
PHYSICAL REVIEW A 90, 033844 (2014)

Maximal breaking of symmetry at critical angles and a closed-form expression for angular

deviations of the Snell law
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A detailed analysis of the propagation of laser Gaussian beams at critical angles shows under which conditions

it is possible to maximize the breaking of symmetry in the angular distribution and for which values of the

laser wavelength and beam waist it is possible to find an analytic formula for the maximal angular deviation

from the optical path predicted by the Snell law. For beam propagation through N dielectric blocks and for a

maximal breaking of symmetry, a closed expression for the Goos-Hänchen shift is obtained. The multiple-peak

phenomenon clearly represents additional evidence of the breaking of symmetry in the angular distribution of

optical beams. Finally, the laser wavelength and beam-waist conditions to produce focal effects in the outgoing

beam are also briefly discussed.
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I. INTRODUCTION

It is well known that the Fresnel coefficients, which

describe the propagation of optical beams between media

with different refractive indexes, are useful in studying

deviations from geometrical optics [1,2]. The most important

examples are represented by the Goos-Hänchen [3–14] and

Imbert-Fedorov [15–20] effects. For total internal reflection,

Fresnel coefficients gain an additional phase, and this phase is

responsible for the transversal shift of linearly and elliptically

polarized light with respect to the optical beam path predicted

by the Snell law. Nevertheless, these effects do not modify

the angular predictions of geometrical optics. For example,

for a dielectric block with parallel sides the outgoing beam

is expected to be parallel to the incoming one. Angular

deviations [21–25] from the optical path predicted by the Snell

law are a direct consequence of the breaking of symmetry [26]

in the angular distribution. In this paper, we show how to

maximize this breaking of symmetry and give an analytic

formula for the Snell law angular deviations. Two interesting

additional phenomena, i.e., multiple peaks and the focal effect,

appear in the analysis of the outgoing beam. In view of possible

experimental investigations, our study, done for n =
√

2 for

simplicity of presentation, is then extended to Borosilicate

(BK7) or fused silica dielectric blocks and He-Ne lasers with

λ = 633 nm and beam waists w0 = 100 μm and 1 mm.

II. ASYMMETRICALLY MODELED BEAMS

As anticipated in the Introduction, the breaking of sym-

metry [26] in the angular distribution of optical beams plays a

fundamental role in the angular deviation from the optical path

predicted by the Snell law. In this section, to understand why

the breaking of symmetry is responsible for such a fascinating

phenomenon, we briefly discuss a maximal breaking of

symmetry for an asymmetrically modeled beam. The effect

of this maximal breaking of symmetry on the peak and the

*deleo@ime.unicamp.br

position mean value of the optical beam sheds light on the

possibility to realize an optical experiment.

First of all, let us consider the symmetric Gaussian angular

distribution

g(θ ) = exp[−(k w0 θ )2/4], (1)

where w0 is the beam waist of the Gaussian laser and k =
2π/λ is the wave number associated with the wavelength λ.

The optical beam, propagating in the y-z plane, is represented

by [19,20]

E(y,z) = E0

k w0

2
√

π

∫
dθ g(θ ) exp[ik(sin θy + cos θz)].

(2)

For kw0 ≫ 1, we can develop the sine and cosine functions up

to the second order in θ . The electric field,

E(y,z) =
E0

γ (z)
exp

{
ikz −

[
y

w0γ (z)

]2 }
= E0e

ikz
G(y,z),

(3)

where γ (z) =
√

1 + 2iz/kw
2

0, thus propagates along the z

direction and manifests a cylindrical symmetry about the

direction of propagation. The complex Gaussian function

G(y,z) is the solution of the paraxial Helmholtz equation [1,2]

(∂yy + 2ik∂z)G(y,z) = 0. (4)

The optical intensity,

I (y,z) = |E(y,z)|2 =
I0

|γ (z)|2
exp

[
−

2y2

w2
0|γ (z)|4

]

= I0

w0

w(z)
exp

[
−

2y2

w
2
(z)

]
, (5)

is a function of the axial (z) and transversal (y) coordinates.

