictly) positive definite

matrix.
Denote by S(·|�) the so-called survivor function of an l-dimensional normal random vector

with mean vector 0 and covariance matrix � . That is, if X ∼ N(0,�) and x ∈ Rl , then S(x|�) =
P(X1 > x1, . . . ,Xl > xl). If � is not a covariance matrix, we put S(x|�) = 0.

For a fixed 	 = (λj,k)1≤j,k≤d ∈ [0,∞)d×d , let

H	(x) = exp

(
d∑

l=1

(−1)l
∑

m:1≤m1<···<ml≤d

hl,m,	(xm1, . . . , xml
)

)
,

where

hl,m,	(y1, . . . , yl) =
∫ ∞

yl

S
((

yi − z + 2λ2
mi,ml

)
i=1,...,l−1|�l,m(	)

)
e−z dz,

for 2 ≤ l ≤ d and h1,m,	(y) = e−y for m = 1, . . . , d . For alternative representations of the mul-
tivariate Hüsler–Reiss distribution H	, see Joe [18] and Kabluchko [19]. With this notation, we
are now in a position to state the following theorem.
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Theorem 3.1. Consider a triangular array of independent d-dimensional Gaussian random vec-
tors as above. If for n → ∞ the measure ηn in (17) converges weakly to some probability measure
η on [0,∞)d×d , i.e., ηn ⇒ η, s.t. η2(D0) = 1, then

max
i=1,...,n

bn(Xi,n − bn)

converges in distribution to a random vector with distribution function Hη given by

Hη(x1, . . . , xd) = exp

(∫
[0,∞)d×d

logH	(x)η(d	)

)
, x ∈Rd . (18)

Remark 3.2. Similarly to Remark 2.6, we can give an alternative construction of the dis-
tribution Hη in terms of Poisson point processes. Let

∑∞
i=1 δUi

be a Poisson point pro-
cess on R with intensity e−u du and suppose that B has the multivariate normal distribu-
tion N(−diag(�d,(1,...,d)(	))/2,�d,(1,...,d)(	)) with random mean and variance, where 	

is η-distributed. Then, for a sequence (Bi )i∈N of i.i.d. copies of B, the random vector
maxi∈N(Ui,Ui + Bi ) has distribution Hη .

Remark 3.3. We believe that the above theorem also holds in the case when η has positive
measure on non-strictly conditionally negative definite matrices, i.e., η2(D \ D0) > 0. Our proof
of this theorem however breaks down in this situation such that another technique might be
necessary.

Remark 3.4. It is an open question if, similarly to the bivariate case, the distribution Hη uniquely
determines the mixture measure η. By Remark 3.2, this problem is equivalent to the question if
the distribution of normal mixtures N(−diag(�d,(1,...,d)(	))/2,�d,(1,...,d)(	)), where 	 is η-
distributed, determines the measure η. The solution of this problem is crucial to show that in
Theorem 3.1 the weak convergence ηn ⇒ η is also necessary for the convergence of the maxima.

4. Application to Brown–Resnick processes

The d-dimensional Hüsler–Reiss distributions arise in the theory of maxima of Gaussian random
fields as the finite-dimensional distributions of the Brown–Resnick process [6] and its gener-
alizations [20]. In this section, we introduce a new class of max-stable processes with finite-
dimensional distributions given by (18) for suitable measures η.

Let us briefly recall the definition of the processes introduced in Kabluchko et al. [20]. For
a zero-mean Gaussian process {W(t), t ∈ Rd} with stationary increments, variance σ 2(t) and
variogram γ (t) = E(W(t)− W(0))2, consider i.i.d. copies {Wi, i ∈N} of W and a Poisson point
process

∑∞
i=1 δUi

on R with intensity e−u du, independent of the family Wi, i ∈ N. Kabluchko
et al. [20] showed that the Brown–Resnick process

ξ(t) = max
i∈N

(
Ui + Wi(t) − σ(t)2/2

)
, t ∈Rd , (19)
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is max-stable and stationary with standard Gumbel margins and that its law depends only on the
variogram γ .

We generalize this construction by allowing the variogram of the Gaussian processes Wi to
be random. In fact, this defines a new class of max-stable processes whose finite-dimensional
distributions are of the form (18).

Definition 4.1. Let Vd be the measurable space of all variograms on Rd , i.e., conditionally
negative definite functions γ on Rd with γ (0) = 0, equipped with the product σ -algebra. Further,
let Q be an arbitrary probability measure on this space and γi , i ∈ N, be an i.i.d. sequence
of random variables with distribution Q. For each i ∈ N, let Wi be a random field such that,
conditionally on γi , Wi is a zero-mean Gaussian process with stationary increments, variogram
4γi and Wi(0) = 0 a.s. Further, let

∑∞
i=1 δUi

be a Poisson point process on R with intensity
e−u du which is independent of the Wi , i ∈ N. Then, the process ξQ given by

ξQ(t) = max
i∈N

(
Ui + Wi(t) − 2γi(t)

)
, t ∈ Rd,

is called a max-mixture of Brown–Resnick processes w.r.t. the mixture measure Q.

