# MAXIMAL CONNECTED TOPOLOGIES 

J. PELHAM THOMAS

(Received 9 January 1967)

If $(X, \mathscr{T})$ is a set $X$ with topology $\mathscr{T}$ we shall say that $\mathscr{T}$ is connected if $(X, \mathscr{T})$ is a connected topological space. We shall investigate the existence of and the properties of maximal connected topologies.

If $A \subset X$ the interior of $A$ will be denoted Int $(A)$ and the closure of $A$ will be $\mathrm{Cl}(A)$. If it is necessary to distinguish between topologies on the same set we shall use subscripts. For example $\mathrm{Cl}_{2}(A)$ will denote the closure of set $A$ with respect to topology $\mathscr{T}_{2}$. If $S$ is a set of subsets of $X, \Phi(S)$ will denote the topology generated by $S$. If $V \subset X$ we let $(V, \mathscr{T} \mid V)$ denote the set $V$ with the topology induced by $\mathscr{T}$. If $\mathscr{T}_{1}$ and $\mathscr{T}_{2}$ are topologies on $X$ we shall denote $K\left(\mathscr{T}_{1}, \mathscr{T}_{2}\right)=\left\{x \in X \mid x\right.$ has a neighborhood for $\mathscr{T}_{2}$ which is not a neighborhood of $x$ for $\left.\mathscr{T}_{1}\right\}$.

Parts of this paper were taken from the author's dissertation done under the supervision of Dr. E. E. Enochs at the University of South Carolina.

Definition 1. A topology $\mathscr{T}$ on a set $X$ will be said to be finer than a topology $\mathscr{T}_{1}$ on $X$ if $\mathscr{T}_{1} \subset \mathscr{T}$. If in addition we have $\mathscr{T} \neq \mathscr{T}_{1}$ we say that $\mathscr{T}$ is strictly finer than $\mathscr{T}_{1}$. A connected topology $\mathscr{T}$ will be said to be maximal connected if $\mathscr{T}_{1}$ strictly finer than $\mathscr{T}$ implies $\mathscr{T}_{1}$ is not connected.

Example l. Let $X$ be any non-empty set and let $x \in X$. Define $\mathscr{T}$ by letting $V \in \mathscr{T}$ if $V \subset X$ and $V=\emptyset$ or $x \in V$. Then $\mathscr{T}$ is maximal connected.

Example 2. Let $X$ be any set, $x \in X$. Let $V \subset X$ belong to $\mathscr{T}$ if and only if $x \notin V$ or $V=X$. Then $\mathscr{T}$ is maximal connected.

We note that each of these examples is $T_{0}$. This condition is necessary.
Theorem l. Let $\mathscr{T}_{1}$ be a maximal connected topology on $X$. Then $\left(X, \mathscr{T}_{1}\right)$ is $T_{0}$.

Proof. Suppose $x, y \in X, \quad x \in \mathrm{Cl}_{1}(\{y\}), \quad y \in \mathrm{Cl}_{1}(\{x\}), \quad x \neq y$. Let $\mathscr{T}_{2}=\Phi\left(\mathscr{T}_{1} \cup\{\{y\}\}\right)$. Then $\mathscr{T}_{2}$ is strictly finer than $\mathscr{T}_{1}$, hence $\mathscr{T}_{2}$ is not connected. Suppose $(A, B)$ is an open partition of $\left(X, \mathscr{T}_{2}\right)$. Then either $\{x, y\} \subset A$ or $\{x, y\} \subset B$ for the neighborhoods of $x$ are the same for $\mathscr{T}_{1}$ and $\mathscr{T}_{2}$. So suppose $\{x, y\} \subset A$. Then $A \in \mathscr{T}_{1}$ for there exists an open $\mathscr{T}_{1}$ neighborhood $V$ of $x, V \subset A$. But $V$ is a neighborhood of $y$ contained in $A$,
and every other point of $A$ has a neighborhood contained in $A$ since the neighborhoods of $z \neq y$ are the same for $\mathscr{T}_{1}$ and $\mathscr{T}_{2}$. Clearly $B \in \mathscr{T}_{1}$. Thus $(A, B)$ is an open partition of ( $X, \mathscr{T}_{1}$ ), a contradiction.