The Gaussian function |G(y,z)| has its peak on the z axis at

y = 0, and its beam width increases with the axial distance z,

as illustrated in Fig. 1(a). Because the Gaussian distribution

g(θ ) is a symmetric distribution centered at θ = 0,

〈y〉|G| =
∫

dyy|E(y,z)|2∫
dy|E(y,z)|2

=
∫

dyy|G(y,z)|2∫
dy|G(y,z)|2

= 0. (6)
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FIG. 1. (Color online) (a) Modeled breaking of symmetry. (b) The breaking of symmetry in the Gaussian angular distribution generates an

axial dependence for the peak of the optical beam. This dependence is shown in (c). For the transversal mean value it is possible to obtain an

axial linear analytical expression, given in Eq. (10), which is confirmed by the numerical data plotted in (d).

The previous analytical result shows that for symmetric distri-

butions the peak position and transversal mean value coincide

and do not depend on the axial parameter z. The symmetry

in the angular distribution g(θ ) is thus responsible for the

well-known stationary behavior of the Gaussian laser peak.

To see how the breaking of symmetry drastically changes

the previous situation, we model a maximal breaking of

symmetry by considering the following asymmetric angular

distribution:

f (θ ) =

{
0 θ < 0,

exp[−(kw0θ )2/4] θ � 0.
(7)

This distribution determines the behavior of the new electric

field,

E(y,z) = E0{1 + erf[iy/w0γ (z)]}G(y,z) = E0e
ikz
F(y,z). (8)

The asymmetry in the angular distribution of Eq. (7) is

responsible for the axial dependence of the peak position [see

Fig. 1(b)]. This z dependence is caused by the interference

between the Gaussian and the error function which now

appears in Eq. (8). The numerical analysis, done for different

values of kw0 and illustrated in Figs. 1(c) and 1(d), shows a

different behavior between the peak position and transversal
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mean value and confirms the analytical expression

〈y〉|F | =
∫
dyy|F(y,z)|2∫
dy|F(y,z)|2

=
− i

2k

∫
dθf (θ )e−ikθ2z/2 ∂

∂θ
[f (θ )e−ikθ2z/2]∗∫

dθf 2(θ )
+ H.c.

=
∫
dθθf 2(θ )∫
dθf 2(θ )

z =
√

2/π

kw0

z. (9)

Finally, the breaking of symmetry in the modeled angular

distribution, Eq. (7), generates deviations from the optical path,

y = 0, expected by geometrical optics. The modeled beam

now shows the angular deviation

αmax = arctan

[√
2/π

kw0

]
, (10)

where the subscript index has been introduced to recall that this

angular deviation is due to the maximal breaking of symmetry

introduced to model the Gaussian optical beam. This deviation

can be physically understood by observing that for a symmetric

distribution [see g(θ ) in Eq. (1)], negative and positive angles

play the same role, and consequently, their final contribution

does not change the propagation of the optical path whose

maximum is always centered at y = 0. In the case of the

asymmetric distribution f (θ ) given in Eq. (7) only positive

angles contribute to the motion, and this generates a maximal

angular deviation which clearly depends on the parameter kw0.

In the plane-wave limit, this deviation tends to zero.

The results presented in this section stimulate us to

investigate in which situations Gaussian lasers, propagating

through dielectric blocks, could experience a breaking of

symmetry in their angular distributions similar to the modeled

breaking of symmetry analyzed in this section. If this happens,

the angular deviation from the optical path predicted by the

Snell law should be equal to the angle α given in Eq. (10).

III. PROPOSING THE BREAKING OF SYMMETRY

IN OPTICAL EXPERIMENTS

In this section, we treat the general problem of the

transmission of a Gaussian optical beam through a dielectric

block and study how to realize the breaking of symmetry which

allows us to reproduce the effects discussed in the previous

section. This section contains only a proposal to observe

the breaking of symmetry in real optical experiments and to

see under what circumstances it is possible to reproduce the

maximal angular deviation αmax of Eq. (10). In this proposal,

we do not take into account cumulative dissipation effects.

Imperfections such as misalignment of the dielectric surfaces

will be discussed in the final section.