Note that a different kind of process can be defined through a hierarchical or Bayesian ap-
proach, which is not considered here and which does not lead to a max-stable process, in gen-
eral: first, exactly one realization of the variogram is drawn from Q. Then, conditionally on this
realization, a Brown–Resnick process is simulated. Obviously, the resulting process must lie in
the max-domain of attraction of the process given in Definition 4.1, with the same law Q for
the variograms. This implies immediately the following proposition; a direct proof is given in
Section 5.

Proposition 4.2. The process ξQ is max-stable and stationary and has finite-dimensional distri-
butions given by (18) with η induced by Q.

This new class of processes thus also realize a large variety of extremal dependence structures,
which can for instance be measured by the extremal correlation function ρ [24,26]. For a station-
ary, max-stable random field {X(t), t ∈ Rd} with Gumbel margins, ρ is a natural approach to
measure bivariate extremal dependencies and for h ∈Rd it is determined by

P
(
X(0) ≤ x,X(h) ≤ x

) = P
(
X(0) ≤ x

)2−ρ(h)
,

for some (and hence all) x ∈ R. For instance, for the process in (19) it is given by

ργ (h) = 2
(
1 − �

(√
γ (h)/2

))
, h ∈Rd .

The processes introduced in Definition 4.1 extend this class of extremal correlation functions.
Indeed, for an arbitrary variogram γ and mixture measure ν on (0,∞), let the measure Q in
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Definition 4.1 be the law of the scale mixture S2γ , where S is ν-distributed. The corresponding
process ξQ possesses the extremal correlation function

ργ,ν(h) =
∫ ∞

0
2
(
1 − �

(
s
√

γ (h)
))

ν(ds), h ∈ Rd . (20)

Moreover, from the construction it is obvious that processes with this dependence structure can
be simulated easily as max-mixtures of Brown–Resnick processes. Gneiting [11] analyzes this
kind of scale mixtures of the complementary error function in a more general framework. The
following corollary is a consequence of Theorems 3.7 and 3.8 therein.

Corollary 4.3. For a fixed variogram γ the class of extremal correlation functions in (20) is
given by all functions ϕ(

√
γ (h)),h ∈ Rd , where ϕ : [0,∞) → R is a continuous function with

ϕ(0) = 1, limh→∞ ϕ(h) = 0, and the function

(−1)k
dk

dhk

[−ϕ′(
√

h)
]

(21)

is nonnegative for infinitely many positive integers k, i.e., −ϕ′(
√

h) is completely monotone (cf.
the paragraph after Theorem 3.8 in Gneiting [11]).

For instance, if ν1 is the Rayleigh distribution (14) with density f1, we obtain

ργ,ν1(h) = 2

(
1 −

∫ ∞

0
�(λ)f√

γ (h)(λ)dλ

)
= 1 −

(
γ (h)

γ (h) + 1

)1/2

, h ∈ Rd,

immediately from equation (16). In fact, ργ,ν1(h) = ψ(γ (h)), where ψ(x) = 1 − (x/(x + 1))1/2

is a completely monotone member of the Dagum family [4]. However, it is interesting to note
that when writing ργ,ν1(h) = ϕ(

√
γ (h)) with ϕ(x) = 1 − (x2/(x2 + 1))1/2 as in Corollary 4.3,

the function ϕ merely satisfies (21) but is not completely monotone.
Similarly, for the Type-2 Gumbel distribution with b = 1, the extremal correlation function is

given by ρ(h) = exp(−√
2γ (h)). In particular, it follows that for any variogram γ and any r > 0

the function

ρ(h) = exp
(−r

√
γ (h)

)
, h ∈Rd ,

is an extremal correlation function. Since this class of extremal correlation functions is closed
under the operation of mixing with respect to probability measures, this implies that for any
measure μ ∈ M1((0,∞)) the Laplace transform Lμ yields an extremal correlation function

ρμ(h) = Lμ
(√

γ (h)
) =

∫ ∞

0
e−r

√
γ (h)μ(dr), h ∈Rd .

Equivalently, for any completely monotone function ψ with ψ(0) = 1, the function ψ(
√

γ (h))

is an extremal correlation function. A corresponding max-stable, stationary random field is given
by a max-mixture of Brown–Resnick processes with suitable ν ∈M1((0,∞)).
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5. Proofs

Proof of Theorem 2.1. Let x, y ∈ R and put un(z) = bn + z/bn, for z ∈ R.

logP
(

max
i=1,...,n

X
(1)
i,n ≤ un(x), max

i=1,...,n
X

(2)
i,n ≤ un(y)

)

=
n∑

i=1

log
(
1 − [

P
(
X

(1)
i,n > un(x)

) + P
(
X

(2)
i,n > un(y)

) − P
(
X

(1)
i,n > un(x),X

(2)
i,n > un(y)

)])
(22)

= −
n∑

i=1

P
(
X

(1)
i,n > un(x)

) −
n∑

i=1

P
(
X

(2)
i,n > un(y)

)

+
n∑

i=1

P
(
X

(1)
i,n > un(x),X

(2)
i,n > un(y)

) + Rn,

where Rn is a remainder term from the Taylor expansion of log(1 − z) = −z − z2/2 + o(z2), as
z → 0. Thus, by (9) there is an n0 ∈ N s.t. for all n ≥ n0 we have

|Rn| ≤
n∑

i=1

[
P
(
X

(1)
i,n > un(x)

) + P
(
X

(2)
i,n > un(y)

)]2

≤ max
i=1,...,n

[
P
(
X

(1)
i,n > un(x)

) + P
(
X

(2)
i,n > un(y)

)]
(23)

·
n∑

i=1

[
P
(
X

(1)
i,n > un(x)

) + P
(
X

(2)
i,n > un(y)

)]
.

