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Introduction 

This paper is a continuum of the preceding paper of a u t h o r  [1] . For the concepts and notations 

of generalized convex (or  G-convex) space, CG-convex space, the class B ( Y , X )  of better 

admissible mappings, GB-mappings, G~-majorized mappings and the related notions, the reader 

may consult Ref. [ 1 ] .  

The main aim of this paper is to give some applications of the existence theorems of maximal 

elements obtained by author It] . By applying our results in Ref. [ 1 ] ,  we give some component 

version of coincidence theorem and Fan-Browder type fixed point theorems. Some existence 

theorems of solutions for a system of Ky Fan type minimax inequalities involving a family of GB- 

majorized mappings defined on the product space of G-convex spaces are also given. These results 

improve and generalize many known results in fiterature. 

1 P r e l i m i n a r i e s  

In order to prove our main results, we need the following existence theorems of maximal 
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Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 

an analytic solution only when the polytropic index of detonation products equals to three. In 

general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 

behavior of the reflection shock in the explosive products, and applying the small parameter pur- 

terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 

plate driven by various high explosives with polytropic indices other than but nearly equal to three. 

Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 

an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 

index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 

materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 

cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 

of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 

approach of solving the problem of motion of flyor is to solve the following system of equations 

governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 
y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 

respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 

trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 

meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 

D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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elements for a family of Gs-majorized mappings and Gn-mappings in Ref. [ 1 ] .  For convenience, 

we state these theorems as follows. 

T h e o r e m  1 Let X be a topological space and I be any index set. For each i E I ,  let ( Yi, 

/~)  be a CG-convex space and let Y = 1--~ Yi such that ( Y , F )  is a CC,--convex space defined as 

in Ref. [ 11 �9 Let F E B ( Y, X) be a compact mapping such that for each i E I ,  

( i ) Ai: X ~ 2 r, is a Gs-majorized mapping; 

( i i )  U { x  E X : A ~ ( x ) #  r  U in t{x  E X:A~(x)  # r  
iE / iE t 

Then there exists x E X such that Ai ( x )  = r for exch i E I .  

P roo f  F o r e a c h x  E X, l e t l ( x )  = {i  E I:A~(x)  # r  D e f i n e A : X - - ~ 2 r b y  

f~l~(,>zcc~l(Ai(x)) ( i f  l ( x )  # r  
A ( x )  ( 

r ( i f I ( x )  = r  

Then for each x E X,  A ( x ) # r if and only if I (  x ) # r By the proof of Theorem 2 .5  in 

Ref. [ 1 ] ,  we can show thatA : X- -~2r i s  a Gs-majorized mapping. By applying Corollary 2 .4  in 

Ref. [ 1] ,  there exists x E X such that A ( x )  = r and so l ( x  ) = r Hence we have Ai(x ) = 

r for all i E I .  

Remark 1 Theorem 1 improves and generalizes Theorem 3 of Deguire et al. [23 in following ways: 

1 ) From convex subsets of topological vector spaces to CG-convex spaces without linear structure; 2) From 

a family of Ls-majorized mappings to a family of Gn-majodzed mappings. 

The following results are Theorem 2 .6  and Theorem 2 .7  in Ref. [ 1 ] .  

T h e o r e m  2 Let X be a topological space, K be a nonempty compact subset of X and I be 

any index set. For each i E [ ,  let ( Y~,/-'i) be a G-convex space and Y = ] ~  Y~ be a G-convex 

space defined as i n R e f . [ 1 ] .  Let F E B ( Y , X )  and for each i E I ,  A~:X- -*2  r be a Gs- 

mapping such that 

( i ) For each i E I and Ni E 57"(Yi), there exists a nonempty compact G-convex subset 

LN of Yi containing Ni and for each x E X \ K,  there exists i E I satisfying LN A Ai ( x ) # r 

Then there exists x E K such that Ai ( x )  = r  for each i E I .  