The optical beam represented by the electric field of Eq. (2)

moves from its source S to the left interface of the dielectric

block along the z axis [see Fig. 2(a)]. The z̃ and z∗ directions

represent, respectively, the left and right and up and down

stratifications of the dielectric block. By observing that

(
y

z

)
=

(
cos θ0 − sin θ0

sin θ0 cos θ0

) (
ỹ

z̃

)
, (11)

we can immediately rewrite the incoming electric field in terms

of the new axes ỹ and z̃,

Einc(y,z) = E0

kw0

2
√

π

∫
dθg(θ ) exp[ik(sin θy + cos θz)]

= E0

kw0

2
√

π

∫
dθg(θ ) exp{ik[sin(θ + θ0)̃y

+ cos(θ + θ0 )̃z]}

= E0

kw0

2
√

π

∫
dθg(θ − θ0) exp[ik(sin θỹ + cos θ z̃)].

(12)

At the first (left) and last (right) interfaces, sin θ = n sin ψ

(see the dielectric block of Fig. 2). In terms of these angles,

the transmission Fresnel coefficients for s-polarized waves are

FIG. 2. (Color online) Geometry of the dielectric block. The nor-

mals of the left and right and up and down interfaces and the angular

parameters which appear in the transmission coefficient are given in

(a). For a symmetric angular distribution the outgoing beam is parallel

to the incoming one. The breaking of symmetry generates an angular

deviation α of the Snell law, which is drawn in (b) together with

the transversal Goos-Hänchen shift. The breaking of symmetry is

maximized by building a dielectric structure of N blocks in (c) which

in a real optical experiment can be realized by a single elongated

prism with sides NBC and AB.
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given by [1,2]

{
T

[s]
left,T

[s]
right

}
=

{
2 cos θ

cos θ + n cos ψ
eiφleft ,

2n cos ψeiφright

cos θ + n cos ψ
eiφright

}
,

(13)

where

φleft = k(cos θ − n cos ψ)SD̃,

φright = k(n cos ψ − cos θ )

(
SD̃ +

BC
√

2

)
.

The phase which appears in the Fresnel coefficients contains

information on the point at which the beam encounters the air-

dielectric (dielectric-air) interface, and it is obviously equal for

s- and p-polarized waves [27–29]. At the second (down) and

third (up) interfaces, observing that ϕ = ψ + π
4

[see Fig. 2(a)],

the reflection Fresnel coefficients read

{
R

[s]
down,R

[s]
up

}
=

n cos ϕ −
√

1 − n2 sin2 ϕ

n cos ϕ +
√

1 − n2 sin2 ϕ
{eiφdown ,eiφup}, (14)

where

φdown = 2kn cos ϕSD∗ and φup = 2kn cos ϕ

(
AB
√

2
− SD∗

)
.

The total transmission coefficient for s-polarized waves which

propagate through the dielectric block sketched in Fig. 2(a) is

then obtained by multiplying the Fresnel coefficients given in

Eqs. (13) and (14),

T [s](θ ) =
4n cos ψ cos θ

(cos θ + n cos ψ)2

×
(

n cos ϕ −
√

1 − n2 sin2 ϕ

n cos ϕ +
√

1 − n2 sin2 ϕ

)2

ei�Snell , (15)

where

�Snell = k

[√
2n cos ϕAB + (n cos ψ − cos θ )

BC
√

2

]
.

In a similar way, we can immediately obtain the transmission

coefficient for p-polarized waves [28,29],

T [p](θ ) =
4n cos ψ cos θ

(n cos θ + cos ψ)2

×
(

cos ϕ − n
√

1 − n2 sin2 ϕ

cos ϕ + n
√

1 − n2 sin2 ϕ

)2

ei�Snell . (16)

Before we discuss the effect of the transmission coefficient on

the angular Gaussian distribution, g(θ − θ0), let us spend some

time analyzing the phase �Snell which appears in the transmis-

sion coefficient. The stationary phase approximation [30–32],

which is a basic principle of asymptotic analysis based on

the cancellation of sinusoids with a rapidly varying phase,

allows us to obtain a prediction of the beam peak position by

imposing
[

∂

∂θ
(k sin θỹout + k cos θ z̃out + �Snell)

]

θ=θ0

= 0.