Neither of the topological spaces in the previous examples are $T_{1}$. However, there do exist maximal connected topologies which are $T_{1}$, as the following example will show. To the author's knowledge it is an open question whether there are maximal connected $T_{2}$ topologies.

Example 3. Let $X$ be an infinite set and let $\mathscr{F}$ be the filter of complements of finite sets, $\mathscr{U}$ an ultrafilter finer than $\mathscr{F}$. Let $\mathscr{T}_{1}=\Phi(\mathscr{U})$. Then $\mathscr{T}_{1}$ is maximal connected and $T_{1}$.

Theorem 2. Let $\left(X, \mathscr{T}_{1}\right)$ be a finite connected topological space. Then there exists a maximal connected topology $\mathscr{T}_{2}$ on $X$ such that $\mathscr{T}_{1} \subset \mathscr{T}_{2}$.

The proof is easy and will be left to the reader.
Theorem 3. Let $\left(X, \mathscr{T}_{1}\right)$ be a maximal connected topological space and let $V$ be an open connected subset of $\left(X, \mathscr{T}_{1}\right)$. Then $\left(V, \mathscr{T}_{1} \mid V\right)$ is maximal connected.

Proof. If $\left(V, \mathscr{T}_{1} \mid V\right)$ is not maximal connected let $\mathscr{S}_{1}$ be a topology on $V$ such that $\mathscr{S}_{1}$ is strictly finer than $\mathscr{T}_{1} \mid V$ and $\left(V, \mathscr{S}_{1}\right)$ is connected. Let $W \subset V$ be such that $W \in \mathscr{S}_{1}-\left(\mathscr{T}_{1} \mid V\right)$. Then $\mathscr{S}_{2}=\Phi\left(\mathscr{T}_{1} \mid V \cup\{W\}\right)$ is connected and is strictly finer than $\mathscr{T}_{1} \mid V$. Let $\mathscr{T}_{2}=\Phi\left(\mathscr{T}_{1} \cup\{W\}\right)$. Then $\mathscr{T}_{2}$ is strictly finer than $\mathscr{T}_{1}$ so let $(A, B)$ be an open partition of $\left(X, \mathscr{T}_{2}\right)$. Then either $V \subset A$ or $V \subset B$, for otherwise ( $V \cap A, V \cap B$ ) is an open partition of $\left(V, \mathscr{T}_{2} \mid V\right)=\left(V, \mathscr{S}_{2}\right)$, so assume $V \subset A$. Hence $K\left(\mathscr{T}_{1}, \mathscr{T}_{2}\right) \subset W \subset V \subset A$, which implies $A \in \mathscr{T}_{1}$ since $V \in \mathscr{T}_{1}$. Clearly $B \in \mathscr{T}_{1}$. Hence $(A, B)$ is an open partition of $\left(X, \mathscr{T}_{1}\right)$ which is impossible.

Definition 2. Let $a$ and $b$ be points of a set $S$ and let $H_{1}, H_{2}, \cdots H_{n}$ be a finite collection of subsets of $S$. This collection is said to be a simple chain from a to $b$ if and only if
i) $a \in H_{1}-H_{2}, b \in H_{n}-H_{n-1}$
ii) $H_{i} \cap H_{j} \neq \emptyset$, if and only if $|i-j| \leqq 1, i=1,2, \cdots, n, j=1,2, \cdots, n$.

The above definition is a slight modification of that given by [l] in that we require $a \notin H_{2}$ and $b \notin H_{n-1}$. It is easy to see that with this change the following theorem, also from [1], remains valid.

Theorem 4. A space $S$ is connected if and only if given any two points a and $b$ of $S$ and any open covering $\left\{G_{\alpha}\right\}$ of $S$, there exists a finite subcollection of $\left\{G_{\alpha}\right\}$ which is a simple chain from a to $b$.