For the one-dimensional margins, we observe

−
n∑

i=1

P
(
X

(1)
i,n > un(x)

) = −
n∑

i=1

∫ ∞

un(x)/σi,n,1

φ(z)dz

= −
n∑

i=1

∫ ∞

x/σi,n,1−b2
n(1−1/σi,n,1)

1

bn

φ
(
un(z)

)
dz

= −
∫

[0,∞]×R2

∫ ∞

(1−θ/b2
n)x−θ

e−z−z2/(2b2
n) dzηn

(
d(λ, θ, γ )

)
,

where for the last equation we used bn = nφ(bn) and the definition of the measure ηn in (5) to
replace the sum by the integral. For n ∈N, let

hn(θ) =
∫ ∞

(1−θ/b2
n)x−θ

e−z−z2/(2b2
n) dz, θ ∈R.
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Clearly, as n → ∞, hn converges uniformly on compact sets to the function h(θ) = exp(θ − x).
Note that h and hn are continuous functions on R. Put ω = (λ, θ, γ ) and observe for K > 0 that∣∣∣∣

∫
[0,∞]×R2

hn(θ)ηn(dω) −
∫

[0,∞]×R2
h(θ)η(dω)

∣∣∣∣
≤

∣∣∣∣
∫

[0,∞]×R2
hn(θ)1hn>Kηn(dω) −

∫
[0,∞]×R2

h(θ)1h>Kη(dω)

∣∣∣∣ (24)

+
∣∣∣∣
∫

[0,∞]×R2
hn(θ)1hn<Kηn(dω) −

∫
[0,∞]×R2

h(θ)1h<Kη(dω)

∣∣∣∣.
By Theorem 5.5 in Billingsley [5] (see also the remark after the theorem), ηnh

−1
n converges

weakly to ηh−1. Moreover, since h1h<K and the hn1hn<K are uniformly bounded in n, the
second summand in (24) converges to 0 as n → ∞, for arbitrary K > 0. By the integrability
condition (6) and Fatou’s lemma, we have

∫
[0,∞]×R2 h(θ)η(dω) < ∞ and hence, also the first

summand in (24) tends to zero as K,n → ∞. Consequently,

−
n∑

i=1

P
(
X

(1)
i,n > un(x)

) → −
∫

[0,∞]×R2
exp

[−(x − θ)
]
η(dω). (25)

Similarly, we get

−
n∑

i=1

P
(
X

(2)
i,n > un(y)

) → −
∫

[0,∞]×R2
exp

[−(y − γ )
]
η(dω). (26)

It now also follows from (9), (23), (25) and (26) that the remainder term Rn converges to zero as
n → ∞.

We now turn to the third term in (22).

n∑
i=1

P
(
X

(1)
i,n /σi,n,1 > un(x)/σi,n,1,X

(2)
i,n /σi,n,2 > un(y)/σi,n,2

)

=
n∑

i=1

∫ ∞

un(y)/σi,n,2

[
1 − �

(
un(x)/σi,n,1 − ρi,nz

(1 − ρ2
i,n)

1/2

)]
φ(z)dz

= 1

n

n∑
i=1

∫ ∞

y/σi,n,2−b2
n(1−1/σi,n,2)

[
1 − �

(
un(x)/σi,n,1 − ρi,nun(z)

(1 − ρ2
i,n)

1/2

)]
e−z−z2/(2b2

n) dz

=
∫

[0,∞]×R2

∫ ∞

(1−γ /b2
n)y−γ

[
1 − �

(
sn(λ, θ, z, x)

)]
e−z−z2/(2b2

n) dzηn(dω),

where we used bn = nφ(bn) for the second last equation and sn is defined by

sn(λ, θ, z, x) := λ

(1 − λ2/b2
n)

1/2
+ (1 − θ/b2

n)x − z − θ

(1 − λ2/b2
n)

1/22λ
+ λz

(1 − λ2/b2
n)

1/2b2
n

.
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For the last equation, we replaced the sum by the integral w.r.t. the empirical measure ηn as in
(5). Note that for i ∈ {1, . . . , n}, in fact a short computation yields

sn

(√
b2
n(1 − ρi,n)/2, b2

n(1 − 1/σi,n,1), z, x
)

= un(x)/σi,n,1 − ρi,nun(z)

(1 − ρ2
i,n)

1/2
.

For n ∈ N, let

gn(λ, θ, γ ) = 1λ≤bn

∫ ∞

(1−γ /b2
n)y−γ

[
1 − �

(
sn(λ, θ, z, x)

)]
e−z−z2/(2b2

n) dz

be a measurable function on [0,∞]×R2. It is easy to see, that as n → ∞, gn converges pointwise
to the function

g(λ, θ, γ ) =
∫ ∞

y−γ

[
1 − �

(
s(λ, θ, z, x)

)]
e−z dz,

with

s(λ, θ, z, x) := λ + x − z − θ

2λ
.