This stationary constraint implies

cos θ0ỹout − sin θ0̃zout

=
√

2 sin ϕ0

cos θ0

cos ψ0

AB +
(

sin ψ0

cos θ0

cos ψ0

− sin θ0

)
BC
√

2

= cos θ0

[
(1 + tan ψ0)AB + (tan ψ0 − tan θ0)

BC
√

2

]

︸ ︷︷ ︸
dSnell

. (17)

This reproduces the well-known transversal shift obtained in

geometrical optics by using the Snell law. With respect to the

incoming optical beam, which is centered at y = 0, the center

of the outgoing beam is then shifted at y = dSnell. To ensure

that for the dielectric structure illustrated in Fig. 2(c) we have

2N internal reflections, we must impose the condition that, in

each block, incoming and outgoing beams have the same z∗
component; this implies

BC =
√

2 tan ϕ0AB. (18)

In this case, the propagation of the optical beam through N

dielectric blocks is characterized by 2N internal reflections.

For an elongated prism with a side NBC, the transmission

coefficients for s- and p-polarized waves are then given by

T
[s]
N (θ ) =

4n cos ψ cos θ

(cos θ + n cos ψ)2

×
(

n cos ϕ −
√

1 − n2 sin2 ϕ

n cos ϕ +
√

1 − n2 sin2 ϕ

)2N

eiN�Snell (19)

and

T
[p]

N (θ ) =
4n cos ψ cos θ

(n cos θ + cos ψ)2

×
(

cos ϕ − n
√

1 − n2 sin2 ϕ

cos ϕ + n
√

1 − n2 sin2 ϕ

)2N

eiN�Snell . (20)

For incidence angles less than the critical angle,

θ < θc = arcsin

{
n sin

[
arcsin

(
1

n

)
−

π

4

]}
,

the outgoing optical beam,

E[s,p]
T

(y,z) = E0

kw0

2
√

π

∫
dθT

[s,p]

N (θ )g(θ − θ0)

× exp[ik(sin θỹ + cos θ z̃)]

= E0

kw0

2
√

π

∫
dθg

[s,p]

T (θ ; θ0)

× exp{ik[sin(θ − θ0)y + cos(θ − θ0)z]}, (21)

propagates parallel to the z axis, with its peak located at

ySnell = NdSnell = N (cos θ0 − sin θ0) tan ϕ0AB, (22)

as expected from the ray optics. For incidence angles greater

than the critical angle, we find sin ϕ > 1 and the optical beam

gains an additional phase,

N�
[s,p]

GH , (23)

033844-4



MAXIMAL BREAKING OF SYMMETRY AT CRITICAL . . . PHYSICAL REVIEW A 90, 033844 (2014)

FIG. 3. (Color online) Symmetry breaking for N dielectric blocks. The modeled breaking of symmetry discussed in Sec. II is now proposed

for optical experiments at critical incidence (θc = 0, ϕc = π/4). The plots show that to maximize the breaking of symmetry, we have to decrease

the beam waist, increase the blocks number, and use p-polarized waves. For p-polarized waves, an optimal choice to obtain a maximal breaking

of symmetry is represented by N = 50 and kw0 = 103. To reproduce the maximal symmetry breaking for the other cases, we have to increase

the number of blocks.

where

�
[s,p]

GH =

{
−4 arctan

√
(n2 sin2 ϕ − 1)/(n cos ϕ)2 (s polarization],

−4 arctan
√

n2(n2 sin2 ϕ − 1)/ cos2 ϕ (p polarization).
(24)

For linearly polarized light, this new phase is responsible

for the Goos-Hänchen shift. This shift was experimentally

observed in 1947 [3], and one year later, Artmann [4] proposed

an analytical expression. The Artmann formulas, valid for an

incidence angle greater than the critical angle, have recently

been generalized for incidence at the critical angle [14].

Notwithstanding the interesting nuances involved in the study

of the Goos-Hänchen shift, what we aim to discuss in detail

in this paper is the angular deviation from the optical path

predicted by the Snell law.
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The angular deviation αmax, given in Eq. (10), is due to

the maximal breaking of symmetry modeled in Sec. II [see

Eq. (7)]. In the dielectric structure illustrated in Fig. 2(c)

(observe that in a real optical experiment this structure can

be reproduced by a single elongated prism with a side NBC),

the optical beam experiences 2N internal reflections, and this

will play a fundamental role in reproducing, for incidence at

the critical angle, the maximal breaking of symmetry presented

in Sec. II using a modeled example. Indeed, for incidence at

the critical angle, the angular distribution g
[s,p]

T (θ ; θc) centered

at θ = θc experiences, at each up and down interface, a partial

transmission for θ < θc and a total reflection for θ > θc.