Theorem 5. Let $\left(X, \mathscr{T}_{1}\right)$ be a topological space where $X$ has at least two elements and $\mathscr{T}_{1}$ is such that every intersection of open sets is open. Let
$I$ be the set of all isolated points of $\left(X, \mathscr{T}_{1}\right)$ and let $J=X-I$. If $x \in J$ let $V_{x}$ be the smallest neighborhood of $x$, (i.e. the intersection of all open neighborhoods of $x$ ). Then in order that ( $X, \mathscr{T}_{1}$ ) be maximal connected it is necessary and sufficient that all of the following three statements be true:
i) $\bigcup_{x \in J} V_{x}=X$.
ii) If $x \neq x^{\prime}, x$ and $x^{\prime} \in J$, then $V_{x} \cap V_{x^{\prime}}$ has at most one point.
iii) If $a, b \in\left(X, \mathscr{T}_{1}\right)$ then there exists exactly one simple chain from a to $b$ of open sets $V_{x}$.

Proof. Suppose ( $X, \mathscr{T}_{1}$ ) is maximal connected.
i) If $z \in X$ is in no $V_{x}$, then $\{z\}$ is open and closed which is impossible.
ii) We shall show first that $V_{x}-\{x\} \subset I$ for every $x \in J$. Suppose $z \in V_{x} \cap J, z \neq x$. Let $\mathscr{T}_{2}=\Phi\left(\mathscr{T}_{1} \cup\{\{z\}\}\right)$, which is strictly finer than $\mathscr{T}_{1}$. Hence, we can let ( $A, B$ ) be an open partition of ( $X, \mathscr{T}_{2}$ ). Since $K\left(\mathscr{T}_{1}, \mathscr{T}_{2}\right)=\{z\}$ and $x \notin\{z\}$, we may assume $V_{x} \subset A$. But then $(A, B)$ is an open partition of $\left(X, \mathscr{T}_{1}\right)$, which is impossible. Thus $z \in I$.

From the above we see that if $x, x^{\prime} \in J$ then $V_{x} \cap V_{x^{\prime}} \subset I$. Suppose $\left\{y_{1}, y_{2}\right\} \subset V_{x} \cap V_{x^{\prime}}, y_{1} \neq y_{2}$ and let $V_{x^{\prime}}^{\prime}=V_{x^{\prime}}-\left\{y_{2}\right\}$. Let $\mathscr{T}_{3}=\Phi\left(\mathscr{T}_{1} \cup\left\{V_{x^{\prime}}^{\prime}\right\}\right)$, which is strictly finer than $\mathscr{T}_{1}$. Let $(A, B)$ be an open partition of $\left(X, \mathscr{T}_{3}\right)$ and suppose $x^{\prime} \in A$. Then $V_{x^{\prime}}^{\prime} \subset A$ and $V_{x} \notin A$ since $K\left(\mathscr{T}_{1}, \mathscr{T}_{3}\right)=\left\{x^{\prime}\right\}$. Thus we have $y_{1} \in A$ and $y_{2} \in B$. But then $x \in \mathrm{Cl}_{3}(A) \cap \mathrm{Cl}_{3}(B)$ since $\left\{y_{1}, y_{2}\right\} \subset V_{x}$. This is a contradiction.
iii) That there exists a simple chain of elements $V_{x}$ from $a$ to $b$ is a consequence of connectedness (Theorem 4). Hence, suppose there are two such simple chains, $C_{1}=\left\{V_{x_{i}}\right\}, i=1, \cdots, n$ and $C_{2}=\left\{C_{y}\right\}, j=1, \cdots, m$. Let $S=\bigcup V_{x}, V_{x} \in C_{1} \cup C_{2}$. Then $S$ is open and connected and hence maximal connected for $\mathscr{T}_{1} \mid S$ by Theorem 3. Let $j$ be the smallest integer such that $V_{x_{j}} \neq V_{y_{j}}$. If $j=1$, we know that $V_{x_{j}} \cap V_{y_{j}}=\{a\}$ by ii $\}$. If $j \geqq 2$ we have $V_{\nu_{j}} \cap V_{y_{j-1}}=V_{\nu_{j}} \cap V_{x_{j-1}}$, a single point, say $c$, again by ii). Let $y=a$ if $j=1$ and $y=c$ otherwise. Let $V_{y_{j}}^{\prime}=V_{y_{j}}-\{y\}$, and let $\mathscr{T}_{2}=\Phi\left(\mathscr{T}_{1} \cup\left\{V_{v_{j}}^{\prime}\right\}\right)$, which makes $\mathscr{T}_{2} \mid S$ strictly finer than $\mathscr{T}_{1} \mid S$, so $\left(S, \mathscr{T}_{2} \mid S\right)$ is not connected. But $S_{2}=V_{j}^{\prime} \cup\left(\cup V_{y_{i}}, i=j+1, \cdots, m\right)$ is connected for $\mathscr{T}_{2} \mid S, S_{1}=\cup V_{x}, V_{x} \in C_{1}$, is connected for $\mathscr{T}_{2} \mid S$, and $b \in S_{1} \cap S_{2}$, so $S_{1} \cup S_{2}=S$ is connected for $\mathscr{T}_{2} \mid S$, which is a contradiction.