Note that g is a continuous function on [0,∞] × R2 and g(0, θ, γ ) = gn(0, θ, γ ) =
exp(−max(x − θ, y − γ )) and g(∞, θ, γ ) = gn(∞, θ, γ ) = 0, for any (θ, γ ) ∈ R2 and n suf-
ficiently large. Here, the values are understood as the limits as λ → 0 and λ → ∞ (using
dominated convergence), respectively, for example, limλ→0 g(λ, θ, γ ) = ∫ ∞

y−γ
1z>x−θ e−z dz =

exp(−max(x − θ, y − γ )). In order to establish the weak convergence ηng
−1
n ⇒ ηg−1, we

show that gn converges uniformly on compact sets to g as n → ∞. To this end, let C =
[0,∞] × [θ0, θ1] × [γ0, γ1] be an arbitrary compact set in [0,∞] × R2 and let ε > 0 be given.
First, note that instead of gn it suffices to consider the function g̃n, defined as

g̃n(λ, θ, γ ) = 1λ≤bn

∫ ∞

(1−γ /b2
n)y−γ

[
1 − �

(
sn(λ, θ, z, x)

)]
e−z dz,

since for n large enough

sup
(λ,θ,γ )∈C

|gn(λ, θ, γ ) − g̃n(λ, θ, γ )| ≤ 1λ≤bn

∫ ∞

−2|y|−γ1

e−z
(
1 − e−z2/(2b2

n)
)

dz → 0,

as n → ∞, by dominated convergence. Further, for any ε > 0, let z1 > − log ε which implies∫ ∞
z1

e−z dz < ε. We note that for n large enough

sn(λ, θ, z, x) ≥ (
1 − λ2/b2

n

)−1/2
(

λ

(
1 + −2|y| − γ1

b2
n

)
+ −2|x| − z1 − θ1

2λ

)

≥
(

λ

2
+ −2|x| − z1 − θ1

2λ

)
,
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for all λ ≤ bn, −2|y| − γ1 ≤ z ≤ z1 and (λ, θ, γ ) ∈ C, independently of n ∈ N. Hence, there is a
λ1 > 0 s.t. for all λ1 ≤ λ ≤ bn

1 − �
(
sn(λ, θ, z, x)

)
< εe−2|y|−γ1 .

Thus, for all n ∈N large enough,

sup
(λ,θ,γ )∈C,λ≥λ1

g̃n(λ, θ, γ ) ≤ 1λ≤bn

(∫ z1

−2|y|−γ1

εe−2|y|−γ1 e−z dz +
∫ ∞

z1

e−z dz

)
≤ 2ε,

and in the same manner, sup(λ,θ,γ )∈C,λ≥λ1
g(λ, θ, γ ) ≤ 2ε. Furthermore, we observe

lim
λ→0

�
(
sn(λ, θ, z, x)

) = 1z<(1−θ/b2
n)x−θ and lim

λ→0
�

(
s(λ, θ, z, x)

) = 1z<x−θ .

Choose n0 ∈ N such that for all n > n0 and all θ ∈ [θ0, θ1] we find an open interval (aθ , bθ )

of size ε/2 that contains {(1 − θ/b2
n)x − θ, x − θ}. Put Iθ = (aθ − ε/4, bθ + ε/4), then we

find a λ0 > 0, s.t. for all (λ, θ, γ ) ∈ C,λ ≤ λ0, z ∈ Iθ and n > n0, we have |�(sn(λ, θ, z, x)) −
�(s(λ, θ, z, x))| ≤ ε. Consequently,

sup
(λ,θ,γ )∈C,λ≤λ0

∣∣g̃n(λ, θ, γ ) − g(λ, θ, γ )
∣∣

≤ sup
(λ,θ,γ )∈C,λ≤λ0

∫ ∞

−2|y|−γ1

(1z∈Iθ + ε1z∈R\Iθ
)e−z dz ≤ 2εe2|y|+γ1 .

Choose n1 ∈N, s.t. bn1 > λ1. For λ0 ≤ λ ≤ λ1 and n > n1,∣∣sn(λ, θ, z, x) − s(λ, θ, z, x)
∣∣

=
∣∣∣∣
(

λ + x − z − θ

2λ

)(
1 − 1

(1 − λ2
1/b

2
n)

1/2

)
− λ2z − θ

(1 − λ2
1/b

2
n)

1/2b2
n2λ

∣∣∣∣ (27)

≤ M1

∣∣∣∣1 − 1

(1 − λ2
0/b

2
n)

1/2

∣∣∣∣ + M2

(1 − λ2
1/b

2
n)

1/2b2
n

→ 0

for n → ∞, uniformly in z ∈ [−2|y| − γ1, z1] and (λ, θ, γ ) ∈ C with λ0 ≤ λ ≤ λ1. Here, M1
and M2 are positive constants that only depend on x, y,λ0, λ1, θ0, θ1, γ1. Let n2 ∈ N, s.t. for
all n > max(n1, n2) the difference in (27) is less than or equal to εe−2|y|−γ1 . By the Lipschitz
continuity of �, we obtain for all λ0 ≤ λ ≤ λ1 and (λ, θ, γ ) ∈ C,∫ ∞

−2|y|−γ1

∣∣�(
sn(λ, θ, z, x)

) − �
(
s(λ, θ, z, x)

)∣∣e−z dz

≤
∫ z1

−2|y|−γ1

∣∣sn(λ, θ, z, x) − s(λ, θ, z, x)
∣∣e−z dz +

∫ ∞

z1

e−z dz

≤
∫ z1

−2|y|−γ1

εe−2|y|−γ1 e−z dz +
∫ ∞

z1

e−z dz ≤ 2ε.
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Putting the parts together yields

lim
n→∞ sup

(λ,θ,γ )∈C

∣∣g̃n(λ, θ, γ ) − g(λ, θ, γ )
∣∣ = 0.