Consequently, by increasing the number of internal reflections

we contribute to the increase in the breaking of symmetry.

For a few blocks, the real optical experiment is very different

from the modeled case presented in Sec. II. Nevertheless, for

N ≫ 1, we improve the breaking of symmetry and can simulate

the maximal breaking of symmetry discussed in Sec. II. From

Fig. 3, where we plot the modulus of the transmitted angular

distribution g
[s,p]

T (θ ; θc), we can immediately see that the

breaking of symmetry is optimized not only by increasing

the number of blocks but also by using p-polarized waves

and/or decreasing the value of the beam waist. As shown

in Fig. 3(c), for kw0 = 10
3

(which for a He-Ne laser with

FIG. 4. (Color online) Snell’s law angular deviation. The axial dependence at the critical angle θc = 0 of the peak and transversal mean

value are plotted for a fixed beam waist w0, kw0 = 103, and b/w0 = 102 for different block numbers N . The angular deviation of the Snell

law is evident in (b) and (d). Observe that the first physical axial points at which we can perform the experimental analysis are given by

zout = zin + N tan ϕcAB (crosses in the plots). From the plots the N amplification of the Goos-Hänchen shift at the critical angle is also clear.

The circles represent the points at which the numerical calculation has also been done for BK7 and fused silica blocks (Table I).
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TABLE I. (Color online) Snell’s law angular deviation for BK7

and fused silica dielectric blocks. Numerical peak position ymax,T and

transversal mean value 〈y〉T of the transmitted beam at the critical

angle θ0 = θc are listed for s- and p-polarized waves for different

refractive indexes as a function of the number of blocks N and for

fixed beam waist/wavelength ratio, kw0 = 103, and axial parameter,

z = 50dSnell. We immediately see that by increasing the number of

blocks (and consequently optimizing the breaking of symmetry) we

increase the angular deviation of the Snell law.

ymax/d
Snell

− N y/d
Snell

N

n
N 10 30 50 10 30 50

√

2 0.050 0.080 0.108 0.053 0.079 0.104 s
-
p
o
l

1.457 0.049 0.079 0.105 0.052 0.077 0.102

1.515 0.047 0.077 0.102 0.051 0.075 0.099

√

2 0.063 0.112 0.156 0.066 0.117 0.170

p
-
p
o
l

1.457 0.064 0.113 0.158 0.066 0.119 0.171

1.515 0.064 0.114 0.159 0.067 0.120 0.174

λ = 633 nm means w0 ≈ 100 μm), N = 50, and p-polarized

waves, we perfectly reproduce the modeled breaking of

symmetry illustrated in Sec. II. By increasing the number of

blocks or, equivalently, the side of the elongated prism, we

can always reach the maximal breaking of symmetry (7). It

is important to note here that such a distribution leads to the

maximal angular deviation. For incidence not at the critical

angle or in the presence of misalignment at the dielectric

surfaces, the angular deviation decreases (see the discussion

at the end of Sec. V).

IV. SNELL LAW ANGULAR DEVIATION,

MULTIPLE-PEAK PHENOMENON, AND FOCAL EFFECT

As observed in the previous section, it is possible to

reproduce in a real optical experiment the modeled breaking

of symmetry introduced in Sec. II. The preferred incidence

angle is θ0 = θc. In this case, for an appropriate choice of

the number of dielectric blocks (N = 50) and of the laser

beam waist (kw0 = 10
3

), it is possible to take the following

approximation:

g
[s,p]

T (θ ; θc) =
∣∣g[s,p]

T (θ ; θc)
∣∣eiN(�Snell+�

[s,p]

GH ) ≈ f (θ − θc)eiN(�Snell+�
[s,p]

GH ). (25)

The transversal mean value for the outgoing beam is then given by

〈y〉[s,p]

T ,c =
− i

2k

∫
dθg

[s,p]

T (θ ; θc)e−ik(θ−θc)2z/2 ∂
∂θ

[
g

[s,p]

T (θ ; θc)e−ik(θ−θc)2z/2
]∗

∫
dθ

∣∣g[s,p]

T (θ ; θc)
∣∣2

+ H.c.