To show that the conditions are sufficient suppose they hold for $\left(X, \mathscr{T}_{1}\right)$. We show first that $\left(X, \mathscr{T}_{1}\right)$ is connected. Let $a \in\left(X, \mathscr{T}_{1}\right)$. With each $b \in X$ there is a simple chain $C_{b}$ of sets $V_{x}$ from $a$ to $b$, by iii), and clearly $\cup V_{x}, V_{x} \in C_{b}$ is connected. Hence $X=\cup V_{x}, b \in X, V_{x} \in C_{b}$, is connected.

Suppose now that $\mathscr{T}_{2}$ is strictly finer than $\mathscr{T}_{1}$ and that $\left(X, \mathscr{T}_{2}\right)$ is
connected. Let $V \in \mathscr{T}_{2}-\mathscr{T}_{1}$. We may assume $x \in V \subset V_{x}$ for some $x \in J$. Then $V_{x}-V$ consists entirely of isolated points, by ii), and is non-empty. Let $M$ be the open covering of $\left(X, \mathscr{T}_{2}\right)$ consisting of all $V_{y}$ such that $y \neq x, y \in J$, all $\{z\}$ such that $z \in V_{x}-V$, and $V$. Let $w \in V_{x}-V$. Let $C^{\prime}=\left\{M_{1}, \cdots, M_{n}\right\}$ be a simple chain of elements of $M$ from $x$ to $w$. Note that since $V$ is the only element of $C$ which contains $x$ we have $M_{1}=V$. Hence, let $\{v\}=V \cap M_{2}$ and let $C^{\prime}=C-\{V\}$. Then $C^{\prime}$ is a simple chain from $v$ to $w$ of elements of $M$. Furthermore, $V \notin C^{\prime}$ and $V_{x} \notin C^{\prime}$, so $C^{\prime}$ consists entirely of sets $V_{y}, y \neq x$, and hence is a simple chain from $v$ to $w$ of elements $V_{y}$. But $C^{\prime \prime}=\left\{V_{x}\right\}$ is also such a chain which contradicts iii). Thus $\left(X, \mathscr{T}_{1}\right)$ is maximal connected. This completes the proof.

The preceding theorem give us a means of quickly determining all the maximal connected topologies on small finite sets. We represent the members of $I$ by solid dots and the members of $J$ by open dots. We represent $V_{x}$ by a line segment on which we place the dots representing $x$ and the isolated points which are in $V_{x}$. The order of the dots on the line segment is immaterial. Thus if $X=\{a, b, c\}$ and $\mathscr{T}=\{\phi,\{b\},\{c\},\{b, c\}, X\}$ our sketch is


We can thus easily see and sketch all the non-homeomorphic maximal connected topologies on small finite sets by disregarding the naming of elements. We sketch below all the non-empty maximal connected topologies with less than 6 elements.
1 element
2 elements $0-$




It should be an interesting counting problem to discover the number of maximal connected topologies on a set with $n$ elements. To the author's knowledge this question is as yet unanswered.

Theorem 5 gives us a good source of examples for answering general questions about maximal connected topological spaces.