The assumptions of Theorem 5.5 in Billingsley [5] are satisfied and therefore ηng
−1
n converges

weakly to ηg−1. By a similar argument as in (24) together with the integrability condition (6),
we obtain for n → ∞

n∑
i=1

P
(
X

(1)
i,n > un(x),X

(2)
i,n > un(y)

) →
∫

[0,∞]×R2
g(λ, θ, γ )η

(
d(λ, θ, γ )

)
.

Finally, partial integration gives

g(λ, θ, γ ) = e−(y−γ ) + e−(x−θ) − �

(
λ + y − x + θ − γ

2λ

)
e−(x−θ)

− �

(
λ − y − x + θ − γ

2λ

)
e−(y−γ ).

Together with (22), (25), (26) and the fact that Rn converges to zero, this implies the desired
result. �

Proof of Theorem 2.5. Sufficiency is a simple consequence of Theorem 2.1, where the covari-
ance matrix of Xi,n is given by (

1 ρi,n

ρi,n 1

)
.

For necessity, suppose that the sequence (maxi=1,...,n bn(Xi,n − bn))n∈N of bivariate random
vectors converges in distribution to some random vector Y . Let the νn, n ∈N, be defined as in (10)
and assume that the sequence (νn)n∈N ⊂ M1([0,∞]) does not converge. Then, by sequential
compactness, it has at least two different accumulation points ν, ν̃ ∈ M1([0,∞]). By the first
part of this theorem, (maxi=1,...,n bn(Xi,n − bn))n∈N converges in distribution to Fν ≡ Fν̃ . It now
suffices to show that Fν ≡ Fν̃ implies ν ≡ ν̃ to conclude that (νn)n∈N ⊂ M1([0,∞]) converges
to some measure ν and that Y has distribution Fν .

The fact that there is a one-to-one correspondence between Hüsler–Reiss distributions Fλ and
the dependence parameter λ ∈ [0,∞] is straightforward [20]. Showing a similar result in our
case, however, requires more effort.

To this end, for two measures ν1, ν2 ∈ M1([0,∞]) define random variables Y1 and Y2 with
distribution Fν1 and Fν2 , respectively. First, suppose that ν1({∞}) = ν2({∞}) = 0. For j = 1,2,
by Remark 2.6 we have the stochastic representation Yj = maxi∈N(Ui,j ,Ui,j + Bi,j ), where∑∞

i=1 δUi,j
are Poisson point process on R with intensity e−u du and the (Bi,j )i∈N are i.i.d. copies

of the random variable Bj with normal distribution N(−2S2
j ,4S2

j ), where Sj is νj -distributed.
Assume that

Fν1(x, y) = Fν2(x, y), for all x, y ∈ R, (28)
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that is, the max-stable distributions of Y1 and Y2 are equal. Since a Poisson point process is
determined by its intensity on a generating system of the σ -algebra, it follows that the point
processes �1 = ∑∞

i=1 δ(Ui,1,Ui,1+Bi,1) and �2 = ∑∞
i=1 δ(Ui,2,Ui,2+Bi,2) are equal in distribution.

Therefore, the measurable mapping

h :R2 →R2, (x1, x2) �→ (x1, x2 − x1)

induces two Poisson point processes h(�1) and h(�2) on R2 with coinciding intensity measures
e−u duPB1(dx) and e−u duPB2(dx), respectively. Hence, B1 and B2 have the same distribution.
Denote by ψj the Laplace transform of the Gaussian mixture Bj , j = 1,2. A straightforward
calculation yields for u ∈ (0,1)

ψj (u) = E exp(uBj ) =
∫

[0,∞)

exp
(−2λ2(u − u2))νj (dλ), j = 1,2.

By Lemma 7 in Kabluchko et al. [20], this implies the equality of measures ν2
1(dλ) = ν2

2(dλ),
where ν2

j is the image measure of νj under the transformation [0,∞] → [0,∞], λ �→ λ2, for
j = 1,2. Hence, it also holds that ν1 ≡ ν2.

For arbitrary ν1, ν2 ∈ M1([0,∞]), we first need to show that ν1({∞}) = ν2({∞}). For j =
1,2, observe that for n ∈ N

− logFνj
(−n,0) + logFνj

(−n,n)

=
∫

[0,∞)

�

(
λ + n

2λ

)
en + �

(
λ − n

2λ

)
− �

(
λ + n

λ

)
en − �

(
λ − n

λ

)
e−nνj (dλ)

+ (
1 − e−n

)
νj

({∞}).
Since the second derivative of � is negative on the positive real line, we have the estimate

en

∣∣∣∣�
(

λ + n

2λ

)
− �

(
λ + n

λ

)∣∣∣∣ ≤ n

2λ
√

2π
ene−(λ+n/(2λ))2/2,

where the latter term converges pointwise to zero as n → ∞. Moreover, it is uniformly bounded
in n ∈N and λ ∈ [0,∞) by a constant and hence, by dominated convergence

lim
n→∞− logFνj

(−n,0) + logFνj
(−n,n) = νj

({∞}), j = 1,2.