=
∫

dθ
[
−N

k
∂
∂θ

(
�Snell + �

[s,p]

GH

)
+ (θ − θc)z

]
f 2(θ − θc)∫

dθf 2(θ − θc)

= ySnell,c + y
[s,p]

GH,c +
√

2/π

kw0

z. (26)

The Snell law angular deviation α [see Eq. (10) and Fig. 2(b)] obtained in Sec. II for a modeled breaking of symmetry can now

be reproduced in a real optical experiment. For a partial breaking of symmetry the angular deviation is obviously reduced, and a

numerical calculation is needed to estimate such a deviation (see Fig. 4). The peak position and the transversal component mean

value, plotted in Fig. 4 for n =
√

2, which has been chosen because a dielectric block with such a refractive index has a critical

angle θc = 0 (ϕc = π/4), have also been calculated for dielectric fused silica (n = 1.457) and BK7 (n = 1.515) blocks,
{
n,

180◦θc

π
,
180◦ϕc

π

}
= {

√
2,0◦,45◦}, {1.457,−2.42◦,43.34◦} , {1.515,−5.60◦,41.31◦}

(see Table I). It is important to observe that by increasing the number of blocks we reach the maximal breaking of symmetry. In

the Snell and Goos-Hänchen shifts, we find a linear dependence on the block number,

ySnell,c = N (cos θc − sin θc) tan ϕcAB = N

√
2 − n2 + 2

√
n2 − 1 − 1 +

√
n2 − 1√

2(n2 − 1)
AB = NδSnell,cAB (27)

and

{y[s]
GH,c,y

[p]

GH,c} = N{1,n2}
4
k

∫
dθ

√
cos θc

n cos ψc(n2−2 sin
2

θc)(θ−θc)
f 2(θ − θc)

∫
dθf 2(θ − θc)

= N{1,n2}
4Ŵ(1/4)√

π
√

2

[
2 − n2 + 2

√
n2 − 1

4(n2 − 1)(n2 + 2
√

n2 − 1)

]1/4√
w0

k
= N{1,n2}δGH,c

√
w0

k
. (28)

Note that the divergence at the critical angle is removed by the previous integration. Consequently, for a maximal breaking of

symmetry, we find an analytical expression for the Goos-Hänchen shift at the critical angle. Observing that

{n,δSnell,c,δGH,c} = {
√

2,1,4.091}, {1.457,0.983,3.915}, {1.515,0.960,3.700},
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FIG. 5. (Color online) Multiple-peak phenomenon. For kw0 = 103, b/w0 = 102 and for incidence at the critical angle, the outgoing optical

beam presents the fascinating phenomenon of multiple peaks. This phenomenon is directly related to the spreading of the optical beam, and it

occurs because in the angular distribution the positive angular components are no longer compensated by the negative ones.

in the N -block dielectric structure of Fig. 2(c), we have a

Snell shift proportional to NAB and an amplification of the

standard Goos-Hänchen shift (∼λ) given by N
√

kw0. The

numerical analysis done in Fig. 4 and Table I confirms this

amplification.

The multiple-peak phenomenon observed in Fig. 5 is clear

evidence of the breaking of symmetry in the angular distribu-

tion. In the optical beam, the negative angular contributions

are suppressed if we increase the number of blocks. This

implies that there are only positive angular contributions in

the spreading of the optical beam and, consequently, the

multiple-peak phenomenon. As can be seen in Fig. 5, this

phenomenon is amplified not only by increasing the number

of blocks but also by using p-polarized waves. Note that the

phenomenon is more evident when the spreading of the optical

beam is clearly visible. Figure 6 presents another interesting

phenomenon. The focal effect in the outgoing beam is a

consequence of the second-order contribution of the optical

phase which is responsible for the spreading of the beam.

The numerical analysis [see Fig. 6(f) and Table II] shows an

increasing value of the maximum of the outgoing electrical

field, and this is clear evidence of a focalization of the beam.

From the data presented in Table II, we can estimate the axial

point of maximal focalization.
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FIG. 6. (Color online) Focal effect. For kw0 = 104, b/w0 = 10 and for incidence at the critical angle, the multiple-peak phenomenon is no

longer so evident. Nevertheless, a new interesting phenomenon appears. Due to the second-order optical phase contribution, in the outgoing

beam a focalization effect can be now observed. This effect is clear in (f).