Theorem 3 Let X be a paracompact topological space and I be any index set. For each 

i E I ,  lef (Y~, / ' i )  be a G-convex space and Y = I]~ Y~ be a G-convex space defined as in 

R e f . [ 1 ] .  Let F E B ( Y , X )  be such that for each i E I,  A i :X--~  2 r, is a Gs-majorized 

mapping. Suppose that there exists a nonempty compact subset K of X and for each i E I and 

Ni E ~ r ( y ~ ) ,  there is a compact G-convex subset LN of Yi containing N~ such that for each 

x E X \ K,  there exists i E I satisfying LN, f ')Ai( x ) # (~. Then there exists an x E X such that 

A~(x) = r for all i E I .  

2 Fixed Points and Coincidence Points in Product Spaces 

As application of Theorems 1, 2 and 3, we have the following component version of 

coincidence theorem and Fan-Browder type fLxed point theorem in the product space of G-convex 

spaces. 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 

respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 

trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 

meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 

D and by initial stage of motion of flyor also; the position of F and the state parameters of products 
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Theorem 4 

any index set. For 

space defined as in 

valued. Suppose 

Let X be a topological space, K be a nonempty compact subset of X and I be 

each i E I ,  let ( Yi,/"i) be a G-convex space and Y --- I I  Yi be a G-convex 
i E  t 

Ref. [ 1 ] .  Let F E B( Y, X) and for each i E I ,  Ai: X -~ 2 v, be G-convex 

( i ) For each i E I and yg E Yi, A ? l (y i )  is compactly open in X, 

( il ) For each i E I and Ni E . ~ ( Y i ) ,  there exists a nonempty compact G-convex subset 

L~. of Yi containing Ni and for each x E X \ K,  there exists i E I satisfying L~ N A i ( x )  # 

( ii ) For each x E K,  there exists i E I such that A i ( x )  # ~. 

Then there exist i0 E I and (x ,~,) E ( X ,  Y) such thatx E F ( y )  and ~,,0 = :rq(3,) E A, , (~) .  
^ 

Moreover if F = S is a single-valued continuous mapping, then we have yq = :rio(Y) E 

A/o(S ( ) , ) ) .  

Proof By condition ( iii ) ,  the conclusion of Theorem 2 does not holds. By Theorem 2, 
& 

there exist i 0 E I such that Aio: X--~ 2r,, does not satisfy the condition (a) in the definition of a 

GB-mapping, i . e . ,  there exists N E . ~ ( Y )  such that F ( I ~ ( N ) )  n ( N ( A r l ( : r q ( 7 ) ) ) , ~  # ~. 

It follows that there exists (~ ,~ , )  E X x Y such that ~, E F ' ( N ) ,  x E F ( y ) ,  and 

x E yAA~t ( : r io (y ) ) .  Hence we have :rio C Aio(X). Since a i , ( x ) i s  G-convex, we have 

~r,~ -- :rio(j) E :r io(r(N))  = rio(:rio(N)) C A,o(~). 
^ 

Furthermore, if F = S is a single-valued continuous, then S E B( Y, X) and so we have Yi0 E 

Aio(S(~')) �9 

Remark 2 1 ) Theorem 4 improves and generalizes Theorem 6 and Theorem 9 of Deguire et al. [z] 

in following ways: (a) From the product space of nonempty convex subsets of topological vector spaces to 

the product space of G-convex spaces~ (b) From S being a single-valued continuous mapping to F E B( Y, 

X). 

2) Theorem 4, in turn, generalizes Theorem 5.1 of Deguire and Lassonde E33 , Theorem 3.1 of 

Deguire [4] , and the corresponding results of Ben-E1-Meehaiekh et al. [5,6], LassondetT,s], Tarafdar[9.t0], 

Ding and Tarafdar [tt't2] and Ding [13'14] in several aspects. 

3) We wish to point out that the conclusion of Theorem 4 could not guarantee in general that 7~ E 

A~(x) for each i E l as we can only assure that there exist io E l a n d ( ~ , y )  E X x Y suchthatx E F(y)  

and y,o 6 Aio(x). 