It therefore follows from (28) that ν1({∞}) = ν2({∞}). If ν1({∞}) < 1, we apply the above to
the restricted probability measures νj (· ∩ [0,∞))/(1 − νj ({∞})) on [0,∞), j = 1,2, to obtain
ν1 ≡ ν2.

The last claim of the theorem follows from the fact that the integrand in (12) is bounded and
continuous in λ for fixed x, y ∈R, and hence, for ν, νn ∈M1([0,∞]), n ∈N, weak convergence
of νn to ν ensures the pointwise convergence of the distribution functions. �

Proof of Corollary 2.7. The first statement is a consequence of Theorem 2.5, because every
sequence of random vectors can be understood as a triangular array where the columns contain
equal random vectors.
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For the second claim, let ν ∈ M1([0,∞]) be an arbitrary probability measure. Similarly
as in Example 1, define an i.i.d. sequence (Ri)i∈N of samples of ν. Choosing ρi = max(1 −
2R2

i /b
2
i ,−1) as correlation of Xi yields

νn = 1

n

n∑
i=1

δ1Ri<bi
Ribn/bi+1Ri>bi

bn
.

First, consider the measures ν̃n = 1
n

∑n
i=1 δRibn/bi

, for n ∈ N. For y ∈ [0,∞] with ν({y}) = 0 we
observe

ν̃n

([0, y]) = 1

n

n∑
i=1

1[0,y](Ribn/bi). (29)

Fix ε > 0 and recall from (1) that bn/
√

2 logn → 1 as n → ∞. Hence, choose n large enough
such that i > n1/(1+ε)2

implies bn/bi < 1 + ε. Let nε denote the smallest integer which is strictly
larger than n1/(1+ε)2

, then (29) yields∣∣∣∣∣ν̃n

([0, y]) − 1

n

n∑
i=1

1[0,y](Ri)

∣∣∣∣∣ ≤ nε

n
+ 1

n

∣∣∣∣∣
n∑

i=nε

1[0,y](Ribn/bi) −
n∑

i=nε

1[0,y](Ri)

∣∣∣∣∣
≤ nε

n
+ 1

n

n∑
i=nε

1(y/(1+ε),y](Ri).

Letting n → ∞ gives

lim
n→∞

∣∣∣∣∣ν̃n

([0, y]) − 1

n

n∑
i=1

1[0,y](Ri)

∣∣∣∣∣ ≤ ν
(
(y/(1 + ε), y]), a.s.

Since ε was arbitrary and ν({y}) = 0, it follows from the law of large numbers that ν̃n converges
a.s. weakly to ν, as n → ∞. Similarly, one can see that the sequence (νn)n∈N has a.s. the same
limit as (ν̃n)n∈N, as n → ∞. �

Proof of Theorem 3.1. Let un(z) = bn + z/bn for z ∈ R, un(x) = (un(x1), . . . , un(xd))� for
x ∈Rd and for x,y ∈ Rd write x > y if xi > yi for all 1 ≤ i ≤ d .

Let x = (x1, . . . , xd)� ∈ Rd be a fixed vector and Al
i,n = {X(l)

i,n ≤ un(xl)} for n ∈ N,1 ≤ i ≤ n

and 1 ≤ l ≤ d .

logP
(

max
i=1,...,n

X
(1)
i,n ≤ un(x1), . . . , max

i=1,...,n
X

(d)
i,n ≤ un(xd)

)
(30)

=
n∑

i=1

logP

[
d⋂

l=1

Al
i,n

]
= −

n∑
i=1

P

[
d⋃

l=1

(
Al

i,n

)C

]
+ Rn,
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where Rn is a remainder term from the Taylor expansion of log. Using the same arguments as for
the remainder term in (23), we conclude that Rn converges to zero as n → ∞. By the additivity
formula we have

−P

[
d⋃

l=1

(
Al

i,n

)C

]
=

d∑
l=1

(−1)l
∑

m:1≤m1<···<ml≤d

P

[
l⋂

k=1

(
A

mk

i,n

)C

]
. (31)

Consequently, by (30) and (31) it suffices to show that

lim
n→∞

n∑
i=1

P
(
Xi,n > un(x)

) =
∫

[0,∞)d×d

hd,(1,...,d),	(x1, . . . , xd)η(d	). (32)

Let Z = (Z1, . . . ,Zd) be a standard normal random vector with independent margins and let
K = {1, . . . , d − 1}. For a vector x ∈ Rd let xK = (x1, . . . , xd−1). If A = (aj,k)1≤j,k≤d ∈ Rd×d

is a matrix, let Ad,K = (ad,1, . . . , ad,d−1), AK,d = (a1,d , . . . , ad−1,d ) and AK,K = (aj,k)j,k∈K .
We first assume that all Xi,n are non-degenerate, that is, η2

n(D0) = 1, for all n ∈ N. Then,
similarly as in the proof of Theorem 1.1 in Hashorva et al. [15], we define a new matrix Bi,n ∈
R(d−1)×(d−1) by

Bi,nB
�
i,n = (�i,n)K,K − σ i,nσ

�
i,n, σ i,n = (�i,n)K,d , (33)

which is well-defined since (�i,n)K,K − σ i,nσ
�
i,n is positive definite as the Schur complement of

(�i,n)d,d in the positive definite matrix �i,n. This enables us to write the vector Xi,n as the joint
stochastic representation

(
X

(1)
i,n , . . . ,X

(d−1)
i,n

) d= Bi,nZK + Zdσ i,n, X
(d)
i,n

d= Zd.