V. CONCLUSIONS AND OUTLOOK

The connection between quantum mechanics and op-

tics [12] and the possibility to realize optical experiments

to reproduce quantum effects [13] make optics an interesting

subject of study to investigate the most diversified phenomena,

from the Goos-Hänchen and Imbert-Federov shifts to the

frustrated total internal reflection [33–36] and resonant photon

tunneling [37]. In this paper, starting from a modeled symmetry

breaking (Sec. II), we have shown how to reproduce the

maximal breaking of symmetry in the angular distribution

of laser beams using an optical structure composed of N

dielectric blocks. This structure can be realized in a real

optical experiment by a single elongated prism. The breaking

of symmetry causes an angular modification of the optical

path predicted by the Snell law. The outgoing beam is no

longer parallel to the incoming one as expected from the Snell

law. Our analysis shows that the maximal angular deviation

is obtained for a Gaussian He-Ne laser with λ = 633 nm and

beam waist w0 = 100μm by using p-polarized waves and a

dielectric structure with 50 blocks [see Fig. 2(c)]. In this case,

we should find an angular deviation

αmax = arctan

[∫
dθ (θ − θc)f 2(θ − θc)∫

dθf 2(θ − θc)

]

= arctan

[√
2/π

kw0

]
≈

√
2/π

kw0

≈ 0.05◦ π

180◦ , (29)
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TABLE II. Focal effect for BK7 and fused silica dielectric blocks.

The numerical maximum of the outgoing electrical field at the critical

angle θ0 = θc is listed for p-polarized waves for different refractive

indexes as a function of the axial parameter z and for fixed beam

waist/wavelength ratio, kw0 = 104, and block number, N = 50. We

clearly see the focalization near z = 103dSnell.

E
[ p ]

T
(y, z; θ0) /E0 max

n
z/d 100 500 1000 1500 2000

√

2 0.444 0.472 0.483 0.475 0.460

p
-
p
o
l

1.457 0.440 0.468 0.480 0.472 0.457

1.515 0.434 0.463 0.475 0.469 0.454

which does not depend on the refractive index n of the dielec-

tric blocks and does not change if we increase the block number

because we have reached the maximal breaking of symmetry

for N = 50. This prediction can be tested in real optical

experiments by using different dielectric blocks, for example,

fused silica and BK7 (see Table I). Nevertheless, the previous

formula does not take into account cumulative dissipations and

imperfections in the prism such as misalignment of its surfaces.

A phenomenological way to include the misalignment effect in

the angular deviation is to consider the following distribution:

fmis(θ − θ
c
) =

{
0 θ − θc < θmis,

exp[−(kw0θ )2/4] θ − θc � θmis,
(30)

where the angle θmis = arcsin[n sin(ϕmis − π
4

)] is introduced

to include misalignment effects. Such effects can be simulated

by observing that the surfaces misalignment can be simulated

by changing the internal angle from ϕc to ϕc + ϕmis. In this

case, the angular deviation is given by

αmis = arctan

[∫
dθθf 2

mis(θ − θc)∫
dθf 2

mis(θ − θc)

]

≈
exp[−(kw0θmis)

2/2]

erfc[kw0θmis/
√

2]
αmax. (31)

The possibility to realize a maximal breaking of symmetry and

to make a prediction of the angular deviation of the Snell law

represents the main objective of our investigation. This study,

which overcomes the infinity at the critical angle through the

integration of Eq. (28), also allows us to find a closed-form

expression for the Goos-Hänchen shift. The prediction is in

excellent agreement with our numerical calculation. Finally,

but not less important, two additional phenomena appear in the

presence of the symmetry breaking, namely, the multiple-peak

phenomenon and the focal effect. We hope that the analysis

presented in this work stimulates optical experiments to

confirm the angular deviation α (Fig. 4), the multiple peaks

(Fig. 5), and the focalization (Fig. 6) in the outgoing beam.

In a forthcoming paper, we aim to extend the investigation

of the symmetry breaking done in this work for Gaussian

angular distributions by analyzing the effect of the breaking

of symmetry in Hermite- and Laguerre-Gaussian optical

beams [38].
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