T h e o r e m  5 Let I be any index set. For each i E I ,  let (X i , /" i )  and (Y,,/~i)  be 

G-convex spaces, and X = I I X i  and Y = I I Y i  be the product G-convex spaces defined as in 
i E  I iE I 

Ref. [ 1].  For each i E I ,  let Ai: X -~ 2 ~, and Bi: Y -~ 2 x' be set-valued mappings with 

G-convex values. Suppose there exist a nonempty compact subset K of X and a nonempty 

compact subset L of Y such that 

( i ) For each i E l and ( x i , y i )  E Xi x Yi, A?l(Yi) and B ? t ( x i )  are both compactly 

open in X and Y respectively; 

( ii ) For each i E I ,  M i E ~,~(Xi) and Ni E . ~ ( Y i ) ,  there exist nonempty compactly G- 

convex subsets Lu  of Xi containing M~ and nonempty compactly G-convex subset LN., of Yi 
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containing Ni and for each ( x , y )  E (X x Y) \ (K x L ) ,  there exists i E I such thatAi(x)  f') 

Lu # ~ and B~(y) f-] LM # ~; 

( ]ii) For each ( x ,  y)  E K x L,  there exists i E I such that A i ( x ) # (~ and Bi (y)  # (~ i 

Then there exist i0 E I and (x ,~ )  E X • Y such that ~s0 E A,0(x) and x,o E B,o(y).  

Proof Let C = K x L,  then C is a nonempty compact subset of X • Y. Clearly, for each 

i E I,  Yi x Xi and Y x X = ]-[ ( Yi x X~) are also G-convex spaces. By ( i i ) ,  for each i E 
i E i  

I and N i x  Mi E S~( Yi • Mi) ,  there exists a nonempty compactly G-convex subset LN x L~ of 

Y x X containing Ni • Mi. Define F :  Y x X--~2 (x• by F ( y , x )  = { ( x , y ) } ,  then we have 

F E B ( Y x  X , X  • Y) .  Define Wi: X • Y--~2(r• )by  

W , ( x , y )  = Ai(x)  • B i (y )  ( V ( x , y )  E X •  Y) .  

Then it is easy to check that all conditions of Theorem 4 are satisfied. By Theorem 4, there exist 

i0 E I a n d ( y , x )  E Y x  Xsuch tha t  

(y,o,X,o) E W,o(F(y , x ) )  = W,o(X,y) = A,o(X) x B,o(~) 

and hence we obtain ~'io E Ai0(x) and xi0 E Bio(Y). 

Remark 3 Theorem 5 generalizes Theorem 10 of Deguire et al. [23 and Theorem 4.3 of Deguire and 

Lassonde [3] from convex subsets of topological vector spaces to G-convex spaces. 

3 System of Minimax Inequalities 

In this section, by applying our existence theorems of maximal elements, some existence 

theorems of solutions for a system of Ky Fan type minimax inequalities (see Ky Fall [15'16] ) will 

be proved under much weaker assumptions. In particular, our results improve and generalize 

well-known Ky Fan maximal inequality in Refs. [2 ,15 ,16]  to the product space of noncompact 

G-convex spaces without linear structure. Before we study the system of Ky Fan type minimax 

inequalities for a family of real valued functions, we need the following definitions. 

Let X be a topological space and I be any index set. For each i E I ,  let ( Y~, P/) be a G- 

convex space and Y = I I Y :  be the G-convex space defined as in Ref. [1 ] .  Let F E B ( Y , X )  
i E l  

be the family of admissible mappings and for each i E I ,  f~ : X • Yi --~ R be a real valued 

function. 

1) For each given x E X, the function yi t - -~f i (x ,yi)  is said to be G-quasiconcave if for 

any 2 E R,  the set {y~ E Y i : f i ( x , y i )  > ~} is G-convex, 

2) fl  ( x ,  yi) is said to be G~- majorized if the following conditions are satisfied: for each 

given ), E R,  if there exists ( x ,  yi) E X • Y~ such that f i ( x ,  Yi) > ),, then there exist a 

nonempty Open neighborhood N ( x )  of x in X and a real valued function fL,.~ : X x Y / ~  R such 

that 

(al) f i ( z , Y i )  <. f i , x ( z , y i ) f o r a l l ( z , y i )  E N ( x )  x Yi; 

(az) For each Yi E Yi, z ~ fi, �9 ( z ,  Yi) is lower semicontinuous on each compact subset of 

X; 

(%) For each N E ~ ' ( Y ) ,  y E P ( N )  andz  E F ( y ) ,  f~ ( z , r r i (y ) )  <~ ~ implies that 

Abstract  

The one-dimensional problem of the motion of a rigid flying plate under explosive attack has 

an analytic solution only when the polytropic index of detonation products equals to three. In 

general, a numerical analysis is required. In this paper, however, by utilizing the "weak" shock 

behavior of the reflection shock in the explosive products, and applying the small parameter pur- 

terbation method, an analytic, first-order approximate solution is obtained for the problem of flying 

plate driven by various high explosives with polytropic indices other than but nearly equal to three. 