Example 4. The quotient of a maximal connected topological space by an equivalence relation is not necessarily maximal connected. For, let ( $X, \mathscr{T}$ ) be

and let $R=\{\{a, b\},\{c, d\}\}$. Note that $\{a, b\}$ is neither open nor closed. Then the quotient topology on $X / R$ is the trivial topology which is not $T_{0}$ and hence not maximal connected by Theorem 1.

Example 5. The product of maximal connected spaces is not necessarily maximal. For ${ }_{o}^{a} b$ is maximal connected but the product topology $\mathscr{T}_{1}=\{\phi,\{(b, b)\},\{(b, a),(b, b)\},\{(a, b),(b, b)\}, X \times X\}$ is not maximal since $\Phi(\{\{(x, y)\} \mid(x, y) \in X \times X,(x, y) \neq(a, a)\})$ is connected and strictly finer than $\mathscr{T}_{1}$.

Example 6. A door space $(X, \mathscr{T})$ is a topological space having the property that if $A \subset X$ then either $A \in \mathscr{T}$ or $X-A \in \mathscr{T}$. Examples 1, 2, 3 and Theorem 6 suggest the possibility that every maximal connected space is a door space. This is not the case for

is not a door space since $\{a, b\}$ is neither open nor closed. A semi-door space $(X, \mathscr{T})$ is a space having the property that for $A \subset X$ there exists $B \in \mathscr{T}$ such that either $B \subset A \subset C \mathrm{Cl}(B)$ or $B \subset X-A \subset \mathrm{Cl}(B)$. The space

is maximal connected but not semi-door. For $A=\{b, c, d, f\}$ does not satisfy the condition.

Theorem 6. In order that $\left(X, \mathscr{T}_{1}\right)$ be maximal connected it is necessary that whenever $A \subset X$ and $A$ is connected and $X-A$ is connected, $A \in \mathscr{T}_{1}$ or $X-A \in \mathscr{T}_{1}$.

Proof. If either $A$ or $X-A$ is empty the proposition is trivial so suppose $A \neq \emptyset, X-A \neq \emptyset$. Suppose neither $A$ nor $X-A$ is open. Let $\mathscr{T}_{2}=\Phi\left(\mathscr{T}_{1} \cup\{A\}\right)$. Then $\mathscr{T}_{2}$ is strictly finer than $\mathscr{T}_{1}$ hence not connected,
so there exist $U, V \in \mathscr{T}_{2}$ such that $(U, V)$ is an open partition of $\left(X, \mathscr{T}_{2}\right)$. Suppose $U \cap(X-A)$ and $V \cap(X-A)$ are non-empty. Then $(U \cap(X-A)$, $V \cap(X-A))$ is an open partition of $X-A$ for $\mathscr{T}_{2}$. But

$$
\left((X-A), \mathscr{T}_{1} \mid(X-A)\right)=\left((X-A), \mathscr{T}_{2} \mid(X-A)\right)
$$

so $(U \cap(X-A), V \cap(X-A))$ is an open partition of $\left(X-A, \mathscr{T}_{\mathbf{1}} \mid(X-A)\right)$ which is a contradiction. Thus either $U \subset A$ or $V \subset A$, so assume $U \subset A$. If $U=A$ we have $V=X-A \in \mathscr{T}_{2}$, and hence $V \in \mathscr{T}_{1}$, which is impossible. Hence, $V \cap A \neq \emptyset$, and therefore $(U, V \cap A)$ is an open partition of $\left(A, \mathscr{T}_{2} \mid A\right)$. But if $x \in A$ the neighborhoods of $x$ for $\mathscr{T}_{1} \mid A$ are the same as those for $\mathscr{T}_{2} \mid A$, hence $(U, V \cap A)$ is an open partition of $\left(A, \mathscr{T}_{1} \mid A\right)$ which is a contradiction, hence the result.

Note: The conditions of the above theorem are not sufficient for they hold for the reals $R$ with the order topology $\mathscr{T}$, but $\Phi(\mathscr{T} \cup\{Q\}$ ), where $Q$ denotes the rationals, is strictly finer than $\mathscr{F}$ and is connected.

## Reference

[1] Dick Wick Hall and Guilford L. Spencer, II, Elementary Topology (John Wiley and Sons, New York 1955).

The University of North Carolina at Charlotte (Now at Western Carolina University)