Therefore, since Zd is independent of ZK ,

P
(
Xi,n > un(x)

) = P
(
Bi,nZK + Zdσ i,n > un(xK),Zd > un(xd)

)
=

∫ ∞

xd

P
(
Bi,nZK + un(s)σ i,n > un(xK)

)
b−1
n φ(bn)e

−s−s2/(2b2
n) ds

= 1

n

∫ ∞

xd

S
((

b2
n

(
11� − �i,n

))
K,d

+ xK − s1 (34)

+ sb−2
n

(
b2
n

(
11� − �i,n

))
K,d

|b2
nBi,nB

�
i,n

)
× e−s−s2/(2b2

n) ds.

It follows from the definition of Bi,n in equation (33) that

Bi,nB
�
i,n = (

11� − �i,n

)
K,d

1� + 1
(
11� − �i,n

)
d,K

− (
11� − �i,n

)
K,K

− (
11� − �i,n

)
K,d

(
11� − �i,n

)
d,K

.
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Together with (34) and the definition of ηn this yields

n∑
i=1

P
(
Xi,n > un(x)

) =
∫

D0

pn(A)η2
n(dA),

where pn is a measurable function from D0 to [0,∞) given by

pn(A) =
∫ ∞

xd

S
(
2AK,d + xK − s1 + 2b−2

n sAK,d |�d,(1,...,d)(
√

A) − 4b−2
n AK,dAd,K

)
× e−s−s2/(2b2

n) ds.

Further, let p be the measurable function from D0 to [0,∞)

p(A) =
∫ ∞

xd

S
(
2AK,d + xK − s1|�d,(1,...,d)(

√
A)

)
e−s ds.

Note that ηn ⇒ η if and only if η2
n ⇒ η2. In view of (32) it suffices to show that

lim
n→∞

∫
D0

pn(A)η2
n(dA) =

∫
D0

p(A)η2(dA). (35)

To this end, let A0 ∈ D0 and {An,n ∈ N} be a sequence in D0 that converges to A0. We will
show that pn(An) → p(A0) as n → ∞. By dominated convergence, it is sufficient to show
the convergence of the survivor functions. Since A0 is in D0, recall that �d,(1,...,d)(

√
A0) is

in the space M(d−1) of (d − 1)-dimensional, non-degenerate covariance matrices. Moreover,
since M(d−1) ⊂ R(d−1)×(d−1) is open and �d,(1,...,d)(

√
An) − b−2

n 4(An)K,d(An)d,K converges
to �d,(1,...,d)(

√
A0), there is an n0 ∈ N such that for all n ≥ n0 we have �d,(1,...,d)(

√
An) −

b−2
n 4(An)K,d(An)d,K ∈ M(d−1). Since also 2(An)K,d + xK − s1 + b−2

n s2(An)K,d converges to
2(A0)K,d + xK − s1 as n → ∞, we conclude that the survivor functions converge and conse-
quently pn(An) → p(A0). Applying Theorem 5.5 in Billingsley [5] yields (35).

If not all random vectors Xi,n are non-degenerate, then it follows from the weak convergence
η2

n ⇒ η2 that η2
n(D \D0) → η2(D \D0) = 0, as n → ∞. Indeed, since D \D0 is closed in D, we

have that η2(∂(D \ D0)) = 0. Thus, the degenerate random vectors in (32) are negligible. This
concludes the proof. �

Proof of Proposition 4.2. Let t1, . . . , tm ∈ Rd and x1, . . . , xm ∈ R be fixed. It follows from
formula (19) in Kabluchko [19] that for a fixed variogram γ0 ∈ Vd , the finite dimensional distri-
bution (ξ(t1), . . . , ξ(tm)) of the corresponding Brown–Resnick process in (19) is given by H	γ0

with 	γ0 = (
√

γ0(tj − tk)/4)1≤j,k≤m.
For the max-mixture of Brown–Resnick processes w.r.t. the mixture measure Q, we obtain via

void probabilities of Poisson point processes

− logP
(
ξQ(t1) ≤ x1, . . . , ξQ(tm) ≤ xm

) =
∫
R

e−uP

(
u > min

i=1,...,m
xi − Wγ (ti) + 2γ (ti)

)
= E max

i=1,...,m
exp

(
Wγ (ti) − 2γ (ti) − xi

)
,
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where γ has distribution Q and the process Wγ , conditional on γ , is a zero-mean Gaussian
process with stationary increments, variogram 4γ and Wγ (0) = 0 a.s. By conditioning on the
variogram we get

− logP
(
ξQ(t1) ≤ x1, . . . , ξQ(tm) ≤ xm

)
=

∫
Vd

E max
i=1,...,m

exp
(
Wγ0(ti) − 2γ0(ti) − xi

)
Q(dγ0) (36)

=
∫

Vd

− logH	γ0
(x1, . . . , xm)Q(dγ0).