Final velocities of flying plate obtained agree very well with numerical results by computers. Thus 

an analytic formula with two parameters of high explosive (i.e. detonation velocity and polytropic 

index) for estimation of the velocity of flying plate is established. 

1. Introduct ion 

Explosive driven flying-plate technique ffmds its important use in the study of behavior of 

materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 

cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 

of common interest. 

Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 

approach of solving the problem of motion of flyor is to solve the following system of equations 

governing the flow field of detonation products behind the flyor (Fig. I): 

ap +u_~_xp + au 
--ff =o, 

au au 1 
y =0, 

aS as  
a--T =o, 

p =p(p, s), 

(i.0 

293 

where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 
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there exists y '  E N such t h a t f i , , ( z , ~ q ( y ' ) )  ~< 2 .  

T h e o r e m  6 Let X be a topological space and I be any index set. For each i E I ,  let ( Y~, 

/"i)be a CG-convex space and let Y = ~[~Yi such that ( Y , P )  is a CG-convex space defined as 
iE I 

in Ref. [ 1 ] .  Suppose that/~ E B ( Y, X) is a compact mapping and for each i E I ,  the function 

f,: : X x Yi --~ R satisfies that for each Yi E Y~, x ~ f / (  x ,  Yi ) is lower semicontinuous on X. 

Then at least one of the following statement hoMs: 

1) For each 2 E R,  there exists x E X such that su~ sul~f~ ( x ,  Yi) ~< 2 ,  

2) There exist i E I ,  2 E R,  N E 5~(Y) such that 

N {x E F ( r ( N ) ) : A ( x , r q ( y ) )  > 2 } r  ~. 
yE 

Proof  If the statement 2) is false, then for any 2 E R,  i E I and N E ..~'(Y), we have 

F(I'(N)) N ( N {= E > a } )  = 
yE~ 

For each i E I ,  define a mapping A i . X ~ 2 r by 

a , ( x )  = {y, E Y , : f~(x ,y , )  > 2} ( V x  E X) .  

Hence we have 

F ( I ' ( N ) )  O ( M a ? l ( ~ r , ( y ) ) )  = r 
yE N 

By the lower semicontinuity of the function x ~ f i ( x , y i ) ,  we have that for each y: E Yi, 

A71( yi) = { x E X : f i (  x ,  yi) > 2 } i s o p e n o n X .  Hence foreach i E I ,  Ai is a Gs,-mapping 

and condition ( 11 ) of Theorem 1 is also satisfied. By Theorem 1, there exists x E X such that 

Ai(x)  = ~ f o r a l l i  E I .  Hence we have 

r ,~Z 

i . e . ,  the statement 1) holds. 

T h e o r e m  7 Let X be a topological space and I be any index set. For each i E I ,  let ( Y~, 

/ ' i )be  a CG-convex space and let Y = ~-[.Yi such that ( Y , / ' )  is a CG-convex space defined as 

in Ref. [ 1 ] .  Suppose that F E B ( Y, X) is a compact mapping and for each i E I ,  the function 

f / :  X x Y / ~  R satisfies 

( J ) For each x E X,  yi I - ~ f i ( x , y i )  is G-quasiconcave, 

( U ) For each yi E Yi, x ~ fi ( x ,  Yi ) is lower semicontinuous on X. 

Then we have 

(A) For any 2 E R,  at least one of the following statement holds: 

1) There exists x E X such that seu ~ supf/(x,  yi) <~ a ,  

2) There exist i E I ,  N E  ~ ( Y ) ,  ~, E / " ( N )  andx E F(~,) such t h a t f ~ ( x , r q ( y ) )  > 

. 

(B) The following minimax inequality holds: 

inf sus~ supf / (x ,y ; )  ~< su~ su zri(y)) .  

Proof  (A) For a n y i  E l a n d 2  E R,  def ine&:  X - + 2  r ,by 

Ai(x)  = {Yi E Y i : f i ( x , y i )  > 2} ( V x  E X) .  

Then by ( [ ) ,  for each x E X, Ai(x)  is G-convex and for each Yl E Yi, the set A~t(yi)  = 
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{x E X : ~ ( x , y i )  > /l} is open in X b y  ( ii ) .  Now assume that the statement (A)  2 ) i s  not 

true. We claim that Ai is a G~-mapping. Indeed, if Ai is not a Gs-mapping, then there exists 

N E c~'(Y) such that 

F ( P ( N ) )  N ( I~a[ l (Tr~(y) ) )  # r 
yE 71 

It follows that there exist), E P ( N ) ,  ~ E F ( ~ )  such the ~r,(N) C A , (~ ) .  Since A,(~)  is C.- 

convex, we have l ' i (zr i (N))  C A i ( x ) .  Noting that), E P ( N )  = I ~ P i ( r c i ( N ) ) ,  we obtain 
i E /  

r q ( ) )  E / ' , ( z r , (N) )  C A t ( x ) ,  

i . e . ,  f i ( x ,  zr /(y))  > 2.  This contradicts the assumption that (A) 2) does not hold. Therefore 

A/is a Ge-mapping. Noting that each A:~l(yl) is open in X, condition ( 11 ) of Theorem 1 is also 

satisfied. By Theorem 1, there exists x E X such that Ai(x)  = r for all i E I .  Hence 

f / ( x ,  Yi) ~< 2 for all i E I and Yi E Yi, so that the statement (A) 1) holds. 

(B) Let20 = SUr162 ,seusP,),erPr)su s u r g f i ( x , ~ r i ( y ) ) ,  then the statement (A)  2) is false, so 

that the statement (A) 1) must hold, i . e . ,  there exists x E X such that 

S U  inf sue~) sup.f/( x ,  Yi) ~< s u~ Ns~j~r) ,e ,~,) ,esug, f / (  x ,  ~ri ( y ) ) .  
xE x r , E ~  

( i i )  For 

( i l l )  For 

containing N i , 

A ( x ,  yi) > ;t 

Then we have 

(A) For 

1 ) There 

2) There 

,~. 

(B) The 

Remark 4 Theorems 6 and 7 improve and generalize Theorem 11 of Deguire et al. [2~ in several 

aspects. 

T h e o r e m  8 Let X be a topological space, K be a nonempty compact subset of X and I be 

any index set. For each i E I ,  let ( Yi, P~) be a G-convex space and Y = I I  Yi be a G-convex 
i e l  

space defined as in Ref. [ 11 �9 Let F E B( Y, X) and for each i E I ,  j~ : X x II/--~ R be such that 

( i ) For each x E X, yi ~ f / (  x ,  yi) is G-quasiconcave, 

each yi E Yi, x ~ fi ( x ,  yi) is lower semicontinuous on X, 

each N~ E o~r(II/), there exists a nonempty compact G-convex subset LN of Yi 

and for each2 E R a n d x  E X \  K,  there exist i  E I a n d y i  E LN satisfying 

each 2 E R,  at least one of the following statement holds: 

exists x E K such that su~) supfz ( x ,  y,) ~< 2 ,  or 

exist i ~ I ,  N E ~ ( Y ) ,  y E P ( N )  andx E F ( y )  such thatf~(;~ ,~ri(~)) > 

following minimax inequality holds: 

su , rq (y )  ) inf suI~ .,E~,supf/(x' Yi) ~ SU~ NS~., .e.~, supfi(erc.~ X 
x E K  i 

Proof  By using Theorem 2 and the similar argument as in the proof of Theorem 7, it is 

easy to show that the conclusion of Theorem 8 holds. 

Remark 5 Theorem 8 generalizes Theorem 12 of Deguire et al. [z3 in several aspects. 