Thus, comparing with (18), the finite dimensional distributions of ξQ are given by the max-
mixtures of Brown–Resnick processes w.r.t. the mixture measure Q. Consequently, ξQ is max-
stable and by (36), stationarity is preserved under max-mixing. �

Acknowledgements

The authors are grateful to Kirstin Strokorb for helpful discussions on extremal correlation func-
tions and to two unknown referees who helped to considerably improve the paper. S. Engelke
has been financially supported by Deutsche Telekom Stiftung and the Swiss National Science
Foundation project 200021-134785. M. Schlather has been financially supported by Volkswagen
Stiftung within the project ‘WEX-MOP’.

References

[1] Balkema, A.A. and Resnick, S.I. (1977). Max-infinite divisibility. J. Appl. Probab. 14 309–319.
MR0438425

[2] Ballani, F. and Schlather, M. (2011). A construction principle for multivariate extreme value distribu-
tions. Biometrika 98 633–645. MR2836411

[3] Berg, C., Christensen, J.P.R. and Ressel, P. (1984). Harmonic Analysis on Semigroups: Theory of
Positive Definite and Related Functions. Graduate Texts in Mathematics 100. New York: Springer.
MR0747302

[4] Berg, C., Mateu, J. and Porcu, E. (2008). The Dagum family of isotropic correlation functions.
Bernoulli 14 1134–1149. MR2543589

[5] Billingsley, P. (1968). Convergence of Probability Measures. New York: Wiley. MR0233396
[6] Brown, B.M. and Resnick, S.I. (1977). Extreme values of independent stochastic processes. J. Appl.

Probab. 14 732–739. MR0517438
[7] Cooley, D., Davis, R.A. and Naveau, P. (2010). The pairwise beta distribution: A flexible parametric

multivariate model for extremes. J. Multivariate Anal. 101 2103–2117. MR2671204
[8] de Haan, L. and Ferreira, A. (2006). Extreme Value Theory: An Introduction. Springer Series in Oper-

ations Research and Financial Engineering. New York: Springer. MR2234156
[9] de Haan, L. and Pereira, T.T. (2006). Spatial extremes: Models for the stationary case. Ann. Statist. 34

146–168. MR2275238
[10] Gerritse, G. (1986). Supremum self-decomposable random vectors. Probab. Theory Related Fields 72

17–33. MR0835157

http://www.ams.org/mathscinet-getitem?mr=0438425
http://www.ams.org/mathscinet-getitem?mr=2836411
http://www.ams.org/mathscinet-getitem?mr=0747302
http://www.ams.org/mathscinet-getitem?mr=2543589
http://www.ams.org/mathscinet-getitem?mr=0233396
http://www.ams.org/mathscinet-getitem?mr=0517438
http://www.ams.org/mathscinet-getitem?mr=2671204
http://www.ams.org/mathscinet-getitem?mr=2234156
http://www.ams.org/mathscinet-getitem?mr=2275238
http://www.ams.org/mathscinet-getitem?mr=0835157


Maxima of independent Gaussian vectors 61

[11] Gneiting, T. (1999). Radial positive definite functions generated by Euclid’s hat. J. Multivariate Anal.
69 88–119. MR1701408

[12] Gradshteyn, I.S. and Ryzhik, I.M. (2000). Table of Integrals, Series, and Products, 6th ed. San Diego,
CA: Academic Press. Translated from the Russian, Translation edited and with a preface by Alan
Jeffrey and Daniel Zwillinger. MR1773820

[13] Hashorva, E. (2005). Elliptical triangular arrays in the max-domain of attraction of Hüsler–Reiss
distribution. Statist. Probab. Lett. 72 125–135. MR2137118

[14] Hashorva, E. (2006). On the multivariate Hüsler–Reiss distribution attracting the maxima of elliptical
triangular arrays. Statist. Probab. Lett. 76 2027–2035. MR2329248

[15] Hashorva, E., Kabluchko, Z. and Wübker, A. (2012). Extremes of independent chi-square random
vectors. Extremes 15 35–42. MR2891308

[16] Hashorva, E. and Weng, Z. (2013). Limit laws for extremes of dependent stationary Gaussian arrays.
Statist. Probab. Lett. 83 320–330. MR2998759

[17] Hüsler, J. and Reiss, R.-D. (1989). Maxima of normal random vectors: Between independence and
complete dependence. Statist. Probab. Lett. 7 283–286. MR0980699

[18] Joe, H. (1994). Multivariate extreme-value distributions with applications to environmental data.
Canad. J. Statist. 22 47–64. MR1271444

[19] Kabluchko, Z. (2011). Extremes of independent Gaussian processes. Extremes 14 285–310.
MR2824498

[20] Kabluchko, Z., Schlather, M. and de Haan, L. (2009). Stationary max-stable fields associated to neg-
ative definite functions. Ann. Probab. 37 2042–2065. MR2561440

[21] Leadbetter, M.R., Lindgren, G. and Rootzén, H. (1983). Extremes and Related Properties of Random
Sequences and Processes. Springer Series in Statistics. New York: Springer. MR0691492

[22] Meı̆zler, D.G. (1956). On the question of limit distributions for the maximal term of a variational
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