T h e o r e m  9 Let X be a paracompact topological space and I be any index set. For each 
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materials under intense impulsive loading, shock synthesis of diamonds, and explosive welding and 

cladding of metals. The method of estimation of flyor velocity and the way of raising it are questions 
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Under the assumptions of one-dimensional plane detonation and rigid flying plate, the normal 

approach of solving the problem of motion of flyor is to solve the following system of equations 
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where p, p, S, u are pressure, density, specific entropy and particle velocity of detonation products 

respectively, with the trajectory R of reflected shock of detonation wave D as a boundary and the 

trajectory F of flyor as another boundary. Both are unknown; the position of R and the state para- 

meters on it are governed by the flow field I of central rarefaction wave behind the detonation wave 

D and by initial stage of motion of flyor also; the position of F and the state parameters of products 



Maximal Elements for Gn- Majofized Mappings ( H ) 1023 

i E I ,  let ( Yi,/~i) be a G- convex space and Y = ] - I  Yi be a G-convex space defined as in 
i E I  

Ref. [ 1 ] .  Let F E B ( Y, X) be such that for each i E I ,  

( [ ) f i : X  x Yi - -"Ris  Grmajorized, 

( i[ ) Suppose that there exist a nonempty compact subset K of X and for each i E I and 

Ni E ~ ' ( Y i ) ,  there is a compact G-convex subset LN, of Yi containing Ni such that for any ,~ E 

R and for each x E X \ K ,  there exist i E 1 and Yi E LN satisfying f / ( x ,  yi) > ,~. 

Then we have 

(A) For each 2 E R,  at least one of the following statement holds: 

1) There exists x E K such that su~ supf~ ( x ,  Yi) ~ 2 ,  or 
y, Ev, 

2) There e x i s t / E  I ,  N E 5~(Y) ,  y E /~(N) andx E F ( y )  such tha t f~(x , r r~(y) )  > 

(B) The following minimax inequality holds: 

8 U  inf SeUl~ SUl~r x ,  y..) ~< ~u~ M~r,  ,~ r[a,, ,~u~M,f'( x ,~r,(y)  ) 
�9 E K ~ r, El~,  " 

Proof  (A) For any i E l a n d A  E R,  define Ai: X--*2r,  by 

A,(x)  = { y ~ E  Y~:A(x,y : )  > ;t} ( u  E X) .  

Since fi ( x ,  yl ) is Ge-majorized, for each given x E X, if A i ( x )  # #,  then there exist an open 

neighborhood N ( x ) of x and fi, ~ : X x Yi --~ R having properties ( al ) ~ ( a3 ) .  Now define a 

mapping Ai,~ : X --~ 2 r, by 

Ai , , ( z )  = {Yi E Y i : f i ( x , y i )  > Z}.  

Then we have 

(a) Ai(z)  C A~,~(z) for each z E N ( x )  by ( a t ) ,  

(b) For each Yi E Y~, A?.~(yi) is compactly open in X b y  (a2). 

If the statement (A) 2) does not holds, then for any i E I ,  N E . ~ ( Y ) ,  y E  / ' ( N )  andz E 

F ( y ) ,  we h a v e f / ( z ,  7r:(y)) ~ Z. By (as ) ,  there exists y' 6 N such t h a t f / . , ( z ,  rri(y' ) )  

2. Hence z ~  0 {z E X : f i . , ( z , r q ( y )  > A} = n A ? l , ( a - i ( y ) ) .  It follows that for each i E 
rE  ,v y E  

t and N E :~(Y) ,  F ( r ( N ) )  M ( -~ nAi .~(  ri( y) ) ) = ~. Therefore Ai.~ is a Grmajorant of Ai 

at x and A~ is Gs-majodzed. By the condition ( ii ) ,  it is easy to see that all conditions of 

Theorem 3 are satisfied. By Theorem 3, there exists x E K such that Ai(x ) = ~ for all i E I .  

Hence we have f / (  x ,  yi ) ~< 2 for all i E I and yi E Yi, i . e . ,  the statement (A) 1 ) holds. The 

proof of statement (B) is the same as that of Theorem 7. 

RemArk 6 Theorem 9 improves and genera]i~s Theorem 14 of Deguire et al. [2] in several aspects. 

We can also generalize Corollaries 15 ~ 18 of Deguire et al. [2] to the product space of G-convex spaces 

without linear structure. We omit it. 
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